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It is shown, in the framework of Hamilton-Lie geometrical optics, that the image on a moving 
screen undergoes comatic aberration as the conjugate sphere of ray directions distorts under 
Lorentz boosts. 

I. INTRODUCTION 

Stellar aberration is a phenomenon known for centuries 
in positional astronomy: As a result of the Earth's motion in 
orbit, the directions to stars on the celestial sphere suffer 
distortion toward the direction of motion. In relativity we 
know that, corresponding to a ray with angle () measured 
from the motion vector, and a velocity v = c tanh a, the dis
tortion is given by the transformation of the circle l 

tan i()-+tan i()' = e - a tan W (1.1 ) 

Hamilton-Lie geometrical optics2
•
3 works with phase

space observables on plane screens. It is usually natural to 
distinguish an optical axis when working with optical image
forming systems or optical fibers. In that case it is convenient 
to perform the aberration expansions of classical geometri
cal optics.4 In this paper we treat the aberration phenome
non globally, i.e., through exact (closed) expressions valid 
on the whole optical phase-space manifold: optical momen
tum is directly related to points on the direction sphere, and 
this is a compact manifold (unlike the phase space of point 
particles) . 

Distortion of the sphere of directions entails a corre
sponding coma tic aberration of ray position at the screen, if 
the relativistic transformation is to be canonical on optical 
phase space. 

In Sec. II we assemble the basic facts of the Hamilton
Lie account oflocal and global properties of the phase space 
of geometric optics. In Sec. III we use this formalism in the 
framework of Euclidean and special relativity: screens may 
be translated to new origins, rotated to new optical axes, or 
boosted to motion. This last transformation is performed by 
group deformation 1,5,6 of the Euclidean to the Lorentz alge
bra and group, in Sec. IV. In Sec. V the specific aberration 
due to screen motion along the optical axis is studied as are 
some of its basic geometric properties for all velocities. Caus
tic phenomena are highly visible and could be observable in 
appropriate experimental situations. In the concluding sec
tion (VI) some considerations of a mathematical nature are 
added. 
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II. OPTICAL PHASE SPACE 

Optical phase space in the three-dimensional world of 
geometric optics is referred to a two-dimentional screen of 
positions and a sphere of ray directions. It is a four-dimen
sional manifold where it is convenient to introduce Cartesian 
coordinates7 and write its points as w = (p;q), p = (Px,Py), 
q = (q x ,qy ), with qE~2 (the real plane) the position vector 
of the ray's intersection, and p the momentum coordinate. 
The latter is the projection on the plane of the screen of a 
three-vector it = (Px,py,h) along the ray whose length is n, 
the refractive index of the medium (constant in this paper, 
corresponding to a homogeneous optical medium). The two 
coordinate sets are canonically conjugate, i.e., the Poisson 
bracketS relations hold: 

The origin of phase space is q = 0 (the optical center), and 
p = 0 (the optical axis). 

We note that the range of the momentum coordinates is 
limited by p2 <n2, and is the projection of the sphere S 2 of ray 
directions on the screen plane. It consists of the disk p2 < n2 

counted once for h > a ("forward" rays), and once for h < a 
("backward" rays); the two disks are at the boundary 
p2 = n2 when h = O. We may assume the sign of the z compo
nent of n, i.e., h, is always available to distinguish between 
the two disks, and we may freely revert to the direction 
sphere coordinates, (The range of p in two-dimensional me
chanics, in contrast, is the full ~2 plane.) 

The z component of the direction vector Ii is 
h = (n2 - p2)1/2 (2.2) 

and serves as (minus) the optical Hamiltonian. 3 (The series 
expansion h = n - p2/2n' .. suggests giving n the analog 
role of a potential, notwithstanding that it also appears in the 
denominator, where mass ought to be in mechanics.) 

Lie optics uses the symplectic structure (2.1) to build 
Lie operators j = {f,.} associated to differentiable functions 
f(p,q). Their action on phase space is 

A } Jf A 

fp = (f,p = a' fq = {f,q} = 
q , 

Various properties follow,9 such as 

jg(p,q) = (f,g}(p,q) = gUP,{q) , 

({f,g}) ~ r);g], 

(2.3) 

(2.4a) 

(2.4b) 
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where [ ',' ] is the commutator of operators. They allow us to 
work with the enveloping algebra of (2.1 ), and exponentiate 
to the corresponding Lie transformation generated by f 

Fa = exp(aj) = 1 + af + 1!2!a2f2 + "', (2.5) 

so that acting on suitably smooth functions g( p,q) (such as p 
and q themselves), 

(2.6) 

Also, Lie transformations are canonical,9 i.e., for arbitrary 
gl(p,q) andg2 (p,q), 

{Fa gl,Fa g2} = {g1,g2}' (2.7) 

As a first (counter- ) example, considerf to be a function 
quadratic in the components ofp and q. Then2

,9 Fa will map 
the components of p and q linearly among themselves, thus 
generating Sp (4,R), the group of linear symplectomor
phisms of phase space. In this example, however, the natural 
range of optical momentum p2 <n2 is not preserved. [In spite 
of not globally respecting optics, Sp (4,R) has been extreme
ly useful in treating aberration expansions by order around 
an optical center and axis. 10] 

The position coordinates (qx ,qy ), in particular, are also 
not good functions to generate Lie transformations for glo
bal optics, since they translate the p plane, as in mechanics, 
and do not respect the natural range p2<n2 of optical mo
mentum. 

In fact, it seems rather difficult to write Lie transforma
tions that do not preserve the optical momentum range, ex
cept for one very obvious class: point-to-point mappings of 
the sphere, i.e., rotations and distortions S2 ..... S2 so that 
p ..... p' = p'(p, sgn h). These are distortions in the sense that 
p' is not a function of q. [In the optical distortion aberration,4 

q'(q) is independent ofp; the latter is the Fourier conjugate 
variable except for ranges. ] 

To avoid uncomfortable formulas at the joining of the 
two momentum disks, let us use explicit spherical coordi
nates for the three-vector of ray directions: 

Px = n sin e sin fjJ, 

Py = n sin e cos fjJ, 

h = n cos e. 

(2.8a) 

(2.8b) 

(2.8c) 

We now define the Lorentz group action of special relativity 
on the phase space of geometrical optics through binding 
(2.8) to be the three-vector parallel to the three-vector part 
of a lightlike four-vector (kx,ky,kz,ko) undergoing such 
tranformations. Thus setting k = (kx ,ky ), 
k = (k ~ + k;) 1/2, P = nklko, and h = nkzlko, we obtain 
the following relations: 

pin = sin e = k Iko, 

h In = cos e = kzlko, 

(2.9a) 

(2.9b) 

(2.9c) 

Hence when the lightlike vector (k,kz ,ko) undergoes a boost 
in the z direction, the transformation of (2. 9c) yields ( 1.1 ). 
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III. EUCLIDEAN TRANSFORMATIONS 

Three functions that generate Lie transformations that 
map optical phase space onto itself properly are the compo
nents ofii = (Px,py,h). The firsttwo generate translations in 
qE&f2

, 

exp(a·p)g(p,q) = g(p,q - a); (3.1 ) 

while the last one generates translations along the optical 
axis normal to the screen, 

exp(zh)g(p,q) = g(p,q + z plh). (3.2) 

The transformation of q in the last argument reads 
q + z tan e in the direction ofp, as is clear from simple geom
etry. The three generating functions commute under the Lie 
bracket: {pj'Pj} = 0, {pj,h} = O. 

Another set of S 2 -preserving Lie transformations is the 
group of rotations of the screen in three-space. II To simplify 
arguments, consider the two-dimensional optics case depict
ed in Fig. 1, where a ray is seen in two different frames rotat
ed by y, as e and as e ' = e + y, or, in two-dimensional phase 
space, 

p ..... p' = p cos y + h sin y, ( 3.3a) 

(3.3b) 

(3.3c) 

h ..... h ' = - p sin y + h cos y, 

q __ q' = ql(cos y - plh sin y). 

The last relation is obtained from the law of sines in the 
triangle of the figure. From here, the generator of two-di
mensional rotations exp ( yfh) may be found through 

am A ap' I am A aq' I Iii = mp = ay r = 0' ap = - mq = ay r = 0' 

and is II m = qh. In three-dimensional optics, if Fig. 1 is the 
x-z plane, the generator will be that of rotation ry around the 
y axis, and if it is the y-z plane the generator will be - r x' 

Hence the generators of rotations of the direction sphere are 
[cf. Ref. 11, Eq. (2.9)] 

rx = qyh, 

'y = - qx h, 

(3.4a) 

(3.4b) 

rz = qxPy - qypx = qXp, (3.4c) 

and are easily checked to close into an so (3) algebra under 
the Lie bracket of geometrical optics: 

{rx,'y} = rz, {ry,rz} = 'x, {'z"x} = 'y. (3.5) 

The first ofEqs. (3.5) may be used to define,z in (3.4c); this 
quantity generates rotations in the plane of the screen 
around the optical center, together with rotations of the di
rection sphere around the optical axis. Its square is the Petz
val invariant of optics. 10 

FIG. 1. The transformation of optical phase 
space due to rotation of the screen about the 
origin by y. The ray (p = n sin O,q) trans
forms to (p' = n sin O',q'). 
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The six functions (Px ,py,h; rx ,ry ,rz ) close under Poisson 
brackets into the Lie algebra iso (3) of the Euclidean group 
of motions: the three translations leaving the direction 
sphere invariant and the three joint rotations intertwine 
through 

{r;,p) = Pk, (3.6) 

with iJ,k cyclic permutations of x,y,z, and pz = h. The Eu
clidean group ISO (3), containing the Hamiltonian among 
its generators, is the dynamical group of I I geometric optics 
in a homogeneous medium. The two Euclidean invariants 
are p2 + h 2 = n2 and it·p = O. 

IV. THE DEFORMATION ISO (3) ..... SO (3,1) 

We recall the classic deformation process l
•
5 that builds 

the Lorentz algebra so (3,1) out of the generators of the 
Euclidean iso (3), realized on a sphere, and generalizations 
thereof.6 Basically, one builds bilinear functions of the gen
erators of iso (3) with the right transformation properties 
under so (3). These will close into so (3,1) on the sphere. 
One may also add linearly the generators of the translation 
subalgebra, thus arriving at all representations of the nonex
ceptional continuous series. In geometric optics we may pro
pose the three-vector 

(4.1 ) 

As vector functions in the phase-space coordinates, the com
ponents are 

b = nq - p·qp/n + Gp, 

bz = - p·qhln + uh. 

(4.2a) 

(4.2b) 

These three functions transform under the so (3) subalgebra 
(3.4) as the components of a proper three-vector, 

{rx,by} = bz (and cyclically). (4.3) 

Finally, they close under the Lie (Poisson) bracket of the 
algebra, into the Lorentz algebra so (3,1): 

{bx,by} = - rz (and cyclically). (4.4) 

The constant u in the boost generators (4.2) is also in the 
Lorentz invariant b 2 - -p. = n2t? while r' b = O. 

It is noteworthy that we may express the ray position 
coordinate q in terms of the functions generating Lorentz 
boosts and Euclidean translations: 

q = bin - bzp/nh. ( 4.5) 

We shall examine in detail the boosts along the optical 
axis; these are generated by bz in (4.2b) as the Lie transfor
mation exp (ab z ) acting on the reference (stationary) screen 
phase space (p,q), to produce the phase space 
(p' (p,q,a) ,q/ (p,q,a») of a screen in motion with velocity 
v = c tanh a. On the momentum coordinates, we find the 
integrated group action to be 

p/(p,a) = exp(abz)p 

= p/(cosh a + h In sinh a). (4.6) 
This, we duly note, is a mapping p/(p) independent ofposi
tion q and the "Lorentz constant" u. The momentum distor-
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tion of S2 is precisely-of course-the stellar aberration 
(1.1). as may be verified through (2.9). 

We may also find the action of this boost on the position 
coordinate q with the help of (4.5) and (2.4). The trans
formed position coordinate is 

q/(p,q,a) = exp(abz)q 

= (cosh a + (h In)sinh a) 

x( + sinha 
q n sinh a + h cosh a 

(4.7) 

The magnification and aberrations present in (4.7) will be 
studied in Sec. V. We only point out here that the meaning of 
the arbitrary "Lorentz" constant u may be elucidated in the 
Inonii-Wigner contraction of SO (3,1) to ISO (3), when 
a -+ 0, U -+ 00, with finite z = au. Then q/ -+ q + zpl h, show
ing an (arbitrary) amount of z translation (3.2), which will 
not affect ray direction. We will disregard this (purely 
sphericaI2

•
4

) aberration and set u = 0 henceforth. The trans
formation (4.6) and (4.7) of phase space may be verified to 
be canonical. 

V. THE RELATIVISTIC COMA 

Transformations of a four-dimensional manifold are 
difficult to visualize. The canonicity of the transformation 
only assures us that the manifold of rays will move as specks 
of dust in an incompressible fluid (Louville's theorem). A 
section of much use in optics is to choose a single "object" 
point qo, and plot q' (p,qo) as a function ofp on part (or the 
whole) of its range. This corresponds to a bundle (or all) 
rays passing through the chosen qo (as a point light source) 
imaged after the transformation. In the figures of this section 
we let p draw a polar coordinate grid around the optical axis, 
and plot the image q/Ey?2; this is the spot diagram of the 
optical transformation for qo. 

When we take a square lattice of such object points a 
distance d apart, at qo + nx (d,O) + ny(O,d); nxny integers, 
we obtain the spots diagram (as in our figures), usually also 
called "spot." It depicts what is seen on the screen of an 
array of luminous points after the transformation to 
(p/ (p,q) ,q/ (p,q». [The spot diagram before the transforma
tion, i.e., (p,q) is simply a square array of points. a perfectly 
focused 1: 1 unit transformation of the object.] 

We start the analysis of relativistic coma in the context 
of aberration-expansion optics, and will later consider its 
global characteristics. We must assume pin to be less than 
unity so that the expansion of (4.6) and (4.7) may be per
formed by powers of p2. This may mean p2 < n2/10 
«() < 18°26' ... ) or p2 < n2/2 «() < 45°), according to how high 
the order of aberration we are willing to calculate. To fifth 
aberration order we have the following fifth-degree approxi
mation of relativistic coma: 
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p' = e-ap + !n-2 sinh a e- 2ap2p 

+ !n-4 sinh a e - 2a( 1 - !e - 2a)p2p + "', (5.1a) 

q' = eaq - n- I sinh a poqp - !n-2 sinh ap2q 

- !n- 3 sinh a e - 2ap2poqp 

(5.1b) 

with increasingly complicated coefficients for higher (p2) mp 
in (5.1a), and (p2)m - Ipoqp and (p2)mq in (5.1b). 

The first term on the right-hand sides of (5.1) is the 
linear part of the mapping. This falls within Gaussian (par
axial, linear) optics: p' = e - a p is a contraction of ray mo
mentum that necessitates (for canonicity) the expansion 
q' = eaq of ray positions. 

The rest of the series (5.1) is nonlinear and contains the 
aberration due to boost. It should be noted carefully that the 
only smallness parameter is p2. Indeed, in a, the magnifica
tion part e - a p = (1 - a) p and the aberration part = a(p21 
2n2 + (p2) 2/Sn4 + "')p in relativistic coma are of the same 
order; similarly for q'. 

In the expansion (5.1b) [and in the exact form (4.7) l, 
it is useful to note that the particular function form 
C(p,q) = Apoqp + Bp2q maps a cone of rays around the op
tical axis (q and p = ipi fixed, twice (for ± p) onto a circle 
in the spot diagram, with center at (A /2 + B)p2q, of radius 
Ap2q12, and extending between (A + B)p2q (the image of 
the two meridional rays, i.e., in a plane with the optical axis, 
poq = ± pq) and Bp2q (the image of the two saggital rays 
across, poq = 0). 

In Lie optics2 the generator of circular coma aberration 
of order 2m + 1 isF= (p2)mpoq. (ThisisMmlO in the mon
omial basis 10 and m + IX::: + I in the symplectic basis. II) The 
action of exp K/c on phase space, to the aberration order, is 

p .... p + K(p2)mp 

and 

q .... q _ K[2m(p2)m - Ipoqp _ (p2)mq]. 

On this basis we recognize the relativistic aberration as circu
lar coma. The third-order (m = 1) comatic parameter is 
thus 

K(3) = !n -2e - a sinh a. (5.2a) 

In the factorization order2 

the fifth- and seventh-order coma parameters are found to 
be9 

K(5) = -hn-4e-2a sinh 2a, 

K(7) = -fin -6e - 3a sinh 3a. 

(5.2b) 

(5.2c) 

In Figs. 2 and 3 we show the spot(s) diagram of reI at iv
istic coma at values a = 0.3 and a = - 0.3, respectively, for 
a 4 X 4 array of sources. The tips of the "comets" (where
from the name for coma aberration) exhibit the familiar 60· 
opening angle characteristic of third-order Seidel coma.4 

The angles r which the circles subtend from the tip are not 
constant, however, but 

sin !r(p2) =! + p2(2e - 2a - 1 )/16n2 + .... 
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alpha· fl.' 

FIG. 2. Spots diagram of the relativistic coma transformation with positive 
a = 0.3. A 4X4 array of object sources (the last row and column of which 
fall entirely outside the figure) is shown for ray angles of up to 45' (the 
values of momentum p are spaced by 0.101, up to 0.7071, corresponding to 
seven circles. The optical center is at the lower left corner. 

For a = 0.3, the p2 coefficient is positive and so the comet 
opens; for values beyond a = !In 2=0.3466, from 60·, r 
closes somewhat before opening again for p2 in the far-me
taxial region, to be discussed below. 

The figures were drawn for p2 up to n2/2, i.e., for rays 
with angles () of up to 45· from the direction of motion. This 
is more than what most instruments are designed for, but it 
allows us to discuss relativistic coma as a global aberration 

FIG. 3. Spots diagram of the relativistic coma transformation with negative 
a = - 0.3. The array of sources and angles are the same as in Fig. 2. 
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phenomenon. The figures were plotted using the exact 
expression (4.7) rather than any truncated aberration ex
pansion (5.1b). 

Consider what happens for negative a: as the screen 
moves in the - z direction, ( 1.1 ) shows that some "critical" 
rays with angle ()c to the optical axis will map onto rays with 
angle (); = 1T/2. This happens for tan !()c = ea or 

Pc = n sin ()e = n sech a, he = n cos ()e = - n tanh a. 

At this value, the denominator in (4.7) vanishes, and that 
cone of rays will map to infinity at the moving screen. The 
Poisson bracket {q',p'} remains constant: the blowup of 
q'(q,Pe) at ()e is compensated by p'(Pc) reaching its maxi
mum at ()' = 1T/2 and having zero derivative there. There is, 
of course, no physical singularity, as there is none for rota
tions in (3.3c) vis-a-vis Fig. 1, when () + Y-+1T/2. Up to ()e' 

the circles subtend angles up to 180·, while the distance from 
the circle to the comet tip slowly increases up to and beyond 
()e' 

The global picture of the relativistic coma aberration is 
the mapping of the whole direction sphere. We note that 
forward rays (h > 0) under backward motion (a < 0) are the 
same as backward rays (h < 0) under forward motion 
(a> 0); indeed, Eq. (4.7) is invariant under the exchange 
(h,a)++( - h, - a). Thus while Fig. 2 is the image of rays 
around the/orward pole of the direction sphere, a > 0, Fig. 3 
is the image of rays around the backward pole, also for I a I. 
To see the spot diagram of the whole direction sphere we 
may superpose both figures: the spot will extend from 
q; = eaq (the image of the forward ray, along the optical 
axis) to q~ = e - a q (the image of the backward ray, counter 
to that axis). The full coma tic caustic acquires a diamond 
shape, with two 60· angles at the two finite tips, qF and qB' 
and two "vertices" at infinity in the perpendicular direction. 
The location of the asymptotic caustic line may be found in 
( 4.7) as the position of the saggital rays (p.q = 0) at the 
critical angle ()e: it is qe = sech a q. The three points: qB' qc> 
and qF lie in a line in that order. The region of the direction 
sphere accessible to optical focusing is in practice very limit
ed, of course. 

Thus far we referred to the boost aberration as coma, 
because of its striking appearance when the screen move
ment is in the z direction. The effect of boosts in the screen 
plane, specifically, bx , will be described now more succinct
ly. 

The boost function bx in (4.2a) for u = 0 will generate 
the Lie transformation on the ray position plane, 

= (cosh a + Pxn-I sinh a) 

X (qx cosh a + p·qn- I sinh a), 

eabxqy = q; = (cosh a + Pxn-I sinh a)qy, 

(5.3a) 

(5.3b) 

while on the ray direction sphere it yields the familiar stellar 
aberration in the x direction. 

To first order in a, the aberration of phase space pro
duces spot diagrams with elliptical spots. If qy/qx = tan 7, 7 

is the angle between the object point and the direction of 
motion (the x axis here), the ellipses are tilted by K = 7/2, 
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have "major" axis a( 7) = apq(1 + cos 7)/n, and "minor" 
axis b( 7) = apq( 1 - cos 7)/n. We note that 
a( 7) = b( 1T - 7), b( 7) = a( 1T - 7), so that the longer axes 
of the ellipses are closer to thex axis. For object points on the 
x axis the ellipse degenerates into a line segment of length 
2a(0) = 4pqa/n, mimicking third-order Seidel astigma
tism2 on that axis. Object points on the y axis have their spots 
circular, as in third-order Seidel curvature of field. 

This first-order description holds up to p = n, i.e., for 
the whole forward (0<8<1T/2) hemisphere of rays. The 
same spots are obtained from the backward (1T/2";'()<1T) 
hemisphere: note that (5.3) do not depend on the sign of h. 
The global mapping of the direction sphere on the image 
plane generated by bx is thus also a 2:1 mapping. The global 
coma of boosts has a variety offaces according to the orienta
tion of the observer screen with respect to the boost direc
tion, resembling Seidel coma in the z direction, and an asym
metric kind of Seidel astigmatism/curvature of field 
aberration for directions of boost in the x-y plane. Intermedi
ate orientations should interpolate between these faces. 

Regarding the observability of relativistic coma, stellar 
aberration is the ray direction aspect of the phenomenon. To 
observe it in ray position space (regardless of the imaging 
apparatus one may contrive) we may present the following 
estimate of aberration size: at satellite speeds of V - 10 km/ 
sec, a - 3 X 10-5, a 8 = O.lr- 5.7· cone of ray directions 
around the optical axis will yield a factor of ap / n - 3 X 10 - 6

. 

Under z boosts this will spread into a circle of radius 
1.5 X 1O- 7q in a coma whose caustic has a relative size of the 
order of 10-7 q. For boosts in the screen plane, we may have 
from circles of radi us 3 X 10 - 6 q to caustic segments oflength 
6 X 1O-6q. The linear factor q gives the relative scale of the 
aberration to object size. 

VI. CONCLUDING REMARKS 

The spirit of our prediction of a relativistic comatic 
aberration due to screen motion has been Lie theoretical. In 
that vein we should add the following glossary and com
ments beyond geometric optics. 

The three-dimensional Euclidean group is the dynami
cal group of optics in a homogeneous medium. 12 The defor
mation5

.
6 of this group on the (ray direction) sphere leads to 

the Lorentz group of special relativity acting on the same 
sphere. When the projection of this sphere is called momen
tum space for a system, the canonically conjugate position 
space will undergo spherical aberration and circular coma 
when the screen is boosted (infirst aberration order these are 
free flight and pure magnification) perpendicular to itself. 

The Casimir invariant of the Lorentz group is related to 
the freedom in translating position space without affecting 
ray direction. This role ofthe invariant seems to be new and 
needs to be further exploited. 

Finally, the relativistic transformation is global over the 
phase space of geometric optics, singularities notwithstand
ing. 

The group theoretical objects mentioned above were 
seen here in the geometric optics realization. They possess 
other realizations, however, that are better known,13 and 
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that will be explored to clarify further the "wavization"14.15 
process. It seems this should be parallel to quantization, 7 but 
based on the Euclidean, rather than Heisenberg-Weyl, alge
bra. 
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The relativistic coma aberration of geometric optics was examined in the first paper [J. Math. 
Phys. 30, 2457 ( 1989) ]. Here is a study of a unitary realization of the Euclidean group, the 
dynamic group for global optics, on the space of solutions of the Helmholtz equation. 
Deformation to the Lorentz group of relativity yields the self-adjoint generators of boost 
transformations on that space. Graphic results for the action of a boost normal to the screen on 
an off-axis Gaussian beam, that may be compared with classical wave optics results on 
diffraction in aberration, are presented. 

I. INTRODUCTION 

In the first part of this work I we posed the well-known 
phenomenon of stellar aberration in the context of geometri
cal Lie optics in phase space. 2 Given a relativistic distortion 
of ray directions on the sphere, we showed that the canoni
cally conjugate ray positions undergo magnification and a 
circular coma tic aberration. This we called relativistic coma. 
The phenomenon was analyzed globally, i.e., on the full, 
proper phase space manifold of rays, and given in closed, 
explicit formulas, and also as an expansion in aberration up 
to seventh order. We pointed out that the basic dynamical 
group of optics is the Euclidean group,3 rather than the Hei
senberg-Weyt,4 diamond,5 or Weyl-symplectic6 groups used 
in nonrelativistic quantum mechanics. The latter group ap
pears as a contraction of the first in the paraxial approxima
tion. 7 

The Euclidean ISO (3) group of rigid motions of three
space was deformed 8.9 to relativistic SO( 3, 1) transforma
tions. This provided stellar aberration for boosts on the ray 
directions of geometric optics. The spot diagrams were ob
tained for the full direction sphere, with the standard coma
tic appearance for boosts normal to the screen plane. For 
boosts in the screen plane, the aberration had the character
istics of an astigmatism and curvature of field, along and 
normal to the boost. I The group realization we used was that 
of geometrical optics phase space. 

In this paper we apply the same construction to the same 
groups, but in the realization on the space of solutions of the 
Helmholtz equation studied in Ref. 10. Geometric optics has 
no time variable; the Helmholtz equation does not contain it 
either. The space of solutionsf of 

(a; +a; +a; +k 2 )f(x,y,z) =0 (1.1) 

that are square integrable over any plane screen and whose 
spectrum there is bounded by k, is invariant under the Eu
clidean group ISO (3) of screen translations and rotations, 
and we call it ~ k' For fEK k' written as a two-function 
column f(q) = (j(q),1z (q») on the plane q = (x,y), we can 
present the Helmholtz equation in the form 
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ences, Baku 370143, Union of Soviet Socialist Republics. 

b) Permanent address: Naturwissenschaftlich-theoretisches Zentrum, 
Karl-Marx University, Leipzig 7010, German Democratic Republic. 

(f(q,z) ) 
\fz (q,z) 

( 1.2) 

where I:l.k = a; + a; + k 2. The formal solution may be 
written as an evolution of initial conditions: 

f(q,z) = exp(zH)f(q), (1.3 ) 

for f( q) and its normal derivative fz (q) at the reference 
screen z = 0 to all of !Ie . In ~ k , the initial value problem for 
the system is well posed. 10 As in geometrical optics, we work 
with observables and wavefunctions in the plane of a screen. 

We present the realization of the Euclidean group 
ISO (3) on ~ k in Sec. II, completed with respect to an inner 
product that is conserved under Euclidean transformations 
of the screen. We regard the ensuing unitary representation 
of the Euclidean group as defining the Helmholtz wavization 
of geometrical optics. In Sec. III we proceed to deform 
ISO(3) to the Lorentz groupSO(3,1) on~k' In Sec. IV we 
present the results for the z boost studied in Ref. 1 on an off
center forward Gaussian beam. The explicit computation is 
done to fifth order in the relativistic boost parameter. The 
"isophotes" of 1 f(q) 12 are comparable to those seen and cal
culated II for diffraction in third-order pure Seidel coma. 
The closing section presents some conclusions and open 
comments on nonlocality, observability, and the role of the 
normal derivativelz (q) of the field at the screen. 

II. THE EUCLIDEAN GROUP OF HELMHOLTZ WAVE 
OPTICS 

A well known realization of the generators of the Eu
clidean algebra of translations and rotations on smooth 
functions o[!Je, is given by 

p~ = - i1l:ax ' P; = - i1l:ay , P; = - i1l:az , 

(2.la) 

R~ = i(yaz -zay ), R; = i(zax -xaz ), 

R; = i(x ay - y ax), (2.lb) 

where:kis a consant with units oflength, to render the opera
tors dimensionless. The action of the corresponding Lie ex
ponential group ISO (3) is that of ordinary, rigid transfor
mations of !Ie. These operators are self-adjoint in ,2"2 (!IP) 
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and their (i) exponential, i.e., exp(iajP j), exp(if3j R j), 
} = x,y,z, aE!Jt, is unitary. 

For functions in the solution space:Jt"k of the Helm
holtz equation (1.1), we may replacelO az by the matrix op
erator in (1.2), acting on two-functions f( q) = (f( q),fz (q») 
at the reference z = ° plane, and identify *with the reduced 
wavelength of (1.1), namely, *= A /2rr = 1/ k. This takes 
the place off! in quantum mechanics. In the Helmholtz real
ization, the generators of translations become 

. (ax ° ) . (ay 0) Px = - ik a' Py = - ik a' ° x ° y (2.2a) 

Pz = - ik( _ °d
k 

~). 
As in geometrical optics, Pz takes the role of the Hamilto
nian operator, generating z evolution in the system. The gen
erators of rotations become 

-x) 
° ' (2.2b) 

Note that in the 2-1 elements of Rx and Ry there could be an 
ordering ambiguity between x,y, and d k • These elements are 
given by the anticommutator, !(x d k + dkx); that is the 
only possibility when we demand closure under commuta
tion 

[Rx,Ry] = iRz' [Rx'Py] = iPz, (2.3 ) 
[Px,Py ] = 0, and cyclically. 

The ts above fit generators that are self-adjoint under an 
inner product. It is easy to see that an .,?2(!Jt2) product al
lows for the self-adjointness of the diagonal matrix operators 
Px ' Py , and Rz , generators of the ISO(2) symmetry group 
of screen motions in its plane, but not for the z evolution Pz 

and the out-of-screen rotations R x and R y • 

In Ref. 10, Steinberg and Wolffound the (unique) Eu
clidean-invariant inner product of solutions of the (well
posed) Helmholtz equations in two dimensions, through 
proposing a nonlocal sesquilinear form. In the case of three 
dimensions, we have 

(f,g)w
k 

= i, d 2q i, d 2q'f(q)tMk(q,q')g(q'). (2.4a) 

The 2X2 matrix Mk(q,q') = IIM;,/(x,y,x',y')11 is deter
mined by the requirement that the algebra operators Pj,R j , 

satisfy (f,Pjg);y k = (Pl,g);y k' etc. We find here 

Mk( ,)=(k}l(k1q-q'I)/lq-q'l ° ) 
q,q ° }o(klq-q'l) , 

(2.4b) 

where}o and}1 are the spherical Bessel functions. The form is 
positive definite on :Jt" k' Completion with respect to this 
inner product turns:Jt"k into a Hilbert space where the Eu
clidean transformations are unitary. This realization we call 
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the Helmholtz representation ofISO (3). The Casimir invar
iants are p 2 = P~ + P~ + P; = 1, and P·R = O. This 
means that we have a sphere for homogeneous space under 
the Euclidean algebra, its enveloping algebra, and the group; 
physically, it is a homogeneous space of unit refractive index. 
The SO (3) subgroup Casimir operator is diagonal (but not 
simply a multiple of the unit operator): 

R2 = R ~ + R ~ + R ; 

= (D(D + 10) + q2
k 2 ° ) 

(D + I)(D + 2) + q2k 2 ' 

(2.5) 

where 

D=xax +yay ' (2.6) 

The Helmholtz representation space :Jt" k has an inner 
product (2.4) that is nonlocal in the wave functionf(q) to 
the extent of}I(lql/k)/(lql/k), and in the normal deriva
tive functionfz (q) to the extent of}o( Iql/-t), of the order of 
7t: Both fandfz contribute to the energy of an elastic medi
um l2 so we may identify (f,f)r

k 
with total field energy on 

the screen. As we shall show below, this inner product may 
be brought to local form in an appropriate transform space. 
Finally, it seems we should identify If(q) 12 with the visible 
image illumination. 

The Euclidean algebra and its covering have been used 
by Vilenkin 13 and Miller l4 to find all separable solutions of 
the Helmholtz equation (1.1). The algebra itself yields the 
three subalgebra bases of Cartesian, cylindrical, and spheri
cal coordinates; the corresponding separated functions are 
plane waves, the nondiffracting J m beams of Durnin et al., 15 

and multipole solutions. The covering algebra provides the 
rest of the 11 coordinate system where the equation sepa
rates. Let us draw attention here to the plane-wave general
ized eigenbasis of the translation subalgebra Px ,Py , and a 
sign (of Pz ). Up to an arbitrary normalization constant K, 

with units of (illumination/area) 1/2, 

<I> =~(I)ej(xkx+YkY) (2.7) 
kx,kY''' 2rr ikz 

is a plane wave on the screen, labeled by the respective di
mensionless eigenvalues, -kkx, iky, and ae{ - 1,0, + 1} 

(kz = a~k2 - k~ - k~). The manifold of plane waves 
(kx,ky,a) is that of two disks {j~, of radius k, sown at the 
edge of 1ft. This is the sphere of ordinary plane-wave direc
tion three-vectors, projected on its equatorial screen plane. 
Solutions in:Jt"k may be written as a generalized linear com
bination of these basis functions, 

(2.8) 

We refer to the ordinary two-dimensional Fourier transform 
to write explicitly 

fz(q) =iK:k 2 r d 2kkz rJ+ (k) -J_(k)]e'k•
q

• 

Jot 

Atakishiyev, Lassner, and Wolf 

(2.9a) 

(2.9b) 

2464 



                                                                                                                                    

Now, replacing (2.9) in the convoluted inner product 
(2.4), we exchange integrals and note that the q-Fourier 
transform of kjl (k Iql )/lql is kz' and that ofjo(k Iql) is lIkz 
on ot-, and zero outside. We may thus write the Parseval 
relation between (2.4) and the local form on one disk Ok' 

(f,g),yk = 21T11Vt1 2 
( d2k~ [/+(k)*g+(k) 

Jc5k k z 

+f_(k)*g_(k)]. (2.10) 

This is a local integration over the wave-vector sphere pro
jected on the screen plane, including both forward ( + ) and 
backward (-) waves, with the obliquity factor 
k Ikz = sec e, where e is the angle between the wave three
vector and the normal to the screen. The 2'2(9"e) norm 
majorizes the:Jrk norm. 

The Euclidean group has thus a geometrical optics mod
el and a Helmholtz optics model. The generators of the Abe
lian translation ideal of the abstract Lie algebra, P x' Py ' and 
Pz , are in geometrical optics the optical momenta and the 

Hamiltonianpx, Py' andpz = h =~I_lpI2 (for unit re
fractive index); the Lie bracket is the Poisson bracket. In 
Helmholtz wave optics, the homomorphic realization of this 
subalgebra is given by (2.3a) acting on:Jr k described above, 
and the Lie bracket is the commutator. 

III. THE DEFORMATION OF THE EUCLIDEAN TO THE 
LORENTZ GROUP 

Out of the Helmholtz representation of the Euclidean 
algebra (2.2)-(2.4) we may construct a representation of 
the Lorentz algebra through deformation. The deformation 
extends to the corresponding groups. The generators of the 
SO (3,1) Lorentz group are the following: the SO (3) genera
tors are those of the Euclidean group Rx, Ry, and R z in 
(2.2b); the boosts are built as Bj = [R 2,Pj ] + (7+ i)Pj , 

j = x,y,z. This formula is the heart of the deformation pro-
cess; 16 For real 7, the boost generators are self-adjoint in 
:Jr k' and belong to the nonexceptional continuous represen
tation series. As in Ref. I, we set 7 = 0 on the grounds that 
this parameter only reflects an admixture of translations to 
the basic boost transformation. 

We build the following explicit boost matrix operators: 

Bx = RzPy - RyPz + iPx 

=:K(D+I)oax +k
2

x ° ) 
(D + 2)a

x 
+.k 2X ' (3.la) 

-k( ° D+ I) 
- -(D+2).:lk+k 2 0 . 

(3.1c) 

We may verify that these indeed close into the Lie algebra of 
the SO (3,1) group: 

2465 

[Rx,Ry] = iRz' [Rx,By] = iBz' 

[Bx,By] = - iRz' and cyclically. 
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(3.2) 

The Lorentz Casimir invariants are B 2 - R 2 = 1 [for arbi
trary T it would be (7 + 1 )21], and B·R = O. 

In most applications of Lie theory-including geomet
ric optics I-the algebra generators are functions of some 
variable(s) t, times a first-order differential operator in t, 
that we write a(1) for short. These lead to point-to-point 
transformations exp(ia a(l) jct) = M' (t;a». Barg
mann8 deformed the Euclidean algebra with a (I) plus a (0)_ 

functions of t; this leads to multiplier representations of the 
group as exp(ia[a(1) + a (0)]) j(t) =.u(t;a)M'(t;a». 
The multiplier function.u just offsets the change in the mea
sure at I at' so that the generators be Hermitian; when tech
nical conditions on the domain hold, they are self-adjoint. 8 

The exponentiation ofsecond- 17
,18 and higher-order l9 differ

ential operators leads in general to integral transforms: 
exp(iaa<;;>2) )j(t) =Sdt' K(t,t';a)j(t'). The particular 
case of paraxial scalar wave optics20 is well studied and re
quires of a (0), a (I), and a (2); it leads to the canonical integral 
transforms. 6. 18 

Of the boost generators (3.1), Bx and By are matrices 
with elements a (0) + a (l) + a (2) on the diagonal, whileBz has 
a (0) + a (l) and a (0) + a (l) + a (2) + a (3) on the antidiagonal. 
They seem to be more difficult to exponentiate in closed 
form than they were in Ref. I, and here we do not attempt to 
do so. We can state, however, that because of the homomor
phism of transformations of ray momenta in geometric op
tics and plane-wave vectors under SO(3,1), the latter will 
behave in the same way as the former [viz., Ref. I, Eq. 
(4.6) ], conforming to the distortion of directions character
istics of stellar aberration, namely, 

tan ~el-+ tan ~e ' = e - a tan ~e, (3.3 ) 

where e,e'E[O,1T] are the angles between the rays or wave 
vectors and the direction of the boost to velocity 
v = c tanh a. We now examine the effect of these unitary 
transformations on the screen images for the case of boosts in 
the z direction. 

IV. THE COMA ABERRATION IN z BOOSTS 

We consider boosts in the direction normal to the 
screen. The antidiagonal matrix elements of Bz in (3.1c) 
may be written in terms of formal Schrodinger operators 
[o,/(q) = qj'(q) , P/(q) = - ilt aqJ(q) , j = x,y, distin
guished in sans serif font] in the following way: 

g; =7C'(D+ I) = io,·P +7C'= i(p·q)Q = 2iX~, (4.la) 

g> =7C'[k 2 
- (D+ 2).:lk] 

= ik 2 [0,. pp2 - 0,. P - 2btP2 + i7C'] 

= ik 2 [(p2p•q )Q - (p.q)Q] = ik 2(xi - 2X ~). 
( 4.1b) 

In these expressions, g; and g> are written in terms of stan
dard ordered operators (derivatives to the right), and in 
terms of the [2'2(!R2)-Hermitian] operators that quantize, 
a la Schrodinger (Q), the classical observables p.q and p2poq, 
namely, X~ = ~(poq)Q and xi = (p2poq )Q' We recall that 
the quantization of functions of the general form A(p)q 
+ B(p) to 2'2-Hermitian operators is (modulo weak tech-

Atakishiyev, Lassner, and Wolf 2465 



                                                                                                                                    

nical assumptions) independent of the scheme (Weyl, 
Bom-J ordan, symmetrization, etc.). 4 The operator X 6 gen
erates 'y2(9l2)-unitary dilatations on functions of position 
and, since p2p.q generates the geometrical Seidel coma aber
ration, X i will be the coma operator. The indices reflect the 
placement oftheX's within the symplectic aberration multi
plets classified in Ref. 3, and the results on their quantization 
in Ref. 21. Note that the off-diagonal operator It' is a combi
nation of magnification and coma with the same order in a. 
[The exponentiation of the boost generators in the plane of 
the screen, Bx and By entails exponentiating the diagonal 
elements 9V + kq = kQ - (p.q)QP and 
V9 + kq = kQ - P(p·q)Q.] 

The effect of a finite boost in the z direction on wave 
functions on the screen and their normal derivatives may be 
written formally in terms of the operators y2 = 9 It' and 
f12 = It' 9 [see (3.5)], as 

(
/(a) ) . (0 
fz (a) = exp la It' 

9)(/(0) ) 
o fz (0) 

= ( cos aY ia9 sinc af1) (/(0) ) 
ialt' sinc aY cos af1 fz (0) 

(4.2a) 

where only even powers of Y and f1 appear in the cosine 
and sinc functions [sinc x = x - I sin x = 1 
- (l/3!)x2 + (l/5!)x4 

- "']. The expansion of the ma
trix to fifth order in a is 

( 
1 - (1I2!)a2 9 It' + (1I4!)a4 9 It' 9 It' + ... 

ialt' - i(l/3!)a3 1t'91t' + i(l/5!)asIt'91t'91t' + .. . 
ia9 -i(1I3!)a391t'9 +i(l/5!)as91t'91t'9 + ... ) 

1 - (l/2!)a2 1t' 9 + (1I4!)a4 1t' 9 It' 9 + ... . 
(4.2b) 

In order to present concrete results comparable with 
other developments in Fourier aberration optics,22 we apply 
this expansion to a forward Gaussian beam with waist at the 
screen plane and centered at q = a. This we write as 

G: (q) = C~) Ew (q - a), Ew (q) = exp( - IqI2/2w). 

(4.3 ) 

Of course, a Gaussian is not strictly in Yt" k' since its Fourier 
transform is a Gaussian (in k) of width lIw, that has gener
ally small but nonzero support outside the disk Ok' We as
sume that the spread of directions off the + z axis is small, so 
that the approximation holds good and that we may replace 
the obliquity factor kz in the normal derivative by the con
stant k in (4.3). Gaussians beams in the - z direction re
verse the sign of the second component, i.e., complex conju
gate (4.3). (A null second component would indicate it is a 
solution even in z, with maximum amplitude at the screen. ) 

Equation (4.2b) gives the effect of a z boost as a series of 
derivative operators that is straightforward to apply to the 
Gaussian (4.3) algorithmically through symbolic computa
tion, albeit the approximation errors of the assumption that 
are not easy to estimate except by examining the stability of 
the main features of the graphic outcome. The series for the 
amplitude/is 
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/~.a(q) = (l-ak9 - (l/2!)a29 It' + (1I3!)a3k91t'9 

+ (1I4!)a491t'91t' - (1I5!)ask91t'91t'9 

+ .. ')Ew(q - a). (4.4) 

We recall that 9 and It' are real derivative operators; when 
acting on Gaussian functions they yield polynomial factors 
of degrees 2 and 4, respectively. The summands in (4.4) thus 
yield polynomials of degrees 0, 2, 6, 8, 12, and 14 in x and y, 
followed by degrees 18, 20, 24, ... , that we disregard on ac
count of the power of a of the approximation. 

To first order in a, (4.2b) and (4.4) represent magnifi
cation /-+/ + iafz + ... by the normal derivative. The fac
tor polynomial of the Gaussian is 1 - a [1 - q' (q - a) ] . 

For a> 1I~1 + lal 2/4w this polynominal vanishes on a cir
cle with center at q = ~a, and radius ~la12/4 + w(l - lIa); 

the radius grows with a bounded by~lal2/4 + w. To second 
order in a, the operator It', containing coma, appears in 
product with a 9, acting on the wave function. Two 9's 
with an It' appear for third order in a acting on the normal 
derivative, and so forth. 

In Fig. 1 we show the squared first component of a for
ward Gaussian beam. In units of :kwe have placed the center 
of the Gaussian at the point a = (10,0). We have set the 
width of the Gaussian to be w = 4, so the squared amplitude 
drops to e- 1 = 0.3679... of its maximum value at 
Iq - al = 2. The conjugate wavenumber Gaussian has 
width ! and is thus comfortably concentrated within the 
Ikl = 1 disk. 

Figures 2 and 3 show the square of the resulting aberrat
ed function on the screen, lf~.a (q) 12 for a = 0.3 and 
a = - 0.3. We have chosen these values so that the figures 
will be comparable with those of Ref. 1. The geometric coma 
caustic angle (60°) is superposed on the figures, with the 

FIG. 1. Contours of the square of the amplitude of a reference Gaussian 
placed at X. The width is w = 4k2 (we mark the Iq - al = 2 distance at 
which the function drops to e- I = 0.3679 ... of its maximum). The optical 
center is IOktothe left of X; the vertical line stands atx = 5k. We have used 
20 "isophote" contours spaced by 0.05, from 0.0 (hence not shown in the 
figure) to 1.0 (marked by X). 

Atakishiyev, Lassner, and Wolf 2466 



                                                                                                                                    

FIG. 2. The relativistic coma-aberrated forward Gaussian of Fig. I, for 
a = + 0.3 (v = c tanh a). We indicate the apex and the opening 60' -caus
tic angle of the geometric Seidel coma image. 

apex at ea a (13.5 and 7.408 units from the optical center for 
a = ± 0.3). The figures were drawn after evaluating the 
polynomial factor in the series (4.4) to fifth degree in a for 
the above parameter values. They show that the single Gaus
sian peak unfolds into several local maxima, separated by 
crescent-shaped "dark fringes," whose number was seen to 
increase with the truncation degree of a in the series (4.4). 
The location of the global maxima (0.804 and 0.818 of the 
reference Gaussian maximum) changed only slowly from 
first degree on in the direction of magnification. New, 
smaller local maxima are added with increasing degree. 

We should compare these features to those calculated 
for diffraction in aberration under pure Seidel coma [Ref. 

FIG. 3. The relativistic-coma-aberrated Gaussian of Fig. I, for a = - 0.3. 
This is equivalent to a backward-directed Gaussian beam with positive a 
parameter. We indicate the geometric opening caustic angle for Seidel 
coma. 
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II, Figs. 9.6(a) and 9.6(b)]. Our Fig. 3 seems to conform 
better than Fig. 2 to the familiar pattern of fringes of pure 
coma, where crescents bend in the direction of the apex; 
however, for the parameters of the second figure, 
a = + 0.3, the first-degree term is magnification. As we saw 
above, this will introduce a circular dark fringe of radius 
nearly 4 with the center at (5,0). This fringe seems to be the 
dominant feature that keeps the higher-degree crescents 
bending toward the optical center over the coma bending of 
the same. We note that the crescents of Fig. 2 are slightly 
"stiffer" than those of Fig. 3; this may indicate that in the 
former, the purely comatic bending weakly counteracts the 
basic magnification bending. 

V. RECAPITULATION AND CONCLUDING REMARKS 

The quantization of a system on the level of its dynami
cal group has been proposed in Refs. 23, among many others, 
providing self-adjoint representations on a space with a 
physical interpretation, such as the 2"2 (913

) Hilbert space of 
quantum wave functions. The dynamical group of optics in 
homogeneous media is the Euclidean group. The representa
tions we have explored are that of directed lines through a 
screen in geometrical optics, and that of a two-functions on a 
reference plane in Helmholtz optics. Both remain homoge
neous spaces under the deformation of the Euclidean to the 
Lorentz group. 

In this way, boosted screens are described on par with 
rotated or translated screens, and special relativity is 
brought in contact with geometric and Helmholtz optics, 
that prima facie had little to do with motion because they 
contain no time variable. Solutions of the two-dimensional 
Helmholtz equation have been subjected to the Lorentz 
group before,24 but we did not realize then that the Euclid
ean group has a transparent optical interpretation. The 
group action is correct as far as the prediction of the familiar 
stellar aberration for ray directions and plane waves. The 
relativistic coma phenomenon is the "Fourier conjugate" of 
that distortion of the sphere. The quotation marks are to 
withold a precise definition that encompasses canonical con
jugation in geometric optics, and integral transformation 
into the basis of the plane waves (2.7) by (2.8) in Helmholtz 
optics. 

Even more pressing than the question of a time variable, 
is the absence of a space variable, q, within the dynamical 
group. In geometric optics, q is the canonical conjugate to 
ray momentum, p, within the Heisenberg-Weyl algebra un
der Poisson brackets. In Helmholtz wave optics, a position 
operator Of( q) = qf( q) is not self-adjoint in cW' k' and hence 
does not lead to a standard observable within the framework 
of wave mechanics. We see this as a welcome feature of our 
theory, since Dirac D's on the screen cannot be strictly pro
duced. Sinc-type or Jo beams 15 may be the best approxima
tions. Here, we have an inner product (2.4) that has a Bes
sel-function nonlocality. Mathematically, this is Parseval 
equivalent to the presence of the obliquity factor k z / k in the 
plane-wave basis inner product (2.10). The obliquity factor 
must be there for geometric reasons. Bothf and fz should be 
present if the squared norm is to mean total field energy of 
the system. 
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In fact, in two-dimensional optics,25.6 where ray direc
tions () range over a circle SI' the Fourier conjugate observ
able will generate rotations of that circle, indicating that 
ilLd / d(} may be an appropriate position operator (cf. Ref. 4, 
Sec. V, for the conjugate problem of quantum mechanics on 
SI)' The spectrum of such an operator in ,2"2(SI) is discrete 
and equally spaced by it; consistent with the sampling 
theorem of Whittaker and Shannon.26 In the three-dimen
sional case we have a direction sphere S2 (not a torus), so the 
identification of the traditional position operators with our 
rotation generators ;;Rx,;ltRy, could be appropriate in view 
of the paraxial contraction limit, where they commute. Al
ternatively, the position observable in geometrical optics 
was written in Ref. 1, Eq. (4.5), as an algebraic function of 
the translation and boost operators, but the wave version of 
this relation is not obvious. The plane q of the figures, how
ever intuitive as the screen where images form, still requires 
further understanding. This also applies to the role of the 
normal derivativelz that does not seem to be directly observ
able on the screen, but could be inferred from the values of 
the field amplitude at two different locations near the screen. 

The endowment of a physical system with a Lie algebra
ic structure allows the compact statement of a cornucopia of 
properties, such as polarization, separation of variables, 
classification of solutions, and transformations, Clebsch
Gordon coupling, and aberration expansions-to mention 
the most obvious ones for the Euclidean groups. These will 
be developed elsewhere for optics and relativistic oscillator 
mechanics,27 going beyond the present description of scalar 
fields in homogeneous, empty space. 
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Reduction theorems for the decomposition of induced and irreducible characters of W(Bn) in 
terms of induced and irreducible characters of W(Bn _ I ), respectively, are given. 

I. INTRODUCTION 

To each classical Lie group corresponds a finite group 
generated by the reflections of its root system, called the 
Weyl group. For Bn = SO(2n + 1) and Cn = Sp(2n), the 
Weyl groups W(Bn) and W(Cn) are isomorphic. 
W(Bn) = Z; (xSn is the semidirect product of the Abelian 
group Z ~ generated by the n sign changes (+ i, - i), 
1 <;i<;n, and the symmetric group Sn. The order of W(Bn ) is 
2nn! (Refs. 1,2). Moreover, let Kn be defined as the convex 
hull of points ± eo 1 <;i<;n, where el, ... , en are the unit coor
dinate vectors in Rn. It is the n-dimensional generalization of 
the octahedron K 3• The group of symmetries of Kn called the 
hyperoctahedral group is W(Bn ). 

The structure and representations of this group have 
been studied (Refs. 3-6), and applications to physical prob
lems have been considered, especially on lattices (for in
stance: discrete a models, lattice gauge theories, and chiral 
models; see Refs. 7, 8). The purpose of this paper is to solve 
the reduction problem, i.e., to decompose the character of a 
representation of W(Bn) into characters of W(Bn _ I) rep
resentations. We shall consider characters of induced or per
mutation representations as well as of irreducible represen
tations. 

Our starting point will be an algorithm giving the in
duced characters of W(Bn ). In order to make the article 
reasonably self-contained, this algorithm and some other re
sults, previously published elsewhere, will be exposed anew 
(Refs. 9, 10). 

This work is organized as follows. In Sec. II, the group 
W(Bn) = Z ~ C>.<Sn and the algorithm for the characters of 
W(Bn) induced in it by the one-dimensional representations 
of the so-called canonical subgroups are treated. In Sec. 
III A we establish Theorem 1 dealing with the induced char
acters; in Sec. III B, Theorem 2 corresponding to the reduc
tion of irreducible characters is given, and Sec. III C is con
cerned with a discussion of the dimensions of the induced 
and irreducible representations of W(B n ). 

II. THE INDUCED CHARACTERS OF W(Bn) 

The set of all g = (a; J), where OES nand lis a mapping 
of [ l,n] eN into Z2' together with the composition defined 
by 

(a';j')(a;J) = (a'o-;/'(/a,-I») 

form the group W(Bn) = Z ~ c>'<Sn' 

The cycles of the permutation are called "cycles of g." A 
cycle (ai' ... , ap ) of g is positive or negative if 
/(a l )" "/(ap) = + lor - 1. 

Let {3 = ({3I> ... ,{3k ) be the {3 system of cycles of a, and 
suppose the cycles are arranged in such a way that a negative 
cycle necessarily precedes a positive cycle of equal length. 
Then ({3,b) is called the {3 system of cycles of g, where 
b: = (bl,. .. ,bk ) withb;: = 1 orO if the ith cycle is positive or 
negative (remark: if {3; = {3; + I' then b; <;b; + I ). Moreover if 
a/ and a;- denote the number of positive and negative cy
cles, respectively, of length i of g, then 

IS called the a system of cycles of g (remark: if 

a;: = a;+ + a;-, then I ia; = n). 
; 

The elements of W(Bn) are conjugated iff they have the 
same a system of cycles and iff they have the same {3 system 
of cycles. The class of elements with a system 
a = (a l+ , ... ,a{-) is denoted C(a). 

LetA = (AI,· .. ,Ak ) be a partition ofn (AI ~A2'" ~Ak) 
and b = (bl, ... ,bk ) be such that b; = 1 or 0 (remark: if 
A; = A;+ I' then b;<;b;+ I)' 

The subgroup (Z/A, - b,)C>.<S",) X (Z/A, - b')C>.<SA ) ... , 
denoted by S(A,b), is a canonical subgroup of W(Bn). Then, 
for the class C(a) and the canonical subgroup S(A,b) the 
algorithm giving the character cPS(A.b) (C(a» of the repre
sentation of W(Bn) induced by the identity representation 
of S(A,b) is 

cPS(A.b) (C(a») 

= 2(~,b;) ('" m~ I (a/ )!(a;- )! ). 
L W Ilk (+ )'( -)1 ,~ I J~ I aij . aij . 

The sum concerns the matrices (a ij+ I -) of dim I X k X 2 
where 

k 

\.I' I + + vio, a·· = a· 
'IJ 10 

j~ I 

and 
k 

'" a·-: = a·-, £.. 'III '0 
j~ I 
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Besides, Vjo, if bjo = 1, then 2: a;;, is an even number. 
j 

The order of the class C( a) is 

/ ( 2a,(i - I) ) 

IC(a)1 =n! II -,a-. ---

j= I I '(a/ )!(a j-)! 

(for details, see Appendix A). With this algorithm, the in
duced character table tP{ WeB n )} is obtained. Each row of 
the table is given by the corresponding tPS(A.b) (C(a»). 

For instance, the table of the induced characters of 
W(B2 ), the Weyl group ofSO(5), is 

1 2 1 2 2 

-CD 

tP{W(B2 )} = + m 

:8 
:t8 

tB 

1 

2 

2 

4 

8 

1 1 1 

0 2 2 

2 2 0 

2 0 0 

0 0 0 

III. THE REDUCTION W(Bn ) ..... W(Bn _ t ) 

A. The induced characters 

1 

0 

0 

0 

0 

classes 

order 

To state the reduction theorem, we denote by (i+ )a" aj 

subpartitions of n, oflength i, and of sign +, by U-) a'" a'i 
sUbpartitions of n of length i, and sign - , 
tP{O + )0'0- )a"(2+ )0'(2- )O', .•. } represents an induced 
character of W(Bn ). 

Theorem 1: The induced character of W(Bn), 
tP{(1 + )0'(1- )a"(2+ )0'(2- )O', ... } reduces into W(B

n
_ l ) 

induced characters as follows: 

= 2a
1
tP{(1 + )0, - 10-)0·, ... } 

+ a'ltP{(1 + )a'(1-)a', - I ... } 

Proof (i) Let us take an element of W(B n _ I) belonging 
to the class (at - 1, a l-, a 2+, a 2- , ... ) (hereafter only 
classes with a l+ #0 will be considered). 

From Vio, 
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i.e., 

it is clear that there are k ways to subtract a unity from 

at: (aii -1) + ali + ... +alt, 
ali + (ali-I) + ... +alt, 

ali + ali + ... + (aii; -1), 

and from 
/ 

A.. = ~i(a.+ +a-:-) 
JII ~ 1)0 I}o 

j=1 

we get 

Al - 1 = (ali - 1 + ail) + .. . 
11.2 - 1 = (ali - 1 + ai;) + .. . 

Hence, the induced character of W(Bn ), tP(A)" 'A k ) re
duces into the sum of induced characters of W( B n _ I ): 

tP(A) - 1, .. ·,Ak) + tP(A),A2 - 1, .. ·,Ak) 

+ .. , + tP(A I,A2,· .. ,Ak - 1). 

(U) Besides, if a sUbpartition A/ appears p times, (i) 
yields 

11./, -1 = (alt, -1 +all,) + "', 
11./, - 1 = (a l! - 1 + ail) + "', 

and the corresponding induced character appears p times in 
the decomposition, i.e., 

PtP( .. ·,A/_ 1 + 1,11./ - 1,11./+ I'''')' 

(iii) Through the reduction process, the factors 2~,b, do 
not change, that is, 

(2~b, for the induced character of W(Bn» 

(
2~b' for each of the indUCed) 

= characters of WeB n _ I ) . 

resulting from the reduction 

It is to be noted that the reduction of the subpartitions 
(1 + )0, implies the diminution of one term bj = 1 in the ex
ponent. This is not the case for the subpartitions> 1 with 
b j = 1: (2 +), (3 +) , ... since subpartitions (1 +), (2 +), ... , re
spectively, occur and the number of bj = 1 terms do not di
minish. Consequently, to keep the 2~b, constant, the coeffi
cient of the induced character issued from the reduction of 
the subpartitions (1 + )0, must be multiplied by 2. 

Note that (i), (ii), and (iii) imply the statement. 
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Example: Consider the representation of W(B I2 ) given 
by 

+ 

+ 

+ 

+ 

+ 

Then, the branching rule for W(B 12 ) --+ W(B 11 ) gives 

¢{ ( 1 + ) 3 ( 1 - ) 2 (2 + ) 2 (3 - ) } 

= ¢{ ( 1 + ) 3 ( 1 - ) 2 ( 2 + ) 2 ( 2 - ) } 

+ 2¢{ ( 1 + ) 4 ( 1 - ) 2 (2 + ) (3 - )} 

+ 2¢{ ( 1 + ) 3 ( 1 - ) ( 2 + ) 2 ( 3 - ) } 

+ 6¢{ ( 1 + ) 2 ( 1 - ) 2 (2 + ) 2 (3 - )}. 

This algorithm allows us to construct a reduction matrix 

F :::; !::)~ ,); each row of this matrix is given by the corre-

We have 

1 1 1 1 

1 2 0 2 

1 1 2 2 2 

2 1 4 2 0 

1 1 8 0 0 

2 1 

3 

2 2 

4 1 

6 
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sponding reduction (in Ref. 10, we introduce the matrices F 
corresponding to the reduction of the induced characters of 
the symmetric group Sn ). To illustrate the construction we 
apply the algorithm to W(B2 ) --+ W(B 1): 

-OJ 1 0 

+CD 0 1 

:8 2 0 _FW(B,) 
- W(B,)' 

~B 2 1 

!B 0 4 

Hence, in general, the reduction of the induced characters 
may be written as 

It must be noted that this result concerns only classes with 
at #0; consequently the induced character table 
¢{ WeB n )} does not contain the other classes. To clarify this 
point, let us consider 

¢{W(B3 )} = F ::::~~;~ ¢{W(B2 )}. 

1 1 1 1 1 1 1. 

2 0 2 0 2 2 0 

0 0 3 3 3 1 1 

0 0 6 4 2 2 2 

0 0 6 2 2 2 0 

12 0 4 4 0 

6 6 6 0 0 

12 8 4 0 0 

24 8 0 0 0 

48 0 0 0 0 
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In <p{W(B3)} the characters corresponding to the classes 

=§, ~~.:fP, etc. (i.e., classes with a l+ = 0) 
do not appear. 

B. The irreducible (or simple) characters 

We recall here some results (see Appendices B, C, D) 

which allow us to establish the reduction of the irreducible 
characters using the reduction of the induced characters. 

First of all, it must be remembered that the table of irre
ducible characters X{ W(B n )} can be obtained from 
<p{W(Bn )}. To carry out this calculation, each row <Pi of 
<p{ W(Bn )} must be considered as a vector; it suffices to orth
onormalize them via the Gram-Schmidt procedure to get 
the rows Xi of the table X{ W(Bn)}. In general, it is shown 
that 

;-1 

Xi = <Pi - I (<PiKXk)Xk(for i= I,XI =<PI)' (3.1) 
k=1 

where Xi and <Pi are the ith rows of X{W(Bn)} and 
<p{ W(Bn )}, respectively, and K is a diagonal matrix whose 
elements are 

(Kap) =8ap(IC(a)1/2nn!), IC(a)1 

is the order of class C(a) of W(Bn ). 

As a by-product of this method, we obtain the triangular 
matrix a which plays an important role in the sequel. We are 
going to illustrate these results-up to this point-through 
the W(B2 ) case. 

or 

Expression (3.1) yields 

XI = <PI' 

X 2 =<P2- X I' 

X3=<P3- X I-0'X2 , 

X4 = <P4 -XI - 0'X2 -X3' 

X5 = <P5 - XI - X2 - X3 - 2X4 

<p\=XI, 

<P2 =XI +X2' 

<P3 = XI + 0 + X3, 

<P4 = XI + 0 + X3 + X4, 

<P5 =XI +X2 +X3 + 2X4 +X5· 

(3.2) 

Considering the coefficients of the Xi' we may write 

o 
o 

2 

We remark that a is nonsingular (in fact Vn, det a = 1; see 
Appendices B, C). 

With the aid of a (3.2) becomes 
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1 

202 2 
222 
4 2 

8 

0 
0 

2 

-1 

2 0 
- 1 

1 
- 1 

-1 -1 

-2 0 0 
1 -I 

i.e., <p{W(B2)} = I:!..X{W(B2)}. In general we have 

<p{W(Bn)} = a{W(Bn )}X{W(Bn )}. 

We may now state the reduction of the irreducible char
acters. 

Theorem 2: The irreducible characters Xn of W(Bn) 
reduces into irreducible characters Xn _ I of W(B" _ I ) ac
cording to the equation 

X" = W~_I X n _ l , 

where 

Proof For W(Bn ), <p" = a"xn (i) and for 
W(B,,_I)' <P,,-I =an_IXn_ 1 (ii). Besides, from 
Theorem 1, <Pn = F~ _ I <Pn _ I (iii). Putting (i) and (ii) in 
(iii) , 

1 

-1 

-1 

0 

1 

anXn =F~_lan_IXn_I' 

. .. X" = a n- I F ~ _ I an _ I X" _ I . 

Example: W(B2) ---> W(B I): 

1 

0 1 

0 -1 1 

-1 1 -2 1 

1 0 

0 1 

:8 = Wi = 1 0 

::8 
t8 

1 

0 

1 

1 

1 0 

0 1 

2 0 

2 1 

0 4 
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Remark: This reduction is partially equivalent to the 
Weyl branching rule for Sn' that is, the allowed diagrams are 
obtained from the original one by removing a square in tum 
from the end of each row which is longer than the following 
one. The peculiarity of the W(Bn) case stems from the signs 
+ and - assigned to the patterns. As an example, we give 

here the reduction matrix for W(B3 ) -+ W(B2 ): 

- CID 

+CID 

:\F 

+EP 
:tEP 
t\F 
:§ 
~ 
±§ 
i§ 

-[IJ+[D :8 ~8 tB 

1 

1 

1 1 

1 1 

1 1 

1 1 

1 

1 1 

1 1 

1 

For all n, the matrices F: _ 1 and W: _ 1 have the same en
tries#O. For F: _ 1 the multiplicities of these entries are ~ I 
and for W: _ I' equal to 1. 

C. On the dimensions of the representations of W(Bn) 

The dimension of a representation, irreducible as well as 
induced, is nothing but the number of times that a one-di
mensional representation is contained in it. As a matter of 
fact, the reduction matrices Wand F provide a method to 
evaluate the dimensions of the irreducible and induced rep
resentations: for a group W(Bn ), these dimensions are given 
via the products 

WW(B,,) WW(B,,_,) ... W s, 
W(B

II 
__ 1 ) W(B11 -2) S. 

and 

respectively. 
The last term of these sequences concerns the reduction 

of the symmetric groups S2 -+ S I' This is due to the structure 
of W(B 1 ) = Z2CxS); WeB)~ is isomorphic to S2' and to ob
tain the dimensions, the reduction must be continued until 
S) (dimension I). (For details concerning the symmetric 
group reduction see Ref. 10.) 

Example: (a) Dimensions of the irreducible representa
tions of WeB ) = WW(B,) WW(B,) W S': 

3 W(B,) W(B,) s, 
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1 1 1 

1 1 1 

1 1 1 2 

1 1 1 1 3 

1 1 1 3 

1 1 2 

1 1 

1 1 3 

1 1 3 

1 1 

(b) Dimensions of the induced representations of 

WeB ) = F W(B,) F W(B,) F S " 
3 W(B,) W(B,) S,' 

1 1 1 

1 1 2 

1 1 2 3 

2 1 2 1 6 

1 1 4 6 

2 1 12 

3 6 

2 2 12 

4 1 24 

6 48 

APPENDIX A: THE ALGORITHM FOR 4>S{A,b) (C(<<» 

We give here the main steps required to obtain the algo
rithm for the induced characters tPS(A.b) (C(a». 

From the general theory of characters, we have that if H 
is a subgroup of a finite group G, g an element of G, C(g) the 
conjugacy class of gin G, the induced character t,6~ (g) is 
given by 

t,6G( ) =JQlIC(g)nHI 
H g IHI iC(g)1 (AI) 

In the present case, 
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and 

i.e., 

but 

G = Z~rc.S", IG 1= 2"n!, 

H=S(A,b) = (Zi",-b,)rc.S",) 

x··· 

Al + ... +Ak = n, 

hence 

2" 
IHI -_l1 ... 1 I 

- /1,1' /l,k" 2:f.,b, 

The order of the class C( a) is 
I 2a,(i- 1) 

IC(a)l=n!II.a . 
j= 1 I '(at )!(aj - )! 

(A2) 

(A3) 

(A4) 

To evaluate IS(A,b)nC(a)1 it suffices to replace in (A4) n! 
by AI!" 'A k ! and n~= 1 (a/ )!(aj-)! by 
n~= 1 n;= 1 (at )!(a- ij)!. 
Putting (A2), (A3), (A4), and IS( ,b)nC(c)1 in (AI), the 
expression given in Sec. II for ¢S(",b) (C(a») is obtained. 

APPENDIX B: SOME PROPERTIES OF THE 
CHARACTERS OF A FINITE GROUP 

In this Appendix we state some basic results concerning 
the characters of a finite group which are implicit in some 
subsequent derivations. 

( I) The orthogonality relations, 

XKX T =E, XTX=K- 1
, 

where X is the character table of a finite group G, K is the 
matrix (Kuv) = Duv (I CU 1/1 G I ), I Cu I is the order of the 
conjugacy class of u, I G I is the order of G, and E is the identi
ty matrix. 

(2) Every representation D is the direct sum ofirreduci
ble representation D j , over C: 

D = Gl njDj, nj = non-negative integers. 

(3) Every character (¢) can be expressed via the Z-basis 
of the irreducible characters over C: 

Besides nj = «¢ ),Xj), where, by definition, 

(x,y) = xKyT. 

In Ref. 2 (pages 38,39) it is shown that: 
(4) For the symmetric group Sn' the multiplicities nj 

can be written in matrix form and this matrix, 1)., is lower 
triangular with ones along the main diagonal, i.e., unitrian
gular (we remark that James and Kerber use a different no
tation and a different label for the matrix entries, so it turns 
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out that for them I). is upper triangular). Hence det 6. = I 
and 6. - 1 is a matrix over Z. 

(5) The matrix of induced characters ¢ may be written 
as ¢ = b.X [see (3) above], and the matrix of irreducible 
characters is given by X = I). -I¢ (see Ref. 2, 2.2.9, p. 39). 

APPENDIX C: THE MATRIX.:1 FOR Z~CxSn 

This Appendix contains a characterization of the I). ma
trix for Z ~ rc.Sn. To establish the properties of the I). matrix 
for Sn' the basic tool is the theorem of Ruch and Schonhofer 
(Ref. 2, p. 27); moreover, two orders between partitions A 
and A ' of n are required: 

(J) The lexicographic order <: 
A<A ':+-+3i(A, = A; , ... ,A j_ 1 = A ;_1 ,Aj <A ;), 

< is a total order. 
(2) The dominance order <1: This order is defined in 

terms of partial sums ~ ~ r v of the parts of the partition in 
question: 

A~ ':+-+Vl{tAv<tA ~). 
<J is a partial order (note that A ~ , ..... A <A '). These two or
ders differ only if n>6. For Z ~ rc.Sn we must introduce a new 
condition into the definition of the dominance order, which 
takes into account + I and - 1 (denoted by €v ). Hence, for 
Z~rc.Sn' 

{

Vi,±Aj<±A; 

A~ ':+-+ 1 1 (. .). 

(Vi,A j =A;) ..... Vi,t~>t~' 
Moreover, the entries of I). are labelled: 

(i) By partitions arranged in lexicographic order (A for 
the rows; A ' for the columns). 

(ii) By the combination of the Z ~ elements ( + 1, - 1) 
and the Young diagrams of the partitions. The resulting ar
rangements must be ordered from the sign - to the sign + 
(top to bottom, left to right). 

For example, =FEP 
of 

. precedes ± EP (the number 

nodes - of the first diagram is greater than the number of 
nodes - of the second one). 

With these modifications, the line of argument dis
played in Ref. 2 for the I). matrix of Sn can be followed; if A is 
the row label and A ' the column label we have: the entires of 
6. are different from 0 if and only if A <JA '. When A >A " the 
entries are O. 

The diagonal terms correspond to the same partition 
and to the same arrangement, hence these diagonal elements 
are ones (consequence of the theorem of Ruch and Schon
hofer). 

APPENDIX D: A PROOF OF (3.1) 

In this Appendix we outline the proof of result (3.1): 
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"The characters of the irreducible representations of 
Z ~ Q<Sn' Xi> are given by 

i-I 

Xi = ,pi - L (,p,KXk )Xk 
k~1 

(for i = 1, XI =,pl )." 
Proof (i) Let us consider the columns of the character 

table of Z ~ (xSn as orthogonal vectors 

(Le., XTX = K -I). 

(ii) The matrix 6. is lower unitriangular as well as 6. -I. 
The equation X = 6. -I,p may be written 

o 

(note that the nondiagonal entries of 6. - I are not consid
ered). 

By recurrence: for i = 1 (,p,) = (X,). At the ith place of 
the ith row of 6. - I there is a coefficient equal to 1 (on the 
diagonal) if the other coefficients are a"a2, ••• ,a,_ ,. We have 

X, = a,(,p,) + aZ(,p2) + ... + a;_, (,p'_I) + (,p,). 

Reciprocally: 
(iii) X, = bl(Xd + b2 (X2 ) + ... + bi _, (Xi_I) 

+ (,pi) but the (Xi) are orthogonal. For (iii), we have 
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'rJ k, (Xi )K(Xk ) = bl (X, )K(Xk ) + ... 
+ bi _ I (Xi _ I )K(Xk ) + (,p, )K(Xk ), 

'rJkd, 0 = bk + (,p,)K(Xd, 

then 

bk = - (,p;)K(Xd· 

Replacing this result in (iii), we obtain 
i-I 

X, =,p, - L (,piKXk )Xk • 
k~1 
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The classification scheme for homogeneous symplectic manifolds is completed and generalized 
including the case when the symmetries are symplectic only up to a factor and the group is 
nonconnected. This improved classification also describes the possible coverings in terms of 
classes of some discrete subgroups. As an application, the possibility of mixed symplectic and 
antisymplectic symmetries is studied for some physical groups: rotations in three dimensions, 
the Poincare group and the Galilei group (including inversions). Some new possibilities (with 
compactified energy), not appearing previously in the literature, have been found even for the 
connected Galilei group. 

I. INTRODUCTION 

The classification of transitive G-symplectic actions for 
connected Lie groups, useful for a classical counterpart of an 
elementary system, has been done by Kostant, I Souriau,2 

and Kirillov3 in the hypothesis of existence of the momen
tum map. It was observed4

,5 that these actions can be classi
fied without this hypothesis, using a different technique 
based on the reduction principle.6 This shows that the homo
geneous G-symplectic spaces are classified up to covering by 
some "regular" orbits of the natural action of the group in 
Z2(Lie G, R) (the R-valued two-cocycles of the Lie algebra 
of G). 

In this paper we prove, by refining this analysis, that the 
transitive smyplectic actions ofa Lie group (not necessarily 
connected) can be described in a complete way, not only up 
to covering. Moreover we also treat the case when the sym
metries are symplectic up to a factor. For connected Lie 
groups this was studied in Ref. 7 using the reduction princi
ple. Also, we give a classification of Hamiltonian G spaces, 
not only up to covering, but including symmetries up to a 
"discrete" factor. This refines a well known analysis. 1-3 As 
an interesting application we consider the case of mixed sym
plectic or antisymplectic2 symmetries in analogy with the 
similar problem encountered in quantum mechanics (uni
tary or antiunitary symmetries8

-
1O

). These are done in Sec. 
II. 

As applications we consider some important noncon
nected Lie groups, namely, the orthogonal group in three 
dimensions, the Poincare group, and the Galilei group (in
cluding inversions). The first two cases can be treated using 
a simplified form of the main theorem and this is done in Sec. 
III. The analysis for the Galilei group in more involved; it is 
the subject of Sec. IV. Some new transitive actions appear. 
These G-symplectic manifolds are covered by already 
known coadjoint orbits (corresponding to zero mass); they 
do not admit a momentum map and have a "compactified 
energy." It would be interesting to see if they have a reasona
ble physical interpretation. 

II. THE CLASSIFICATION THEOREM 

Let (M;,n;) (i = 1,2) by symplectic manifolds. A dif
feomorphism ¢l: MI .... M2 is called symplectic up to a factor if, 
for a XER* = R - {a}, 

(2.1 ) 

If X = 1, ¢l is called symplectic, and, if X = - 1, anti
symplectic. Two symplectic manifolds are called symplecto
morphic if there exists a symplectic map between them. They 
are of the same symplectic type if the map is symplectic up to 
a factor. 

A symplectic manifold (M,n) is called a G-symplectic 
manifold up to a factor ifthe Lie group G acts on M by maps 
G3g.--.¢lg EDiff(M), which are symplectic up to a factor: 

¢l;n = X(g)n (2.2) 

(note that X:G .... R * is a group homomorphism). 
Suppose for two G-symplectic manifolds, there exists a 

G-equivariant map between them which is also symplectic; 
then the manifolds are called G-symplectomorphic. The aim 
of this section is to classify up to a G-symplectomorphism 
the homogeneous G-symplectic manifolds. 

Up to a point the analysis goes on the lines in Ref. 6. 
Suppose (n,M) is a G-symplectic manifold up to a X factor. 

(1) Define for any xEM the map'll x: G .... M by 
'II x (g) = ¢lg (x). Then it follows easily that 

Ker 'IIx",e = Lie Gx = ~\, (2.3) 

where Gx is the stability subgroup for xEM. If the action is 
transitive, then 

Ran 'IIx",e = Tx(M). (2.4) 

(2) Now define the map 1/1: M .... A 2®* (with 
Lie G= ®) by 

1/1(x) = ('II~n)e' (2.5) 

Then the image of 1/1 is, in fact, in Z i (®,R). Here X = X ",e 

and Zi (®,R) is a linear subspace in A2®* defined by ele
ments u satisfying 
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(aa) (SI,S2,S3) 

= X(SI)a(S2,S3) - a( [SI,S2],S3) + cyclic perm 

= 0. (2.6) 

Here G acts naturally in A 2®* and restricts to Z 1 ( ®,lR) by 

g.--+AdX(g) =X(g)Ad(g-I)*. (2.7) 

Moreover, t/J is G-equivariant; it follows that it maps a 
homogeneous G space onto an Adx orbit. 

(3) From now on, M is supposed G-homogeneous. An 
important object for the classification theorem is the follow
ing set, defined for every aEZ 1 (®,lR) : 

hu = Ker a = {sE®la(s,1]) = 0, V1]E®}. (2.8) 

From the cocycle identity (2.6) it follows that hu is a 
Lie subalgebra of®. The main property of this subalgebra is 

h.p(x) = ®x, (2.9) 

for every xEM. Denote by H u C G the connected Lie group 
immersed in G associated to the Lie subalgebra hu' From 
(2.9) it follows that H.p(x) is closed in G and 

(2.10) 

where (Gx )0 is the connected open subgroup of Gx • 

An Adx orbit d is called regular if for a (JEd (then for 
any (JEd), Hu is closed. 

Using the preceding facts and the reduction principle 
the classification of transitive actions symplectic up to a fac
tor can be done up to covering as in Refs. 4-6. 

( 4) Using a somehow modified method we shall do this 
classification, not only up to covering. The first simple obser
vation following from the equivariance of t/J is 

(2.11 ) 

( G u is the stability subgroup for a with respect to the Adx 

action of G in A 2g ). Second, H u is a normal subgroup of G (T 

so that a discrete subgroup GxlHu in GulHu corresponds to 
Gx • 

(5) If NCK is a normal subgroup then two subgroups 
Q, Q ' C KIN are called conjugated by elements of K if there is 
koEK such that 

Theorem 1: Take one representative a from every regu
lar Adx orbit in Z 1 (®,lR). Let 7f'" u be the set of discrete 
subgroups of GulHu and Crff u be the set of conjugacy classes 
in 7f'" u by elements of G u' If Crff is the union of Crff u over all 
regular orbits, then it is into a one to one correspondence 
with the set of G-symplectomorphic classes of homogeneous 
G-symplectic manifolds up to a X factor (2.2). 

An explicit construction of this map is contained in the 
proof. 

Proof (i) First we define the one to one mapj. Let Mbe 
a homogeneous G-symplectic manifold up to a X factor. We 
can find xEM such that a = t/J(x) is the representative cho
sen in the statement of the theorem for the image orbit. Then 
it follows that G x satisfies (2.10) and (2.11). If M' is G
symplectomorphic with M, the image orbits in Z1 (®,R) 
coincide, so if x' EM' is chosen as above, then G x' is conjugat
ed with G x by an element in G u' By definition, j maps the 
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equivalence class of M into the equivalence class of G xl H u' 

From above, this is consistent. 
(ii) Now we prove thatj is injective. Let M and M' be 

homogeneous G-symplectic manifolds, such that the corre
sponding elements in Crff are identical. We prove that M and 
M' are G-symplectomorphic. From the definition ofj and the 
above assumption we can find xEM, x'EM' such that 

t/J(x) = t/J'(x') = a, (2.12) 

and also G x is conjugated to G x' by an element of G (T' This 
allows us to choose x' such that Gx = Gx" and (2.12) re
mains valid. Then we can takeM = M' = G IGx . Also, from 
(2.12), 

('I'~O)e = ('I'~O')e = cr, 

since 'I' x is a submersion, 'I'~ is injective, and thus Ox = O~. 
Using now the invariance of 0 and 0' [(2.1)] we have 
0= 0' all over M. The injectivity ofj follows. 

(iii) Here we show thatj is surjective. Let HE7f"'u be a 
representative for a given element in Crff u and 

H = {hEGu IhHuEli}. 

Because H is discrete it follows that H is closed in G u 

(and thus in G) and satisfies 

(2.13 ) 

Lemma: Let H C G be a closed subgroup such that 
(2.13) is true. Then there exists a unique symplectic form 0 
on G I H, G-invariant up to a X factor such that 

(2.14 ) 

(here 1T: G ...... G I H is the canonical submersion). 
Proof of the lemma: The action of G on G I H is denoted 

by ¢ g (g' H) = gg' H. Then 'I' H = 1T; thus, using (2.3), we get 

Ker 1T.,e = Lie H = Lie Hu = Ker a. (2.15) 

From (2.14), we must have 

0H(1T.,eS,1T',e1]) = u(S,1])· (2.16) 

This 0 H is well defined by (2.16) because of (2.15) and the 
surjectivity of 1T •• Also, from (2.15), it follows that 0 H is 
nondegenerated. But 0 is G-invariant as in (2.2) iff 

OgH = X(g)¢;- 10H' (2.17) 

This can be taken as a consistent definition of 0 iff 

¢tOH = X(h)OH' VhEH, 

which is an easy consequence of HCGu' From (2.17) and 
the nondegeneracy of 0 H it follows that 0 as a two-form is 
nondegenerated. From (2.6),0 is closed. The proof of the 
lemma is finished. 

This lemma proves that the symplectic manifold G / H 
generates the equivalence class, which is the preimage we are 
looking for. The proof of the theorem is now finished. 

Remarks: (a) Loosely speaking, the classes ofhomoge
neous G-symplectic manifolds are classified by regular orbits 
above, up to covering. The possible coverings are classified 
by classes of discrete subgroups in an appropriate group. 

(b) To every regular orbit we can associate a maximal 
homogeneous G-symplectic manifold G I H u covering those 
classified by the set Crff u' 

(c) The classification already done can be made only up 
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to the symplectic type if we consider, instead ofregular or
bits in Z t (®,R), regular orbits in the corresponding projec
tive space. From this classification we can recover the pre
ceding one by rescaling. 

(6) The simple criterion for regular orbits provided by 
Chu4 can be adapted easily to this more general situation. 

Proposition 1: Let G be a connected and simply connect
ed Lie group. Then, every orbit in Z t (®,R) is regular. 

Proof" Let aEZ 1 (®,R); then ad(S") leaves Ker X invar
iant in ®. We define ad# (S")EEnd«Ker X)*) as the dual of 
ad(S") restricted to Ker X. Remark that ad# (S") is a linear 
representation of the Lie algebra ®. We now extend this rep
resentation to (Ker X) * + R by the following formula: 

It is a consequence of Ja = 0 that p is also a Lie algebra 
representation. Since G is connected and simply connected, 
there exists a group representation T of G in (Ker X) * + R 
such that T = p. Denote by Go C G the stability subgroup of 
(0,1 )E(Ker X)* + R. Then Lie Go = ha , such thatHa is the 
connected component of the identity of Go; but Go is closed 
and so is Ha. 

Remarks: (a) The hypothesis of connectedness for G is 
not necessary. 

(b) This proposition is also valid for Lie groups with the 
first homotopy group finite, because the covering map is 
proper, and then closed. 

(7) Now we discuss some important simplifications val
id in the case X = 0; in particular, this happens when X == 1 or 
X(g) = ± I (i.e., G acts by symplectic or antisymplectic 
maps). Suppose a = J{3. Then it is easy to prove 

H a{3 = (G{3 )0, (2.18) 

so that the corresponding orbits are regular. Also 

G{3 CGa{3' (2.19) 

and hence we have the following corollary. 
Corollary: Every Adx orbit in ®* is a homogeneous G

symplectic manifold up to a X factor (X = O!) with the sym
plectic form 

fl{3(S"~.,1]@.)= -{3([S",1]]). (2.20) 

Remark: For X == 1 this is well known. 1-6 If H 1 (®,R) = 0 
then (2.19) (valid for any X) can be easily strengthened to 

G{3 = Ga{3' (2.21) 

(8) The following proposition is useful in some applica
tions: 

Proposition 2: SupposeH I(®,R) = 0 = H 2 (®,R). Take 
one representative {3 from every AdX orbit in ®*. Denote the 
set of all subgroups ofG{3/( G{3 )oby :ff'{3' Finally, denote by 
CrfJ (3 the conjugacy classes in :ff'{3 by elements of G{3' and 
their union over all orbits in ®* by CrfJ. There exists a one to 
one map between equivalence classes of G-symplectomor
phic homogeneous G-symplectic manifolds up to a X factor 
(2.2) and CrfJ. 

Proof' It is contained in the following remarks (com
bined with Theorem 1). 

(a) HI (®,R) = 0 implies X = O. 
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(b) J: ®* ..... Z2(®,R) is a one to one AdX morphism. 
(c) (2.18) and (2.21) are valid under the conditions of 

the above proposition. 
(9) In this context we can define a momentum map as 

follows. For every S"EKer X, iSMfl is closed. If it is exact, let 
tP S : M ..... R be defined by 

(2.22a) 

tP can be chosen linear in S". Then the momentum map J: 
M ..... (Ker X) * is defined by 

J(x)(S") = tPs(x). (2.22b) 

The homogeneous cocycle measuring the obstruction to 
equivariance of the momentum map is 

c(go,gl) = AdX(go)cP*-IJ - AdX(gl)cP* IJ; 
go gl 

ctakes values in the set of maps from 1To( G) to ®*. When c is 
trivial, J can be taken to be equivariant. 

In this case (M,fl) is called a x-Hamiltonian G space. 
The equivariance of J and (2.22) determines it up to an 

additive element from F: 

F= {AE(Ker X)*IAdX(g)A = A, 'VgEG}. (2.23 ) 

It follows that for x-Hamiltonian G spaces we have 

GxCGJ(X)' (2.24) 

So (2.18), (2.24), and 

tP= -JJ (2.25 ) 

imply that J is a covering map for the image orbit. 
With the remark that the Adx action in (Ker X) * fac

torizes to an action in (Ker X) * / F, a classifying theorem, as 
in (5) can be proved for X-Hamiltonian G spaces with X = O. 

Threorem 2: For every G orbit in ®* / F let us choose a 
representative point {3E®*. For such {3, denote by :ff'p the 
set of all subgroups ofG{3/( G{3 )0. Finally, denote by CrfJ p the 
conjugacy classes in:ff'p by elements in G {3 and by CrfJ' their 
union over orbits in ®* / F. There exists a one to one map 
between CrfJ' and equivalence classes of x-Hamiltonian ho
mogeneous G spaces (for X = 0). 

Proof" We follow the lines of the proof of Theorem 1. 
(i) We define the one to one map j'. Let Mbe a x-Hamil

tonian homogeneous G space. We choose xEM such that 
{3 = J(x) is a representative point as in the statement of the 
theorem (by adding to J an element in F if necessary). Then 
from (2.18), (2.25), (2.10), and (2.24), 

W(3)o=Ha{3 =H",(x) = (Gx )oc;;;,Gx CG{3' 

so that G verifies 

(G{3)°c;;;,Gx CG{3 (2.26) 

and Gx projects into a subgroup of G{3/( G{3 )0. The defini
tion ofj' and its injectivity follows as in parts (i) and (ii) of 
the proof of Theorem 1, respectively. 

(ii) For surjectivity we proceed as in part (iii) of the 
proof of Theorem 1 with a = J{3. 

It remains to show that a G /Gx thus constructed is also 
Hamiltonian. From (2.24) we have a unique equivariant 
map from M = G /Gx ontoG /G{3 C®*, sendingxon{3. The 
proof that this map verifies (2.22) and hence is a momentum 
map follows from (2.5): 
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(iSM n )(7]M) = n(tM,7]M)x = t/!(X)(t.7]) = J(X)( [t,7]])· 

Using the equivariance of J we have 

(iSM n )(7]M) =J([t,7]}), 

and now, from the infinitesimal version of equivariance, 

7]M(t/!s) = t/![S.ril' 

(2.22) comes. The proof of the theorem is finished. 
Remarks of the same type as in (5) are also true here. 

We note that under the conditions of Proposition 2, every 
homogeneous G-symplectic manifold covers a coadjoint or
bit, and the covering map is an Adx -equivariant momentum 
map. So in this case. all these manifolds are also x-Hamilto
nian G spaces. 

(10) The classification of all X factors with X = 0 re
duces to finding all group homomorphisms X: G IGo_JR*. 
Here X is uniquely defined by X = X017" (17": G- GIGo is the 
canonical surjection). For our applications we have three 
cases: 

(i) GIGo "",{I}, for SO(3),.9 1+ ,Y 1+ ; 

(ii) GIG o"",l2' for 0(3),.91,.9 +,.9'=.9 1+ U.9 1
_. 

yr,Y +,Y'=Yl+ Uyl_; 

(iii) GIGo"",l2Xl2' for .9,'[§. 

In the first case, X= 1. In the second, X= I or 
X( ± 1) = ± 1. In the third one, X = I, X = Xs' X" Xst· 
Here Xs is trivial on .9 + or Y +' Xt is trivial on .9 1 or Y I, 
and Xst = X, "Xt' Of course, Xs'X" and Xst are not trivial. 
(For these conventions see Ref. 2.) 

III. APPLICATIONS. I 

(1) For SO(3) and .9 1+, Proposition 2 in Sec. II (7) 

gives as symplectic homogeneous manifolds only the coad
joint orbits. because the stability subgroups Gf3 for these or
bits are connected. This is a result ofSouriau2 obtained with 
the aid of the momentum map. 

(2) For the study of non connected groups [0(3) • .9 1, 
and .9 1, we shall use the following general fact. Let 
G=GI X r G2 (here the homomorphism 7: G2-AutGI 
gives a semidirect product structure) and H = HI X r H 2, 
where HI and H2 are subgroups of GI and G2, respectively, 
such that 7(G2)HI CHI' Then the factor manifold G IH is 
canonically diffeomorphic to (GIIHI) X (G2IHz) with the 
action ofG: 

(g~ ,g~) (gIHI,gzHz) = (g~ 7(g~ )gIHI,g~gzHz)' (3.1) 

I 

(A) ForG= .9 1+ ,x=l. 

In our applications, G, = GO, Gz"",G IGo, and 
HI = Gf3 nGo. SoGIIHI is a coadjoint orbit of GO, and (3.1) 
becomes 

(3.2) 

where Adx is the action of G in @*. 
We list now, without providing explicit details of com

putation (much of the technique is essentially contained in 
Ref. 6), the homogeneous G-symplectic manifolds for the 
indicated groups and X factors. Zero-dimensional manifolds 
are omitted. 

( 3) We discuss the rotation group (and inversion). 
(A) For G = SO(3), X= 1, we have M = SZ (the unit 

sphere in JR3); n = sX surface two-form on SZ, sEJR+; and 
the action of SO (3) is the natural one. There is only one 
symplectic type. 

Remark: All the homogeneous SU(2)-symplectic man
ifolds are obtained from the ones above by naturally lifting 
the action. 

(B) For G = 0(3). X= I, we have two outcomes. 
(I) M = SZ; n as in A; and SO(3) acts as in A and Is 

(spatial inversion) acts trivially. 
(2) M = S Z X {I, - I}; n as in A on each sphere; and 

SO(3) acts as in A on each sphere and I, (x,€) = (x, - E). 

There are two symplectic types 

(e) For G = 0(3), X(R) = det R, for REO(3), we 
have two outcomes. 

(1) M = S2; n as in A; and 0(3) acts naturally on S2. 
(2) M = SZX {I, - I}; n as in A on each sphere; and 

SO (3) acts as in A on each sphere and 
Is (x,€) = ( - X. - E). 

There are two symplectic types. 

(4) For the Poincare group, all the homogeneous sym
plectic manifolds can be constructed from some coadjoint 
.9 1+ orbits in (Lie.9 1+ ) * naturally identified with 
(A 2R4) + R4 with respect to the coadjoint action:6 

(Ad#(L,a»)(r,p) = (Lr + a 1\ LP,LP). (3.3) 

Here aER4, LE.!I'I+ , rEA2R4, PER4. The Minkowski 
bilinear form in R4 is 

(a,b) = aobo - alb, - azbz - a3b3 ; 

this induces a bilinear form in A zR4 so we have a natural 
bilinear symetric form in (Lie .9 T+ ). * 

The symplectic form on each orbit is given by (2.20). 

(1) M:!"o = {(r,p) IIIPW = mZ, sgn Po = 7], IIr I\PII = O}, mER+, 7] = ± 1. 
(2) M;;'., = {(r,p) I liP liZ = m2

, sgn Po = 7]. Ilr I\P liZ = mZsZ}, s,mER+, 7] = ± 1. 
(3) M; = {(r,p) I liP liZ = 0, sgn Po = 7], *(r I\P) = sp}, SER, 7] = ± I 

(here * is the Hodge operator); 

(4)M~'1={(r,P)IIIPllz=0,sgnPo=7], IlrI\Pll z =pZ},pER+.7]= ± I; 
(5) M ;",p = {(r,p) IIIPW = - m2

, IJr I\P liZ = mZpZ}, m,pER+; 
(6) M~" = {(CP) I liP liZ = - mZ, IIr I\P liZ = - m2sZ, sgn (*(r I\P»)o = 7]}, mER+, sER, 7] = ± I; 
(7) MA,.A. = {(CO) IlIrliz = AI,!r 1\ r = AzXvoi. elem. in R4}. 
In (1) and (4), we have a single symplectic type. In (2), the symplectic type is given by sl m; in (3), we have three 
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symplectic types indexed by sgn(s1]); in (5), the symplectic type is given by plm; in (6), by sim. In (7), for IL,#O, the 
symplectic type is indexed by 1L211L ~; for IL, = 0, there are three more types (1L2> 0, 1L2 = 0, 1L2 < 0). 

Remark: It is usually assumed2 that only the first three cases have a direct physical meaning. On the other hand, if M is a 
homogeneous G-symplectic manifold, up to a X factor, it is easy to see that every connected component of M is a homogeneous 
GO-symplectic manifold up to a XIG ° factor. So in the following we list for the nonconnected groups only those manifolds that 
have at least one physical component. Moreover, we shall see that in the cases above all the components are physical. 

(B) ForG= 9 1 ,X==I, 
(1) M ;!,.O with the action of the inversion given also by (3.3); 

(2) M;!,.s with the same action as above, sER+; 
(3) M ;!',o X {I, - l} with the action of 9 1+ as in (3.3) on each component and <PI, (X,E) = (Ad f, (x), - E); 

(4) M;!"s X{I, - l} as above; 
(5) M"jUM~s' sER+, 1] = ± 1 with the coadjoint action of 9 1; 
(6) M d with the coadjoint action of 9 1 ; 
( 7) M d X {1, - l} as in (3) above. 
Remarks: (a) In the cases (B) ( 1 ), (B) (2), and (B) ( 6) the manifolds are connected. A similar analysis for 9 + and 9' 

shows that there are no connected manifolds. 
(b) The symplectic types can be found as in (A), 
(C) ForG= 9,X==I, 
(1) M,;;,o UM ;;;.0,9 acting as in (3.3); 

(2) M ';;'s UM ;;;,s acting as in (3.3); 
( 3) (M ';;'0 U M ;;;.0 ) X { 1, - l}, Is acting as in (A) (3); 
( 4) (M';;'s U M ;;;,s ) X {I, - l} as above; 
(5) M s+ UM s- UM ~s UM :::s' sER+, 9 acting as in (3.3); 
(6) (M 0+ UM 0-),9 acting as in (3.3); 
(7) (M 0+ UM 0-) X{I, -l}, as in (3) above. 
Remarks: (a) All the manifolds are disconnected. 
(b) These results were obtained in Ref. 2 using the existence of the momentum map for 9 [as a consequence of H ' 

(Lie 9,R) = 0]. 
(c) The symplectic types can be analyzed as in (A). 
(D) For G= 9,X = X" 
(1) M;!"o; 

(2) M;!"o X{I, -l} with the action CP(L,a) (X,E) = «(Adx'(L,a»)(x),xs (L)E); 

(3) M;!"o X {I, - l} with the action CP(L,a) (X,E) = «(Adx'(L,a) )(x),Xt (L)E); 

(4) M;!"o X{I, -l} with the action CP(L,a) (X,E) = «(Adx'(L,a»)(x)'Xst (L)E); 

(5) M;!"o X {I, - l} X {I, - l} with the action CP(L,a) (X,E,E') = ((Adx'(L,a))(x),xs (L)E,Xt (L)E'); 
(6)-(10) the same possibilities as in (1)-(5) withM;!"s (sER+) insteadofM;!"o;' 

(11) M"jUM~s with the Adx, action of 9, sER+; 

(12) (M"jUM~ s) X {I, - l} with the action CP(L,a) (X,E) = «Adx'(L,a»(x), Xt (L)E); 

(13 )-(17) the same as in (1 )-( 5) above but with M d instead of M ;!',O' 
Remarks: (a) In the cases G = 9 and X = Xs or Xst the analysis is similar and shows that connected manifolds do not 

appear. 
(b) The possibilities (1) and (6) above also appear in Ref. 2, without a proof that these are the only connected manifolds 

for mER+. 

IV. APPLICATIONS. II. THE GALILEI GROUP 
As in Ref. 6 we identify [11 with the set of 5 X 5 matrices of the form 

v 

o 
Now [11+ is defined by RESO (3) and the temporal inversion is 

/,=G ~1 ~) 
We study only the case X = O. For this group there are no essential simplifications for the use of Theorem 1. Using remark 

(b) in Sec, II (6), it follows that all orbits in the two cocycle space are regular. 
(A) For G = [1 1+ ,X == 1, Z 2 (Lie [11+ ,R) is isomorphic to R X A 2R3 X R3 X R3 with the following action of [1 '+ : 
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Ad~.u.r.a) [m,I,G,P] = [m,RI + a A (RP + mv) + RGAv,R(G - rP) + mea - rV),RP + mv]. 

The corresponding [§ t+ orbits are of five types: 
(a) &' m.s =={[m,l,G,P] IlIml- GAPII = ms}, mER·, sER+ U{O}; 
(b) & k.s=={[O,l,G,P] IIIPII = k, GAP= 0, I AP= ksxvol. elem. in R3}, kER+, sER; 
(c) &".k·=={[O,l,G,P]IIIPII =k, IIGAPII =kk'},k,k'ER+; 
(d) &'''.r =={[O,I,G,O] IIiG II = k, I A G = krxvol. elem. in R3}, kER+, rER; 
(e) &'s=={[O,l,O,O] I IIIII =s},sER+U{O}. 

(4.1 ) 

We remark that for orbits of the same type [(a)-(e)] Go-IHo- are the same (up to isomorphism). We also note that in 
cases (b )-( e), the homogeneous f1 t+ -symplectic manifolds are coadjoint orbits with the symplectic form given by (2.20) or 
manifolds covered by them. (Lie [§ t+ ). is isomorphic to A 2R3 X R3 X R3 X R3 with the coadjoint action: 

Ad~.u.r.a)(l,G,E,P) = (RI +aARP +RGAv,R(G-rP),E + (RP,v),RP). (4.2) 

We now list the corresponding discrete subgroups and homogeneous symplectic manifolds. 
(a) Go-IHo-~{l}. 
( I) For s = 0; M m = R3 X R3; the symplectic form is 

OMm = dqi A d/, 

and the action of [§ t+ is 

<P~';.~.r.a) (q,p) = (Rq + a - r( 11m) (Rp + mv),Rp + mv). (4.3) 

(2) For sER+, Mm.s = Mm XS2; OM
m

., = OMm + sxsurface two-form onS 2; and the action of f1 t+ is given by (4.3) on 
the first entry and by rotation on the second one. 

(b) Go-IHo- ~R. The discrete subgroups ofR are indexed by YER+ U{O} and are of the form yZ. 
(1) For Y = 0 (a coadjoint orbit), 

M k.s = {(l,G,E,P) I liP II = k, GAP = 0, lAP = ksxvol. elem. in R3}. 

(2) For YER+, let l act on Mk •s by 

n,(l,G,E,P)f--->o(l,G,E + nky,P). 

Then the manifold is M k.s.r = Mk.Jl. The action (4.2) of f1 t+ and the symplectic form (2.20) factorize to M k.s.r . 
(c) G,JHo- =R. The discrete subgroups are those of (b) above 
(1) For Y = 0 (a coadjoint orbit), 

M".k·=={(l,G,E,P)IIIPII =k', IIGAPII =kk'}, 

(2) For YER+, the manifold is also M ".k·.r ==M k.k .fl, where l acts as in (4.4). 
(d) Go-IHo-={1} (a coadjoint orbit). We have 

M ".r == {(l,G,O,O) I II Gil = k, I A G = krX vol. elem. in R3}. 

(e) Go-lHa ={l} (a coadjoint orbit). We have 

Ms =={(l,0,0,D) IIIIII = s}. 

(4.4) 

Remark: As for the Poincare group, only the first three cases are considered with physical meaning.2 We discuss the 
inversions in the spirit of the remark in Sec. II (4) (A). 

(B) G = f1 t ,X == 1. The f1 t orbits in Z 2 (Lie f1 t , R) are &' m.s' & k.O' & k.k·' &' k.O' &' s' and & k.s U & k. _ s' &' k.s U &' k. _ s 
(for sER+). 

(a) For &' m." GaIHo-=l2' 
(1) Mm from (A) with (4.3) valid for all f1 t ; 
(2) M m •s with the same action as in (A) (2) above, sER+; 
(3) Mm X{I, - l} constructed as in Sec. III (3) (B) (2); 

(4) Mms x{1, -l} as above, sER+. 
(b) Fo; & k s U & k _ s (sER+), G ,.I H a = R, where the discrete subgroups are yl: 
(t) Y = 0, Mk •s UMk • _ s with the coadjoint action; 
(2) YER+ Mk •s.r UMk • _ s.r with the factorized action. 
(c) For & k.O' GalHu =l2XR, the discrete subgroups ofl2XR are {l}Xyl, l2XyZ, 

(l,yZ) U ( - l,yl2 + yZ), for YER+ U{O}. 

(t) For Y = 0, (i) MkO with the coadjoint action; and (ii) MkO X {t, - I} constructed as in Sec. III (4) (B) (3). 
(2) For YER+, (i) M~.o.r with the factorized action; (ii) Mk •o:r X {t, - l} with the factorized action; and (iii) Mk •o.r 

with the action 

<{i(R.u.r.a)(/,G,E(modky),P) = (RI +aARP +RGAv,R(G-rP), E + (RP,v) + (kyI2)(modky),RP). (4.5) 
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Remark: In the cases (A) and (B) above the equivalence classes in /7t"u are formed by a single element. 
(C) G = ~ ,X= 1. The orbits inZ 2 (Lie ~,R) are & m,s U & -m,s (for mER+), &' k,O' &'k,k" &k,O' &s, and e\,s Ul~\,_s' 

&k,sU&k,-s (forsER+), 
(a) For &m,sU& -m,s' GuIHu"""''l..2, (1) MmX{l,-l}, mER+, ~r acts as in (B) (1) on each component and 

flJI,(X,E) = (x, - E); (2) Mm x{l, -l}X{l, -l}, mER+, ~r+ acts as in (A) (1) on each component and 
fIJI, (X,E,E') = (x, - E,E'), fIJI, (X,E,E') = (X,E, - E'), and (3), (4) the same as above with Mm,s instead of M m, for sER+, 

(b) For &' k,s U &' k, _ s' ~ ul/7t" u ""'" R X 1"'1..2 , where the homomorphism 7: '1..2 --> Aut R, which gives the semidirect product 
structure, is 7(E) = E Id. The discrete subgroups (one from each equivalence class in /7t"u) are y'lX 1" {l}, y'lX 1"'1..2 , for 
yeR+U{O}. 

(1) For y= 0, 
(i) Mk,s UMk, _ s with the coadjoint action; 
(ii) (Mk,sUMk,_s) X{l, -l} with the action flJg(X,E) = (Ad:(x), Xt(g)E). 
(2) For YER+, 
( i) M I4s, rUM 14 _ s, r with the factorized action; 
(ii) (Mk,s,r UMk, -s,r) X {I, - l} with the factorized action. 
(c) For &' k,O' GulHu ""'" (R X 1"'1..2 ) X '1..2 with 7 as in (b); the discrete subgroups (one from each equivalence class) are 

( y'l, 1 , 1) , ( y'I.., 1, 1 ) U ( y'l, 1, - 1), ( y'l.., 1 , 1) U (y'l, - 1, 1) , ( y'l, 1,1 ) U (y'l, - 1, - 1), 

( y'l.., 1, 1 ) U ( yl, 1, - 1) U (y'l, - 1, 1 ) U (y'l.., - 1, - 1) 

(for yeR+U{O}), 

( y'l.., 1, 1 ) U ( Y 12 + y'l, 1, - 1), ( y'l, 1, 1) U ( Y 12 + y'l, 1, - 1) U (y'l, - 1, 1) U ( Y 12 + y'l, - 1, - 1) 

(1) For y= 0, 
(i) MkO with the coadjoint action; 
(ii) M~,o x{l, -l} with the action flJg(X,E) = (Ad:(x), Xs(g)E); 
(iii) Mk,o X{l, -l} with the action flJg(X,E) = (Ad:(x), Xt(g)E); 
(iv) Mk,o X {I, - l} with the action flJg (X,E) = (Ad: (x), Xst (g) E); 
(v) Mk,o X {I, - l} X {l, - l} with the action flJg (X,E,E') = (Ad: (x), Xs (g)E, Xt (g)E'), 
(2) For yER+, 
(i)-(v) the same as above with Mk,o,r instead of Mk,o and the corresponding factorized actions; 
(vi) Mk,o,r with the action of ~ r given by (4,5) and fIJI, (/,G,E(mod ky),P) = (I, - G, - E(mod ky),P); 
( vii) M k,O, r X {l, - l} constructed from (vi) as in (1) (ii). 
(D) G = ~,X = X t· The orbits in Z 2 (Lie ~ ,R) are & m,s' &' k,O' &' k,k" & k,O' & so and &' k,s U &' k, _ s' & k,s U & k, _ s (for 

sER+ ). 
(a) For & m,s' GuIHu """''l.. 2 X'l.. 2, 

(1) Mm with the action of ~ T given by (4.3) and fIJ J,m) (q,p) = (q, - p); 

(2) Mm X{l, -l} with the action flJg(X,E) = (¢~m)(x), Xs(g)E); 
(3) Mm X {l, - l} with the action flJg (X,E) = (¢~m) (x), Xt (g)E); 
(4) Mm X{l, -l} with the action flJg(X,E) = (¢~m)(x), Xst(g)E); 
(5) Mm X {I, - l} with the action flJg (X,E,E') = (¢~m) (x), Xs (g)E, Xt (g)E'); 
(6)-( 10) the same possibilities as in (1)-(5) with Mm,s instead of M m, sER+. 
(b) For &' k,s U &' k, -s' Gal Ha """,'1..2 X R, sER+, the discrete subgroups are those of (B) (c). 
(1) For y= 0, 

(i) MksUMk -s with the AdX
, action of ~; 

(ii) (.M k,s U M k, _ s> X {l, - l} constructed as in (3) above. 
(2) For YER+, 
(i) M 14s,r UMI4-s,r; 
(ii) (Mk,s,r UMk, _ s,r) X {I, - I}; 

with the factorized actions, 

(c) For 1J k.s' GalHa ""'" (R X 1"'1..2 ) X '1..2 with 7 as before, the discrete subgroups are those of (C) (c). 
(1) For y = 0, (i)-(iv) the same possibilities as (1 )-(5) above with Mk,o and AdX

, instead of Mm and¢(m) ,respectively. 
(2) For YER+, (i)-(iv) the same possibilities as above, only with the factorized actions; (vi) Mk,o,r with the action of ~ T 

given by (4.5) and 

fIJI, (l,G,E(mod ky),P) = ( -1,G,E(mod ky), - P); 

( vii) M k,O, r X { 1, - l} constructed from above as in (ii). 
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v. CONCLUSION 

In this paper, using the general classification theorem 
(Theorem 1 in Sec. II), we have succeeded in completely 
cl~ssifying the homogeneous G-symplectic manifolds for an 
arbitrary X factor and/or nonconnected symmetry groups. 
This includes the important case of mixed symplectic and 
antisymplectic symmetries used to describe inversions. Also, 
we do not need the hypothesis of the existence of the momen
tum map which, for instance, permits a clearcut analysis of 
the Galilei group. This analysis shows that a complete list of 
homogeneous Galilean symplectic manifolds includes, be
sides those already known in the literature,5.6 some new 
ones, corresponding to zero mass, covered by coadjoint or
bits, and not having a momentum map. 

For the physical interpretation it is desirable to investi
gate the existence of an evolution space with an associated 
extended configuration space, as in Refs. 2 and 6. This will be 
done elsewhere. 

It will be profitable to find groups for which x:;;fO can 
occur and that are related to interesting physical systems. 

Comparing the lists in Sec. IV (3) with the well known 
results in quantum mechanics,8-10 we remark that "dou-
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bling" and "quadrupling" phenomena appear that do not 
have a quantum counterpart, e.g., B(2), (F)(2) in Sec. III. 
The same can be said for the new possibilities for the Galilei 
group. It is worthwhile to investigate in detail these prob
lems using the ideas of geometric quantization. 
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A number of new results involving the functions that determine the emission, dispersion, and 
absorption of waves in nonrelativistic and weakly relativistic plasmas are presented. These 
results comprise series, integrals, recursion relations, symmetry properties, interrelations, 
approximations, and connections with standard transcendental functions. 

I. INTRODUCTION 

The dielectric properties of a plasma determine the am
plification, dispersion, absorption, and mode conversion of 
the waves it supports. These properties can be expressed ana
lytically in terms of plasma disperison functions (PDF's), 
which arise from integrals over the momentum distribution 
function of the plasma, and also relate to the emission of 
waves. The most commonly considered PDF's are those of 
thermal plasmas, which include the nonrelativistic Z func
tion 1 and the weakly relativistic PDF's discussed in Refs. 2 
and 3. These and closely related functions also occur in the 
quantum electrodynamics of strongly magnetized plasmas, 
and in problems of acoustics 1 and heat conduction.4 (For 
more extensive references of these applications, see Ref. 2.) 

The purpose of this work is to present a number of new 
properties of the PDF's of thermal plasmas, and other relat
ed PDF's, thereby expanding the range of mathematical 
tools available when investigating the dispersion, absorp
tion, and interaction of waves in plasmas. Section II is con
cerned with the nonrelativistic PDF's that occur in expres
sions for the dielectric properties of unmagnetized plasmas. 
The results presented are relevant to approximation of the 
dielectric properties of Maxwellian plasmas and to their cal
culation for plasmas in which superthermal particles are 
present.s Moreover, these dispersion functions occur in or
thogonal-polynomial decompositions of the dielectric prop
erties of arbitrary unmagnetized plasmas, as described in a 
related paper in which these results are applied.6 In Sec. III, 
we discuss new properties and approximations of the PDF's 
of weakly relativistic magnetized plasmas.2,3 These func
tions are used in determining the properties of waves in hot 
magnetized plasmas. In many cases, a barrier to analytic, 
semiquantitative, and numerical work on such wave prob
lems is the general paucity of known properties of the disper
sion functions. In this context, the results obtained here pro
vide new properties and approximations of use in analytical 
and numerical studies, as well as tests of the accuracy of 
numerical calculations. Several new integral relationships 
involving standard transcendental function are also ob
tained, which have wider applicability, in general. 

II. NONRELATIVISTIC PDF'S 

The Z function and its first derivative have long been 
used in describing dispersion in thermal plasmas, 1 while 
higher derivatives are employed in a companion paper in 
which the dielectric properties of more general nonrelativis-

tic plasmas are expanded via Hermite polynomials. b These 
functions also arise in the approximation of weakly relativis
tic PDF's2,3,7 and in problems of acoustics. 1 Here, we first 
consider a class of PDF's consisting of the standard PDF Z 
for a nonrelativistic thermal plasma and its derivatives zen) . 

An orthogonal-polynomial expansion of the dielectric 
properties of arbitrary plasmas is developed in a companion 
paper.6 One realization of this method, via Hermite polyno
mials, motivates consideration of the derivative dispersion 
functions zen) here, in order to provide the necessary math
ematical basis for this work in Ref. 6. The function zen) (u) 
may be defined by 

Z (n) (u) = i 1'''' dt(it)" exp(iut - ! t 2). (1) 

for all complex u. The Z function is also related to the com
plementary error function byl 

Z(u) = i17'1/2e- u' erfc( - iu). 

Use of this expression, together with Eq. 7.2.9 of Ref. 8, 
implies that zen) (u) is related to the nth integral of the com
plementary error function r erfc( - iu) by the following 
formula: 

Z (n) (u) = i17'1/2(2i) nn!e - u'r erfc( - iu). (2) 

Repeated application of the basic formula 1 

Z(t)(u) = - 2 - 2uZ(u), (3) 

leads to the recursion relation 

z(n+\)(u) = -2uz(n)(u) -2nz(n-I)(u), (4) 

for n;d. Substitution of the recursion relation Hn + 1 (x) 
= 2xHn (x) - 2nHn_ 1 (x) for Hermite polynomials into 

the integral 

f:oo dX(-l):~~)e-X' (5a) 

(which occurs in the orthogonal-polynomial decomposition 
of Ref. 6) shows that integrals of this form also satisfy the 
recursion relation (4) with respect to n. In the case n = 0, 
Eq. (5a) definesZ(u) forIm u>O (see Ref. 1) and, hence, 
the following alternative definition of zen) can be stated: 

1 f
oo (l)nH (x)e- X

' 

z(n)(u) = 17'1/2 _ 00 dx x ~ u (5b) 

Equation (5b) generalizes the corresponding result for Z 
and is valid for 1m u > 0; whereas analytic continuation of 
(5b) is used for 1m u.;;;O. Using the above expressions, one 
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can show that the functions zen) satisfy the symmetry rela
tions 

z(n)(U) = (_l)n+l[z(n)( -u*)]*, 

z(n)(u*) = Z (n)(u)* 

+2i1TI/2 ( -l)n[e- U'Hn(u)]*, 

(6) 

(7) 

which generalize the analogous results for Z (u), and can be 
most easily proved directly by induction. 

Asymptotic series and power series for Z have been giv
en in Refs. I and 2, from which it is straightforward to obtain 
the corresponding series for Zen) . Hence we omit the results 
here, but note that the definition ( 1) enables one to evaluate 
the following infinite series involving Zen) (u): 

(8) 

00 

I 
n=O u 

(9) 

In applications to analysis of dispersion in arbitrary plasmas, 
sequences of zen) (u) are needed (Ref. 6). Equations (8) 
and (9) may be used to normalize these sequences when 
downward recursion via the functions r erfc is used [up
ward recursion using Eq. (6) is unstable for large u, because 
of the effects of cancellation]. 4.6.9 This removes the need to 
calculate Z spearately. Physically, the cases of interest in
volve values of u near the real axis (corresponding to weakly 
damped waves). In such cases (8) is not an alternating series 
for large u, where alternation would lead to numerical can
cellation problems because Zen) alternates in sign with n. 

Likewise, Eq. (9) ceases to oscillate as the imaginary axis is 
approached. 

Recent work has shown that the dispersion of general
ized-Lorentzian plasmas can be used to approximate that of 
Maxwellian plasmas in analytic work, in order to speed nu
merical calculations, and to explore the sensitivity of the 
physical wave properties to the high-velocity tail of the dis
tribution.5 Lorentzian plasmas are also of importance in 
their own right, because they can be used to model the pow
er-law tails produced by many plasma heating and accelera
tion mechanisms. For example, this problem is of current 
interest in understanding the dispersion of magnetohydro
dynamic waves in the laboratory and space, where superth
ermal tails are commonplace (Refs. 10-12). 

Approximation of the PDF Z by the PDF's Ln of a 
plasma with a generalized-Lorentzian velocity distribution 
may be accomplished if we make the definition 

Ln (u,a) = J"" dx 

-00 (xl+a2)n(x_u) 

[J oo d ] - I 

X _ 00 (X2 +Xal)n 
( 10) 

and note the identity exp( - Xl) = limn _ 00 (1 + x2ln) - n. 

We then have 

Z(u) = lim Ln (u,n l/l ), ( 11 ) 
n_ 00 

which leads to a set of approximations of the form 
Z(u) -:::::Ln (u,nlll) for finite n. More generally, the param-
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eter a is the characteristic dimensionless velocity above 
which the near-Maxwellian core of the distribution passes 
over into the power-law tail. 

In Ref. 5 it was shown that the functions Ln satisfy the 
equation 

Ln (u,a) = [1T1/2a2n-lr(n)/r(n -!)]In (u,a), (12) 

with 

-1 
II (u,a) = , 

a(u + ia) 
( 13a) 

(
-1 a) In+1 (u,a) = ---- In (u,a). 
2an aa 

(13b) 

Alternatively, Ln (u,a) can be written in the form5 

I/lr() n-I 
L( ) - 17' n "d(n)(')jn-I-j n u,a - ~ J la u , r (n - !)( u + ia) n j = 0 

(14) 

where the coefficients d ?) satisfy 

kto (- l)kdg)+ I-k (:) = 0, O<.p<n - 1; (15a) 

= ( - 1 )P, P = n - 1. 
(I5b) 

Ill. WEAKLY RELATIVISTIC PDF'S 

The PDF's appropriate to weakly relativistic magne
tized thermal plasmas are the Shkarofsky functions, which 
are defined2 

Yq(z,a) = -i (00 dt exp[izt-~]. (16) Jo (1 - it)q 1 - it 

The closely related Dnestrovskii Functions Fq (z) satisfy 
Fq (z) = Yq (z,O) and have the alternative definition2 

F (z) = __ du u e 1 l"" q- I - U 

q r(q) 0 u + Z 
(17) 

These functions are the standard dispersion functions for 
thermal magnetized plasmas, and comprise the appropriate 
weakly relativistic generalizations of the Z function. A ma
jor barrier to the use ofthese functions in analytic work, and 
sometimes in computations, has been the general scarcity of 
analytic results bearing on their properties. The existing 
known properties of the Dnestrovskii and Shkarofsky func
tions have been discussed in Refs. 2 and 3. Here, we obtain 
several new results of interest in providing alternative expan
sion methods, tests of numerical calculations, analytically 
tractable approximations that preserve physical wave prop
erties of interest, and new relationships with standard tran
scendental functions. 

The Dnestrovskii functions of most interest in plasma 
physics are those of half-integer and integer order q. These 
functions can be written in terms of the PDF's zen) if we set 
u = X2 in (17) and expand the numerator of the integrand in 
Hermite polynomials. These steps yield the expansion [cf. 
Eq. (47) of Ref. 2] 
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with 

_ 1 J"" d 2q- IH ( -x'. Cn - n 1/2 X X n x)e , 
2 n!1T - "" 

= (- 1) r rc q) r (r + ~) F ( - r,q; ~ ; 1) , 
(2r)!1T 2 2 

n = 2r, 2q - 1 even; 

= (~r-+1;;~1T r(q+ ~) r(r+ ~) 

XF( -r,q+ ~; ~ ;1). 
n = 2r + 1,2q - 1 odd; 

= 0, otherwise; 

where r is an integer and F(a,b;c; 1) is a hypergeometric 
function of unit argument (Ref. 8, Eqs. 7.376.2 and 
7.376.3). 

When calculating the optical depth for cyclotron ab
sorption in plasmas, the integral 

J: 00 dz 1m Fq (z) = - 1T, (19a) 

is encountered. 13 The form (18a) is particularly convenient 
to demonstrate the related result 

(19b) 

which arises in mode-coupling problems in inhomogeneous 
plasmas, where Z corresponds to the distance along the tra
jectory of the coupled waves. The identity2 

"" ak 

,7q(z,a) =e- a L -Fq+k(z-a), (20) 
k=O k! 

implies that these results are also valid for ,7 q (z,a), pro
vided a is real. Futhermore, we note that (19a) and (19b) 
hold for the dispersion functions of Sec. II, with (19a) being 
related to the normalization of the velcoity distribution in 
the unmagnetized-plasma case.5 

In general, plasma dispersion properties involve singu
lar integrals over the distribution function, with the forms 
( 1 ), (10), and (17) providing specific examples of this prin
ciple. For general distributions, it would be computationally 
useful to obtain forms in which the singularity was either 
absent, or of a weaker form, but it is unclear whether this can 
be done. Here, we explore whether such forms can be ob
tained even in principle, using the specific example of the 
Shkarofsky functions, which arise from singular integrals 
over a weakly relativistic Maxwellian distribution. 

Equations (80) and (86) of Ref. 2 yield the following 
relation: 

C7 () 2 r"" d 2 + I - ' 
Y j+ 312 z,a = 1T1/2r(j + 1) Jo Y Y J e y-

XJ"" dx e-
x

' I . 
_ "" x 2 + y2 _ 2a l 2X + Z 

(21) 

If we treat X and y in (21) as the components of a three-
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dimensional vector parallel and perpendicular to some axis, 
respectively, and transform to spherical coordinates, we find 

q () 2 i""d 2'+2-u' 
.. .7 j + 3/2 z,a = 1/2' U U J e 

1T rcJ+l) 0 

JI (1 -IJ.2)j 
X du I' 

_ I Z + u2 - 2a l 2UJ.l 
(22) 

In the special case j = 0, (22) implies 

,7 () 1 1"" d - u' 3/2 z,a = 1/2 1/2 U ue 
1T a 0 

[ 
Z + u2 + 2a

l/2
u ] 

xln I' 
Z + u2 - 2a l 2U 

(23) 

where this integral involving the logarithm function does not 
appear to have been previously written down. More general
ly, a Legendre-polynomial expansion of (1 - J.l2)j in the J.l 

integrand yields 

,7 ()_ 2 ~ (j) 
j+ 312 z,a - 1/2 1/2r( . + 1) £.. C2r 

a 1T ] r=O 

X r"" duu2Hle-u'Q (z+u
2

) Jo 2r 2al/2u ' 

(24) 

where Qn is a Legendre function of the second kind and 
(Ref. 8, Eq. 8.14.16) 

Equation (24) provides a form of,7 q in which the singular
ity has been weakened from a pole to a logarithmic form, 
leading to the conclusion that a similar approach may be 
viable in more general cases. Additionally, (24) can be used 
to express the new integrals of Q 2r that appear on the right, 
in terms of the functions ,7 q' for whose evaluation algor
ithms exist. 

The Shkarofsky functions can be related to the modified 
Bessel functions by considering the identity (Ref. 14, Eq. 
3.471.9) 

i'" dx xv-I exp( - rx - ~) 

= 2(~r/2 K v [2(Pr)1/2], (26) 

which is valid for Re P > 0 and Re r> O. Comparison of this 
result with the expression [Ref. 2, Eq. (26)] 

,7q(z,a) = ez
-

2a LX> dtt -q exp(a - z)t + ~), 

yields 

2(P /r)V12K v [2(Pr) 1/2]£!+ y 

=,7I+v(P-r,-r) +,7I_v(r-P,-/1), (27) 

which can be extended to other values of P and r by analytic 
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continuation. Special cases of (27) include the following: 

(1TI/3) 1/2 = 73/Z(O, - /3) + 71/2(0, - /3), (28a) 

K o(2/3)eZ{3=7 1(O,-/3), (28b) 

r(q-1)e- a( -a)l-q=7q(a,a) -F2_ q( -a), 

(28c) 

where Eq. (28c) reproduces Eq. (45) of Ref. 2 after correc
tion of a typographical error in the earlier result. Substitu
tion of (20) into Eqs. (27) and (28a)-(28c) then enables a 
variety of infinite series to be evaluated in terms of the modi
fied Bessel functions K". In addition to their analytic appli
cations, results such as (27) and (28a)-(28c) are useful in 
checking the accuracy of numerical calculations of the dis
persion functions. 

In both analytic and numerical work it is often of inter
est to approximate the Shkarofsky functions in order to ob
tain semiquantitative results for the dispersion of specific 
types of waves (e.g., Bernstein waves). One such approxi
mation, in terms of derivatives of the Z function, was ob
tained by Maroli and Petrillo. 7 This approximation 
is obtained by writing the factor exp [ - at Z I 
(l-it)](l-it)-q in (16) as exp[iqt-qt 2/2-at 2 

+ S(t)], where S(t) is cubic in t, and then expanding 
exp[S(t)] in powers oft. UseofEq. (3) then yields 

7 q (z,a) = - hZ(t/J) - (3a + q) ~ Z(3)(t/J) 
3 

- (4a + q) ~Z(4)(t/J) 
4 

- (5a + q) ~ Z(S)( t/J) 
5 

- [3(6a + q) + 2(3a + q)2] £ Z(6)(t/J) 
18 

+ O(q-2,a- 2 ), (29) 

with h = (4a + 2q) -I/Z and t/J = (z + q)h; Eq. (29) in
cludes corrections to the result of Ref. 7. Comparison of the 
approximation (29) for 7 q (z,a) with that for Fq (z) shows 
that 7 q (z,a) ZFq+2a (z). 

One disadvantage of the approximation (29) is that it 
does not preserve the known property that 1m 7 q (z,a) = 0 
for z > a. This corresponds to the existence of weak damping 
of waves that should be strictly undamped, on physical 
grounds. Furthermore, the analytic properties of the Rie
mann surface of 7 q (z,a) are not retained intact (7 q has a 
multisheeted Riemann surface,2 whereas that of z(n) is sin
gle sheeted). Preservation of the form of the Riemann sur
face is essental in studies of the properties of wave modes that 
pass from one sheet to another lS

-
17 and, hence, it is of inter

est to find approximate forms of the dispersion functions 
that preserve this property. An alternative approximation, 
which does preserve the above properties, can be obtained 
from (16) by writing 

(1 - it)-q 

= (1-it)n-qexp[int-nt2/(l-it) + T(t)], (30) 

where n is an integer less than q. Retention of terms up to 
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order t 2 in T( t) yields 

7 q (z,a) z7q_ n (z + n,a + n), (31) 

which enables 7 q to be approximated in terms of a lower
order Shkarofsky function, while preserving the relevant 
analytic properties of the original function. Refinements of 
the approximation (31) may be obtained by expanding 
exp [ T( t)] in (30) to higher order in t; this approximation 
becomes more accurate but less advantageous as n is reduced 
and the order q - n of the approximating function increases. 
If n is nonintegral, the property 1m 7 q (z,a) = 0 for z > a is 
preserved, but the form of the Riemann surface is altered.2 

IV. SUMMARY 

We have presented a number of new results for the prop
erties of nonrelativistic and weakly relativistic PDF's. These 
results include series, integrals, recursion relations, symme
try properties, approximations, interrelation, and connec
tions with standard transcendental functions. Moreover, 
new integrals involving standard transcendental functions 
were also obtained. These results add significantly to the set 
of known properties ofthese PDF's, and are expected to be 
useful in both analytic and numerical work involving the 
dispersion and absorption of waves in plasmas. In particular, 
the results given here are relevant to systematic calculation 
of the dielectric properties of Maxwellian, generalized-Lor
entzian, and more general plasmas, evaluation of dispersion 
functions, cyclotron absorption and mode-coupling prob
lems, analytical approximation of dispersion functions in 
ways that preserve physical wave properties of interest, and 
the provision of tests of numerical calculations. 
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The discussion is limited to finite-dimensional parametrized systems with one constraint-the 
so-called super-Hamiltonian. The topology of the corresponding Hamiltonian vector field on 
the constraint hypersurface, in particular the question of the existence of cross sections, is 
studied. This has some bearing on the applicability of the reduction method, as well as on 
unitarity within the Dirac method, of canonical quantization [see the previous paper, Phys. 
Rev. D 34,1040 (1986)]. The main theorem of the present paper states that a cross section 
will exist if and only if the following conditions are both satisfied: (i) no dynamical trajectory 
is closed or almost closed; and (ii) the quotient set topology of the set of all dynamical 
trajectories is Hausdorff. Examples of systems that separately violate each of these conditions 
are given. 

I. INTRODUCTION AND SUMMARY 

Finite-dimensional parametrized systems, which will be 
studied in this paper, have some features in common with 
gravity theories. Quantization of these systems can, there
fore, give hints of how some typical problems of quantum 
gravity could be solved. 

With this motivation, canonical quantization of the par
ametrized systems has been investigated in Refs. 1 and 2. We 
have found that some special topological conditions on the 
system have to be satisfied if the reduction method is to work 
at all. It has also turned out that similar conditions are suffi
cient for the Dirac method to lead to unitary evolution. 

The topology in consideration is that of the set of all 
classical dynamical trajectories of the system: there must be 
a function T on the phase space of the system such that T 
increases along each trajectory. This T has been called "glo
bal phase time." We have also found that such a function will 
exist iff (i) there is a hypersurface that intersects each trajec
tory in exactly one point, and (ii) there are no pointlike or 
closed trajectories. 

In the present paper, we study these properties by rigor
ous mathematical methods. The tools we will use are bor
rowed from the theory of global structure of space-times (for 
a representative review, see Ref. 3), from the theory of differ
entiable manifolds as it is given, e.g., in Ref. 4, and from that 
of fiber bundles.5 

The program of the paper is as follows. First, we give a 
rigorous definition of finite-dimensional parametrized sys
tems with one constraint; then we describe some of their 
properties and summarize the most important of our results. 
In Sec. II, we give all proofs, lemmas, and auxiliary defini
tions step by step. Finally, in Sec. III the relevant properties 
of parametrized systems are illustrated by means of exam
ples. 

Let (9,.0) be a symplectic 2N-manifold endowed with 
the symplectic form .0 (see, e.g., Ref. 6). The action of a 
finite-dimensional parametrized system is given by 

s = i (0 - aJf' dt). 

Here, y is a curve in the space 9 X R I, 

y: (a,b) ...... 9 XRI, 

with components 

r: (a,b) ...... 9 

and 

id: (a,b) ...... Rl; 

o satisfies, locally, the equation 

.0 =d0; 

a is a function on r, 
a: (a,b) ...... RI; 

and Jf'is a function on 9 

Jf': 9 ...... R 1
; 

where a is called the Lagrange muliplier and Jf' the super
Hamiltonian. The dynamics of the system is invariant with 
respect to the change of the super-Hamiltonian: 

(1) 

where A is a positive differentiable function, A: 9 ...... (0, 00 ), 

with open domain containing all zero points of Jf'. Let us 
denote the corresponding class of super-Hamiltonians by 
{Jf'}. 

The Euler-Lagrange equations that follow from the ac
tion S are, in a coordinate charge (<]t ,z), 

Z!'" = aX", J.l = 1, ... ,2N, 

Jf' = 0, 

(2) 

(3) 

where X" is the so-called super-Hamiltonian vector field de
fined by 

X" = .0"" JvJf'. 

The transformation (1) leads to the rescaling 

X" ...... AX I' 

of the super-Hamiltonian vector field. 
We assume that (a) there is only one constraint Jf', and 

that (b) Jf'is differentiable everywhere on 9. Assumption 
(a) is a simplification justified solely as a first contact with 
the problem; multiplicity of constraints could possibly lead 
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to qualitatively new features. Assumption (b), however, 
does not seem to imply any important restriction of genera
lity. Even if there exist physical systems such as cosmologi
cal models, whose super-Hamiltonian is not differentiable 
everywhere (for example, at the points corresponding to the 
"big bang" or "big crunch"), we can always cut away these 
points from &1. 

We will call a point pe &1 criticalifEq. (3) is satisfied at 
p together with 

d£"=O. (4) 

Critical points are often present, see, e.g., examples I and 2 in 
Sec. III. The set of all noncritical points of &1 that satisfy Eq. 
(3) will, in this paper, be called the constraint hypersurface 
and will be denoted by r [usually, the full solution to (3) is 
called the constraint hypersurface]. Indeed r is a hypersur
face, at least locally, because Eq. (4) is violated at all points 
of r. However, if there are critical points, r need not be 
connected and/or closed. We will use the abbreviation n for 
the dimension of r (n = 2N - I). 

The antisymmetry of 0 implies that the super-Hamilto
nian vector field X is tangent to r at any point of r; X also 
designates the degenerate direction for the pullback Or of 0 
to r: 

X/tOr/tv = O. 

A (finite-dimensional) parametrized system is the triple 
( &1 ,0, {£"}). Working with a parametrized system, we will 
always choose a particular representative £" from the class 
{£"}. However, only those properties of £" that are invar
iant with respect to the transformation (I) are interesting. 

A maximal integral curve of X through a point pEr will 
be denoted by rp ' It is a map 

rp: J(p)--r, 

whereJ( p) is an open interval containing 0 and rp (0) = p. 
For a definition of a maximal integral curve of X, see Ref. 4, 
p. 135, from where we have taken most of our notation. 
Clearly J( p) depends on the choice of £". The set rp (J(p») 
is called an orbit through p. Orbits are independent of £". 

There is a formal relation between the parametrized and 
the Hamiltonian systems of the symplectic mechanics (see 
Ref. 6). A Hamiltonian system is a triple ( &1 ,0,£"), where 
£" is the energy. Dynamical trajectories of the Hamiltonian 
system lie on the surfaces £" = const, and possible values of 
the energy form some set, usually (0,00). Thus a parame
trized system can formally be considered as a class of Hamil
tonian systems for each of which only the value zero of ener
gy is allowed. The relation is formal, because the phase space 
of parametrized systems also contains the "time dimension." 

The topological problems of Hamiltonian systems (per
turbations around critical elements of phase portraits, stabil
ity) are rather different from those of parametrized systems: 
as the latter are a sort of gauge theory, the existence of cross 
sections through "gauge trajectories" is important. Thus our 
main problem will be, "under which conditions does a sys
tem of orbits admit a cross section." 

Definition 1: A cross section is a hypersurface ~ (with
out boundary) in r satisfying the following condition: for 

2489 J. Math. Phys., Vol. 30, No. 11, November 1989 

each per, there is a unique t(p)EJ(p) such that 

rp (t(p) )e~. 

This definition of the cross section is different from that used 
in Ref. 2. Here, we require that there be exactly one value of 
the parameter along any maximal integral curve at which the 
curve intersects the cross section ~. In Ref. 2, we have re
quired that the orbits intersect ~ in exactly one point of r. 
Thus the two notions are equivalent only if each rp is an 
injection, and this is true only if there are no pointlike or 
closed maximal integral curves (critical points or cycles of 
X). 

We are going to derive the existence of such cross sec
tions from properties that either have more direct physical 
meaning for the parametrized systems or are more immedi
ately recognizable. In Sec. II, we will find two such proper
ties: namely, that the parametrized system is strongly nonre
petitive and Hausdorff. Let us define these properties 

Definition 2: A point per is called strongly nonrepeti
tive if each neighborhood UU I of p in r has a subneighbor
hood UU 2 with the following property: for each qEUU 2, 

r q- t (rq(J(q»n UU 2) is a connected subsetofJ(q). A pointp 
is called repetitive if the orbit rp(J(p» is compact. The sys
tem (&1 ,0, {£"}) itself is called (strongly) nonrepetitive, if 
each point of r is (strongly) nonrepetitive. 

Thus a strongly nonrepetitive point in nonrepetitive; the 
property implies absence of closed (compact) orbits, but it is 
stronger than that: "almost closed"orbits are also excluded. 
The property is very similar to that of "strong causality" for 
space-times (cf. Ref. 3). It has, however, nothing to do with 
causal properties of space-times. If the dynamical trajector
ies of our system are to have the meaning of a classical space
time geometry, then all these space-times must be globally 
hyperbolic, 2 so they will necessarily not only be causal, but 
stably causal. The notion of a weakly repetitive (the con
verse of "strongly nonrepetitive") point is also related to 
that of a "nonwandering" or "recurrent" point of the topo
logical dynamics (see Ref. 6). We prefer another name, 
however, because we want to emphasize that the "return" 
includes a return of the same time, in the case of parame
trized systems. 

Examples of repetitive systems are given in Ref. 1. 
Among these, there are some cosmological models. The 
meaning of closed orbits in phase space is also illustrated in 
Ref. 1. Example 1 of Sec. III gives a parametrized ~ystem 
that is nonrepetitive but weakly repetitive and not Haus
dorff: all orbits are "almost closed." 

Definition 3: An equivalence relation "==" on r is de
fined as follows: let p==q if p and q lie at the same orbit. A 
system (&1 ,0, {£"}) is called Hausdorff if the quotient set 
topology with respect to the relation "==" is Hausdorff. 

We will denote the quotient space with its quotient set 
topology by g and the natural projection by 1T 
[1T(p) = rp(J(p», for any PEr]. Example 2 of Sec. III de
scribes a system that is strongly nonrepetitive but not Haus
dorff. In Ref. 1, some examples with closed orbits are given; 
these systems are, therefore, strongly nonrepetitive, but 
Hausdorff. Constructing an example of a nonrepetitive 
Hausdorff system that is weakly repetitive or proving that 
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each nonrepetitive Hausdorff system must be strongly non
repetitive remains an open problem. 

The main theorems of Sec. II imply that these two prop
erties are necessary and sufficient for the existence of cross 
sections. 

We will also show the following. If there is a cross sec
tion ~, then r is diffeomorphic to the set ~' X R 1, where ~' is 
a hypersurface in r, and the corresponding diffeo '11, 

'11: r -+~'XRl, 

maps each maximal integral curve on a set of the form 
(A XRl) forsomeAE~'. Hence the function T, 

T: r-+Rl, 

defined by 

T= 1Tz0'l1, 

where 1T2 is the natural projection, 

is a global phase time. The definition of the cross section as 
given in the present paper is so strong that the existence of a 
cross section implies that of a global time function. 

Finally, a simple criterion for nonexistence of a cross 
section will be given: Each cross section must be diffeomor
phic to the quotient manifold !!2 . Thus if !!2 has a bad topol
ogy, there will be no cross section. This criterion will be used 
in example 2. 

It is important to notice that all our proofs hold for any 
differentiable vector field X on any differentiable manifold 
r. However, the assumption that the pair (r,X) originates 
from a parametrized system cannot replace any of the prem
ises of the lemmas and theorems of Sec. II. This is, in fact, 
shown by the examples of Sec. III. 

Moreover, these examples seem to lead to some interest
ing conjectures about the general case. Thus the pathology in 
example 1 is entirely caused by identifications in the "time 
direction" y, say, of the phase space. Taking a covering 
space, i.e., introducing suitable angular coordinates, we can 
make the system strongly nonrepetitive. Such a method 
might be quite generally applicable. The rigorous procedure 
could be analogous to that given in Ref. 2 for removal of 
closed orbits. 

So far, we can say something about topology only after 
having solved the dynamical equations and investigated the 
totality of the integral curves. Example 2 seems to suggest 
that this may be superfluous in some cases and that a closer 
study of small neighborhoods of critical points or cycles may 
yield useful information about the topology of the system. 
Here, one could use the well-known results on Hamiltonian 
systems.6 

Nevertheless, I have to admit that the examples of Sec. 
III are somewhat artificial from the physical point of view. 
Their super-Hamiltonians are simpler than those of various 
cosmological models, and they are constructed just with the 
aim of producing a complicated topology. Thus one is tempt
ed to ask whether general relativity and the models derived 
from it can have a similar structure at all. However, in order 
to answer this question and to understand cosmological 
models, we have to develop methods that would not require 
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a general solution to their dynamical equations, for example, 
such as those mentioned above. 

II. LEMMAS AND PROOFS 

In this section, we will assume that r is connected. If it is 
not, then all claims of the present section hold only for com
ponents of r. This r is a paracompact manifold (that is, r is 
Hausdorff and has a countable atlas, see Ref. 4, p. 51). This 
follows from critical points forming a closed subset of &, 
and from Proposition 2.5.1 of Ref. 4. 

One of the important questions is that of the complete
ness of the vector field X on r, see Ref. 4, p. 138. We will call 
the super-Hamiltonian J¥' complete if the super-Hamilto
nian vector field X is complete on r. It turns out that one can 
often rescale the super-Hamiltonian so that it becomes com
plete. This is the content of the following lemma. 

Lemma 1: Let the system (& ,n, {J¥'}) be strongly non
repetitive. Then there is a super-Hamiltonian J¥'E{J¥'} that 
is complete. 

Proof Lemma 1 is analogous to the theorem ofCIarke7 

for null geodesic completeness on strongly causal space
times, and the corresponding proof can easily be adapted to 
our case. Clarke's proof is based on two lemmas that hold for 
space-times. We first show analogous lemmas for r, and 
then leave the (trivial) modification of Clarke's proof to the 
reader. 

Lemma 1.1: Let % be a compact subset of r. If y is a 
maximal integral curve of X for some Jlt"E{JIt"}, then there is 
a value to of its parameter t such that y( t) ($% for all t> to. 

Proof of Lemma 1.1: This is a simple modification of the 
proof of Proposition 6.4.7, p. 195 in Ref. 3. 

Lemma 1.2: Let X' be the super-Hamiltonian vector 
field on r corresponding to the super-Hamiltonian 
JIt'" = AJIt". Let yp and y; be integral curves of X and X', 
respectively, that both start at the same point pEr. Then 

y'(t) = y(f(t)), 

where 

f(t) = Ldr A(y(r»). 

Proof of Lemma 1.2: This lemma is evident. 
An important tool in many proofs of the present section 

will be the flow of the vector field X on the Hausdorff mani
fold r. A definition and some properties of the flow are de
scribed in Ref. 4, Sec. 8.3. We briefly reproduce the main 
points here in order to keep the paper self-contained. 

Let y p be the maximal integral curve through p and J (p ) 
be its domain. Let fi) denote the set of points (t,p) of R 1 X r 
such that tEJ(p). The function 

<1>: R 1 X r -+ r 

with an open domain fi) defined by 

(t,p) -+yp (t) 

ia called the flow of the vector field X (see Ref. 4, p. 139). 
The flow <I> of X is a differentiable function, because X is 

a differentiable vector field and r is Hausdorff (see Ref. 4, 
Proposition 8.3.1, p. 140). 

For each point PEr, there is a chart (~,x) around p 
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such that 

a x=-, 
ax" 

(5) 

on Uk, where XI, ... ,X" are the coordinate functions corre
sponding to the chart (see Ref. 4, Proposition 8.3.2, p. 140). 

Definition 4: The chart (Uk,x) is called an "X-adapted 
chart around p." 

If 3¥' is complete, then the super-Hamiltonian vector 
field X defines a one-dimensional diffeomorphism transfor
mation group {q?.} on r by 

q?,(p) = <I>(t,p), (6) 

for any t and p (see Ref. 4, example 13.1.1, p. 241). 
Another crucial notion will be that of a partial cross 

section L. These (partial) cross sections will playa role simi
lar to that of (partial) Cauchy hypersurfaces in space-times 
(see Ref. 3). 

Definition 5: Let L be a hypersurface in rand Y be a 
maximal integral curve of X with domain J. We say that Y 
intersects L once, if there is a unique tEI such that y(t)EL. 
Then L is called a partial cross section if each maximal inte
gral curve of X intersects L at most once. A partial cross 
section L is called regular if the vector field X is nowhere 
tangent to L. 

Thus the cross section of Definition 1 is a partial cross 
section intersected by all maximal integral curves of X. 
Clearly, if L is a (regular) cross section with respect to one 
super-Hamiltonian, then it is so with respect to any. 

Lemma 2: There is a partial cross section L through a 
point pEr if and only if p is strongly nonrepetitive. 

Proof: Let (Uk,x) be an X-adapted chart around p and 
let Lp be defined by 

Lp = {qEUk Ix"(q) = x"(p)}. (7) 

Then Lp is a hypersurface in Uk containingp. 
Suppose that p is strongly nonrepetitive, and let r be a 

neighborhood of p intersected by each maximal integral 
curve of X at most once. Then Lpn r is intersected by each 
such curve at most once, and so Lp n r is a partial cross 
section. 

Suppose that L is a partial cross section through p. As 
L n Uk is also a partial cross section, each maximal integral 
curve of X intersects L n Uk at most once. Define r as fol
lows: r consists of all points q of Uk such that 
Yq n L n Uk #0 and q lies in the component of Yq n Uk, which 
contains Yq nL. Then r is an open subset of Uk containing 
p. Each maximal integral curve of X intersects r at most 
once; thus p is strongly nonrepetitive. Q.E.D. 

Two partial cross sections define the following very use
ful mappings. Let L I and ~2 be two partial cross sections. We 
define the "(LI,L2 ) projection II," 

II: LI ..... L z, 

by 

II(p) = Yp{J(p»)nL2, 

for pEL I' For each pEL I' there is at most one [I (p), and the 
domain Uk EL I of [I is open, as .@ is open (.@ is the domain 
of the flow of X). Clearly [I has an inverse, defined on 
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[I ( Uk ), that is the (L2'~ I) projection. Furthermore, we de
fine the "(~1'~2) shift!." 

f ~I ..... RI, 

by 

/(p) = t([I(p»), 

where t(q) is the value of the parameter t along Yp at the 
point q (q must lie on yp)' The domain of/is Uk. 

We have the following transitivity properties ofprojec
tions and shifts. Let L I, L2' and L3 be three partial cross 
sections; TI 12' TI23, and TI 13 be the corresponding projections; 
and/I2J23' and};3 be the corresponding shifts. Then 

TIu = II230TI 12, /13 =/12 + /23°[112' 

Thus the functionhl' defined by 

hI = - };2oII i;1, 
is nothing but the (~2'~ I) shift. The projections and shifts 
between two partial cross sections have important differen
tiability properties described by Lemmas 3 and 5 to follow. 

Lemma 3: Let (Uk,x) be an X-adapted chart around 
pEr and let ~p be the hypersurface in OJ' defined by (7). Let 
L be a partial cross section through p. Then there is a neigh
borhood Vofp in ~p such that (i) Visa partial cross section, 
(ii) the (V,L) shift/is continuous on V,and (iii) the (V,~) 
projection TI is a continuous bijection and TI - I is differentia
ble on TI ( V). Moreover, the following three statements are 
equivalent to each other: (a) TI ( V) is a regular partial cross 
section, (b) lis differentiable on V, and (c) TI is a diffeo on 
V. 

Proof: We decompose the proof into several steps. 
(i) The existence of a partial cross-section VC~p fol

lows from Lemma 2 and its proof. If V is a partial cross 
section, then/ and n are well defined and TI must be a bijec
tion. 

(ii) We show that [I and / are continuous. For any 
qE~ p' we have 

/(q) = x"(TI(q») - x"(p); 

this follows from relation (5). Thus / is continuous if n is, 
because the function x" is differentiable on OJ' and so on L. 

Let qlEV, qz = n(ql), and let V2 be any neighborhood 
of q2 in L n OJ' . Then there is a neighborhood OJ' 2- of q2 in OJ' 
such that OJ' 2nL = V2 • This follows from ~ being a hyper
surface: the topology on L is the subset topology. 

We define q3ER" - I and q4ER I as follows: 

q3 = (X I (q2)'''''X" - l(q2»)' q4 = X"(q2)' 

Let D k(a,b) be an open disk in Rk with center a and radius 
b. Then there is 81 > 0 such that 

x- I(D n - I (q3,81) XD I (q4,81 »)C Uk. 

We define the map y: ~p ..... R" - I by 

y(q) = (xl(q), ... ,xn-I(q»), 

for any qELp. Theny is a diffeo with domain ~p. The range of 
y contains q3 and so it contains the whole disk D " - I (q3,lj2) 

around q3 for some positive 82 , Let 8 = min (81,82), and let a 
neighborhood VI of q2 in Vbe defined as follows: 

VI =y-l{D"-I(q3,8»). 
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We have 

II( VI) C V2 • 

Since V2 was arbitrary, we obtain that for any neighborhood 
V2 of q2 in ~ n CiJ.' , there is a neighborhood VI of q I in V such 
that II ( VI) C V2 , and II is continuous. 

(iii) II-I is even differentiable. Indeed, the maps i: 
~ -+ r and x: CiJ.' -+ Rn are differentiable. We define a differen
tiable map 1Tn _ I: Rn -+Rn - I by 

1T(xl, ... ,xn) = (xl, ... ,Xn- I ). 

We have 

II-I =y-Io1Tn_Ioxoi; 

thus II - I is differentiable. 
(iv) Suppose (a) is true. Then ~ n II ( V) is a submani

fold. Thus each point q2E~ nIl ( V) has a neighborhood CiJ.' 2 
in r such that ~ n CiJ.' 2 is defined by the equation 

(8) 

where u: Rn 
-+ R I is a differentiable function. The regularity 

of~ implies 

X!'~ = ~#O. 
ax!' axn 

Thus there is a neighborhood V2 of q2 in ~ such that Eq. (8) 
can be solved for xn in V 2: 

xn = F(xl, ... ,Xn- I ), 

and F is differentiable in V2 (cf. Ref. 4, p. 14). We have 
however, 

/=Foy .. 

Hence/is differentiable at II-I (q2)' and, as q2 was an arbi
trary point of ~ nIl ( V), statement (b) holds. 

(v) Suppose (b) is true. We define the map II': 
Rn

-
I -+~ by 

II'(x', ... ,xn- I) = x-Io(xl, ... ,xn - I,F(xl, ... ,xn -I»). 

Since F is differentiable, II' is differentiable and II~ maps the 
(n - 1) independent vectors~, a = 1, ... ,n - 1, at a point 
(Xl , ... ,xn - I )ERn 

- I into the vectors 

x; lo(~,F. (~») 

at x-Io(xl, ... ,xn-I,F(xl, ... ,xn-I»), which are also linearly 
independent. Thus II' is a diffeo. We have however, 

II = II'oy; 

thus II is a diffeo, and statement (c) holds. 
(vi) Suppose (c) is true. Then II - I is a diffeo with do

main II( V). Let qEII( V) and suppose that X(q) is tangen
tial to ~ at q. We have 

II-I = y-I o1Tn _ loxoi 

and 

(1Tn _ I °x).X = O. 

Thus 

II; I(X(q») = O. 

Then II - I cannot be a diffeo, and this is a contradic
tion. Q.E.D. 

Lemma 4: Let pEr and aEJ(p) [J(p) is the domain of 
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the maximal integral of X through p]. Then the map 

tpa: r -+ r , 
given by Eq. (6), is well-defined on a neighborhood CiJ.' of p; 
moreover, tpa is a diffeo on any open set on which it is well
defined. 

Proof: The domain g; of <1>: r X R 1-+ r is open. As the 
point (p,a) belongs to g;, there is a whole neighborhood r 
of (p,a) in g; on which <I> is well defined. Let 

CiJ.' = {qErj (q,a)Er}. 

Then CiJ.' is open and contains p. As <I> is well defined on 
CiJ.' X a, tp a is well defined on CiJ.'. 

Let tp a be well defined on an open set CiJ.' I' Then tp a is a 
composition of two differential maps on CiJ.' I, namely, 

tp a (p) = <I>(pJ(p) ), 

wheref CiJ.' -+R- I is given by 

/(p) = a, VPECiJ.'. 

Hence tpa is differentiable on CiJ.' I' Moreover, the map tp _ a' 
defined by Eq. (6), is clearly well defined on tpa (CiJ.' I) and 

tpa°tp-a = id 

on CiJ.' I' Thus tp a has an inverse on CiJ.' I' This inverse is differ
entiable for the same reason as tpa is. Then tpa is a dif
feo. Q.E.D. 

Lemma 5: Let ~I be a partial cross section, ~2 a hyper
surface, and f ~I -+ R I a function such that the map II: 
~ I -+ ~2' defined by 

II(p) = Ypif(p»), 

has a domain ~ I and a range ~2' 
Then ~2 is a partial cross section, II is an open and con

tinuous bijection, and/is continuous. 
Moreover, let ~I be regular. Then II-I is differentiable, 

and the following three statements are equivalent to each 
other: (a) ~2 is a regular partial cross section, (b) / is a 
differentiable, and (c) II is a diffeo. 

Proof: We decompose the proof into several steps. 
(i) We show that II is a bijection. Suppose that PE~I' 

and qE~1 such that II(p) = II(q). Then Yp nYq #0, so Yp 
intersects ~ I in p and q. However, ~ I is a partial cross sec
tion, so p = q, and II is a bijection. 

(ii) We show that ~2 is a partial cross section. Suppose 
that there are PE~2 and a> 0 such that q = Yp (a) lies on ~2' 
Then the points rand s at ~I' defined by 

r = II - I (p) , s = II - I (q ) , 

satisfy 

p = Yrif(r»), q = Ysif(s»). 

Hence r, s, p, and q all lie at the same maximal integral curve 
of X (say, Yr) and 

r = Yr (0), p = Yrif(r»), 

q = Yrif(r) + a), s = Yrif(r) + a - /(s»). 

Letp = q. Then r = s,j(r) =/(s), and s = y(a); thus ~I is 
not a partial cross section. Let p # q. Then Y r intersects ~ I in 
two different points, rand s, and ~I is not a partial cross 
section. This is a contradiction; thus ~2 must be a partial 
cross section. 
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(iii) Choose a point pEl: I and denote by qthepoint ofl:2 
defined by 

q = tpf(P) (p). 

According to Lemma 4, tpf(P) is well defined in a neighbor
hood UJt I of p and it is a diffeo in UJt I' Let us define l:' by 

l:' = tpf(p) (l:1 n UJt I)' 

Then l:' is a partial cross section by the same argument as l:2 
is. The map IT': l:1--+l:', defined by 

IT' = tpf(P) Il:,nul/" 

is, therefore, a diffeo with domain l:1 n UJt I and range l:'. 
Moreover, ifl:1 is a regular partial cross section, then l:' 

is. Indeed, tpf(P) is a diffeo that preserves X: 

tpf(P)·X=x. 

The various maps and their relations are illustrated in the 
following diagram: 

J,IT 
l:1--------~·~l:2 

f( p),IT' ~ t );,IT2 • 

l:' - l:q 
fl,IT I 

(IV) Let ( UJt 2'X) be an X-adapted coordinate neighbor
hood of q and l:q be the hypersurface in UJt 2 defined by an 
equation analogous to (7). Apply Lemma 3 to the pair l:q 
and l:'; let V be the corresponding neighborhood of q in 
l:q,J; the shift, and ITI the projection. Applying Lemma 3 to 
the pair l:q and l:2' we have the neighborhood Jr, the shift);, 
and the projection IT2. Let V = vn V, V' = IT I ( V), 
V2 = IT2( V), and VI = IT'-I (IT I (V». We have 

VI C UJt I nl: l , 

ITI v, = (IT20IT I- 10IT') I v, (9) 

where IT' is a diffeo, IT 1- I is differentiable, and IT2 is contin
uous. Thus ITI v, is continuous. Similarly, IT-I is continuous 
on VI because 

IT-IIIl(V,) = (IT,-l oIT loIT2-
1) III(V,» 

andf is continuous on VI' because 

f=xnoIT -xnoIT' +f(p)· 

(10) 

( 11) 

(V) Suppose that l:1 is regular. Then l:' is regular. Ap
plying Lemma 3 to the pair l:q and l:', we obtain thatf I is 
differentiable and IT I is a diffeo. Then IT -I is differentiable 
on IT( VI) because ofEq. (10). Finally, applying Lemma 3 
to the pair l:q and l:2' we obtain the last claim of Lemma 5, 
becauseofEqs. (9) and (11). Q.E.D. 

The shift and projection apparatus is now ready to help 
us in the proof the following two important theorems. 

Theorem 1: Let l: be a cross section. Then there is a 
regular cross section l:'. 

Proof' Each point p of l: has an X-adapted coordinate 
neighborhood (UJt p,xp). Let l:p be the hypersurface in UJt p 
defined by Eq. (7); l: p is a regular partial cross section for 
each p. Let Vp C ( UJt p n l:) be defined as follows: qE UJt p n l: 
lies in VP' ifYq intersects l:p. Then Vp is an open set contain
ing p, and the collection { Vp} of all {V/s} cover l:. 

l: is a regular submanifold of r with its induced differ-

2493 J. Math. Phys., Vol. 30, No. 11, November 1989 

entiable structure. We can define another differentiable 
structure on l: as follows. Consider a set Vp from {Vp} and 
the corresponding X-adapted chart ( UJt p ,x p ). The functions 
x; I VP""'x; - II Vp are well defined on Vp and they define a 
map 

hp:Vp--+Rn-1 

by 

hp (q) = (x; (q), ... ,x; - I (q»), 

for any qE Vp. This map is an injection: two different points, 
ql and q2 from VP' are mapped to two different (n - 1)
tuples, because the first (n - 1) coordinates of (UJt p,xp ) are 
constant along maximal integral curves of X, and each maxi
mal integral curve of X intersects Vp at most once. h p ( Vp ) is 
open in Rn -I, because l:p is. Thus (Vp,hp) is a chart. The 
collection {( Vp ,h p ) } of these charts forms an atlas for l:, if 
hp 0h q- I is a diffeo for any two charts (Vp,hp) and (Vq,hq) 
that intersect each other. Consider the corresponding charts, 
(UJt p,xp) and (UJt q'Xq). Let us define the diffeo up: 
l:p--+Rn-I by 

up (r) = (x; (r), ... ,x; - I (r»), (12) 

for each rEl: P' and similarly for u q' Then, we clearly have 

where ITp: Vp --+ l:p is the (Vp,l:p) projection. Let us calcu
late hpoh q-I: 

h oh - I - ~ oIT 0IT - 10 - I - oIT o~- I p q -Vp P q uq -up qp Vq , 

where ITqp is the (l:q,l:p) projection. According to Lemma 
5, ITqp is a diffeo, so hp oh q- I is a diffeo, and the collection 
{( Vp,hp)} is an atlas. 

The set l: with the atlas {~p ,h p )} is a differentiable 
manifold, which we denote by l:. The point set identity i: 
l: --+ f induces a bijection i between the manifolds l: and f 
that is a differentiable map; but its inverse i- I need not be 
differentiable. Indeed, the map hp = up oITp, considered as a 
map of the manifold l: into Rn - I , is differentiable, because 
l:p is; but its inverse need not be such, because IT; I need not 
be differentiable. 

The induced topological structure on f is, however, 
identical to that of the manifold l:, because ITp is an open and 
continuous bijection (Lemma 5). Thus f is a paracompact 
manifold. 

On f, there is a partition of unity {tpa} subordinate to 
the collection {Vp } (see Ref. 4, p. 51 ). Let the index set be..r 
and let the support of tpa be Ca. For each ad, we can 
choose Va from {Vp} such that Ca C Va' The collection 
{Va} still covers l:. Let the corresponding UJt P' xP ' l:p' and 
ITp be called UJt a' xa' l:a' and ITa. The collection offunc
tions {tp a} also defines a partition of unity on the manifold 
l:, because the maps tpa oj are still differentiable. Not each 
partition of unity {tp ~} on l: defines, however, a partition of 
unity on f. The collection {tpa} as a partition of unity on l: 
clearly has the following additional property: each function 

tpa oIT; I: l:a --+RI 

is differentiable. 
For each ad, we have the ( Va' l:a) shiftfa. Define a 
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function 

f !.-RI 

by 

f= !.afllJa· 

If all fa's are differentiable, then!. is regular according to 
Lemma 5. Thusfneed not be differentiable. However,fis a 
continuous function on !., and it defines a set !.' in r by 

!.' = {qErJ3pE!', Yp(f(p») = q} 

[fis the (!..!.') shift]. 
We show that!.' is a regular cross section. Consider the 

(!.a,!.') shiftfa· We have the diagram 

fa,IIa 
!. .~ 

f,II! ~~a 
!"~ ;;',11 

Thus 

f~ =foIIa-
1 

- faoIIa- 1 = (f - fa )oIIa-1 

= (~fpfllP - ~fafllp )oIIa-
1 

= (~ (fp - fa) . flip )oIIa- 1 

= I(fp -fa)oIIa-I)·(fllpoIIa-I). 
p 

We have the diagram 

so 

and 

~ fa,IIa ~ 
~ ·"';:"'a 

fp'IIp!~fap'IIap , 
!'p 

IIap = IIp oIl,; I. 

According to Lemma 5,fap is a differentiable function of!,a 
and IIap is a diffeo. Thus we obtain, carefully applying each 
map within its domain, 

f~ = Ifap'(fllpOIIr3I)oII~I/)' 
p 

It follows that f~ must be differentiable. Using Lemma 5 
once more, we find that Va is a regular partial cross section 
for each ad, so !.' is nowhere tangent to X (and, in particu
lar, !. is a hypersurface). Q.E.D. 

Theorem 2: Let there be a cross section !.. Then the 
system is strongly nonrepetitive. 

Proof: Let qEr be arbitrary. As !, is a cross section, there 
is aER 1 such that the point p defined by p = Y q ( - a) exists 
and satisfies 

PE!'. 

According to Lemma 4, fila is well defined in a neighborhood 
o of p and it is a diffeo in 0. Thus the set !,', defined by 

!,' = fila (!'n 0), 

is a hypersurface satisfying the conditions of Lemma 5 with 
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!.I =!.n 0, !,2 = !,', andf = a. Then !.' is a partial cross 
section. According to Lemma 2, q is strongly nonrepetitive. 

Q.E.D. 
Theorem 3: Let there be a regular cross section !'. Then 

there is a diffeo 

I{I: !.XRI-r 

such that I{I (p X R I) is an orbit for any fixed PE!, and 
1{I(!'xO) =!'. 

Proof: According to Theorem 2, the system is strongly 
nonrepetitive. Using Lemma 1. we construct a super-Hamil
tonian &'" that is complete. As X' is complete, its flow <t> 
defines a diffeomorphism transformation group {fIIJ on r. 
Define the map 

I{I: !'XRI-r 

by 

I{I (p,t) = <t> (t,p) , 

for PE!. and tER I. 
The domain of I{I is !. X R I, because X' is complete. Let 

pEr be arbitrary. Then there is a unique tERI such that 

fII - t (p )E!" 

because !, is a cross section. Let q = fII _ t (p). Then 
l{I(q,t) = p. Thus I{I has an inverse whose domain is r, and I{I 
is a bijection. Furthermore, I{I is differentiable, because it is a 
composition of differentiable maps. 

At any point (p,t) of!.XRI, we can construct a frame of 
independent tangent vectors as follows. Let el, ...• en _ 1 be a 
set of independent tangent vectors to !. at a point p of !.. 
Then there is a unique (n - 1 )-tuple el,···;en _ 1 of linearly 
independent tangent vectors at (p,t) satisfying 

'lT1, (e;) = e;, 'lT2' (e;) = 0, 

where 'lT 1: !'XRI_!. and 'lT2 : !'XRI_RI are the natural 
projections. This means that el, ... ,en _ 1 are tangent to the 
hypersurface consisting of all points PE!, X R 1 that satisfy 
'lT2 (p) = t. Let us denote by en the vector in T(!' X R I) tan
gent to the curve (p,A) in !. X R I, AER I, where p is a fixed 
point of !.. The vectors e1, ... ,en form a linear frame at the 
point (p,t). The map I{I, maps en to X' and el, ... ,en to 
flit' (el),···,fllt' (en_I)' Then I{I will be a diffeomorphism, if 
the vectors flit' (e l ) , ... ,fllt' (en _ 1 ) ,X' form a linear frame at 
the point flit (p). However this must be the case if!. is a 
regular cross section. Q.E.D. 

Now, we are prepared to study the properties of the 
quotient space g. Let us assume that the system is strongly 
nonrepetitive. Then, the following notation will be useful. 
For any point PEr, choose a fixed X-adapted chart (~ p,xp)' 
As the system is strongly nonrepetitive, p has a neighbor
hood 0 p C ~ p that is intersected by each maximal integral 
curve of X at most once. Then ( 0 p,x p ) is another X-adapted 
chart around p, and the hypersurface !. p defined by Eq. (7) 
is intersected by each maximal integral curve of X at most 
once. The map 

Pp:!.p - g, 

defined by 

Peter Hajicek 2494 



                                                                                                                                    

must, therefore, be an injection with domain ~p; let us de
note its range by Wp. The collection {Wp } forms an open 
covering of g, which will be used in various constructions. 

First, we construct a differentiable structure on g. For 
this, we need the map (Tp: ~p -+lRn - I, defined by Eq. (12) for 
any qE~p. Clearly (Tp is a diffeo with domain ~p and (Tp (~p) 
is an open set in lRn - I . 

Lemma 6: Let the system be strongly nonrepetitive. 
Then { Wp ,(Tp 0p; I} is an atlas on g that defines the differ
entiable structure of the quotient manifold on g . 

Proof: Let us introduce the abbreviation 

hp = (TpOp;l. 

Clearly hp is an injection with domain Wp and a range 
(Tp (~p) that is an open set. Thus (Wp,hp ) is an (n - 1)
dimensional chart around 11"(p). 

The map 11"1.1/ p with respect to the coordinates xp and hp 

is given by 

hp ° 11"OX p (x!, ... ,x;) = (x!, ... ,x; - I). 

Thus hp ° 11"OX p Ixp 
(CZ! p) is a differentiable map of rank n - 1. 

If {( Wp ,h p )} form a chart on g, then 11" will be a submersion 
and the differentiable structure will be that of a quotient 
manifold (see Ref. 4, p. 93). 

We must show that the transformation hpoh q-I between 
any two charts (Wp,hp ) and (Wq,h q ) is a diffeo on 
hq(WpnWq ). We have 

Wq =Pq(~q), Wp =Pp(~p), 

and 

Let W = Wq n Wp and W #0. Then, on hq (W), we obtain 

h 0h -I =(T O(p-IOp )O(T-I p q P q qq' 

As (T p and (T q are diffeos, h pO h q- I will also be one iff the map 
Pp- lopq is a diffeo. However, Pp- 10pq is nothing but the 
(~q,~p) projection llqp. As both partial cross sections are 
regular, Lemma 5 implies that llqp is a diffeo. Q.E.D. 

Propositions 6.1.5,6.3.1, and 6.3.2 of Ref. 4 imply that 
the topology induced on g by the differentiable structure 
constructed by Lemma 6 coincides with the quotient set to
pology, that the projection 11" is open, and that the manifold 
!l2 has a countable basis for its topology. 

Theorems 2 and 3 imply that the quotient space g has 
the following properties. 

Corollary 1: Let the system possess a regular cross sec
tion ~. Then g can be given the structure of a quotient 
manifold, and the map 

p: ~-+g, 

defined by 

P = 11"1l:' 

is a diffeo. 
Proof: According to Theorem 2, the system is strongly 

nonrepetitive, so Lemma 6 implies that g can be given the 
structure of quotient manifold. Theorem 3 guarantees the 
existence of a diffeo '1': ~ X lR I -+ r such that 'I' (p X lR I) is the 
maximal integral curve of X for each p. Hence the map II l: : 
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r -+~, defined by 

lll: = 11"1°'1'-1, 

where 11"1: ~XRI-+~ is the natural projection, is invariant 
and differentiable [invariant means constant along 11"-I(p) 

for any pEg (see Ref. 41, p. 94)]. Then, its projection 11"l:: 
!l2 -+~ is differentiable by Proposition 6.3.3 of Ref. 4. How
ever, 11"l: is a bijection, whose inverse satisfies 

11"i: 1= 11"1l:' 

which is also differentiable. Thus 11"1l: is a diffeo. Q.E.D. 
Corollary 2: Let there be a regular cross section. Then 

the system is Hausdorff. 
According to Corollary 2 and Theorem 2, existence of a 

cross section implies that the system must be strongly nonre
petitive and Hausdorff. We can also prove the inverse, and 
for this, we will need the following notation. Consider again 
the collection { CZ! p' ~ p , Wp ,P p }. Here { Wp } is an open cover
ing of g; if Wq n Wp = W #0 for some p and q from r, 
there will be a well-defined (~q,~p) shift with the domain 
P q- I ( W), which will be denoted by /qp . 

Lemma 7: If the system is strongly nonrepetitive and 
Hausdorff, then there exists a unique differentiable bundle r 
with base space !l2 , projection 11", fiber lR I, group {cpt}, coor
dinate neighborhoods {Wp }, and a system of coordinate 
transformations /qp 0p;; I. 

Proof: If the system is strongly nonrepetitive and Haus
dorff, g is a paracompact manifold. The transitivity of the 
coordinate transformations, 

/qp 0pq- I = /qr 0pq- I + /rp 0Pr- I, 

as well as their differentiability follow directly from the tran
sitivity property and the differentiability of the shifts. The 
existence and uniqueness of the bundle follows, then, from 
the existence theorem (Theorem 3.2 in Ref. 5). 

Theorem 4: Let the system be strongly nonrepetitive and 
Hausdorff. Then there is a cross section. 

Proof: According to Lemma 7, r is a bundle with base 
space g and fiber R I. As g is a paracompact manifold, it is 
metrizable and, therefore, normal. Then the conditions of 
theorem 12.2 of Ref. 5 are satisfied and the bundle r has a 
continuous cross section. Theorem 6.7 of Ref. 5 implies that 
there is also a differentiable cross section ~ that is a cross 
section in our sense. Q.E.D. 

III. EXAMPLES 

A. Example 1: A weakly repetitive system 

Consider a space-time (Ji,gl'v)' and the action of the 
following form: 

S = f dt(pl'xl' - a.JY), 

where xl' are coordinates on Ji and 

.JY = !(gI'vpI'PV - m 2
). 

Such an action leads to an equation of motion that coincides 
with the geodesic equation for geodesics of the signature 
sgn(m2

) and with the affine parameter at. The configura
tion space of the system is Ji and the phase space is the 
cotangent bundle T*(Ji). In this way, we can use some 
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well-known examples of weakly acausal space-times to con
struct weakly repetitive dynamical systems. The procedure 
is, however, not completely straightforward (almost closed 
orbits must exist in the phase space!). Here, we will freely use 
the example given on p. 195 of Ref. 3. 

Consider the two-dimensional space-time (JI,gll-v) 
with the metric 

dsz = dxz _ dyZ 

and with toroidal manifold JI: in RZ with the coordinates x, 
y, we identify the points differing by the vectors (1,0) and 

(0,.J2). Thus the space-time itself is acausal-there are 
closed timelike curves. However, the null geodesics are not 
closed: each of them winds infinitely many times around JI 
and forms a dense set in JI. For example, the two null geode
sics that start at the point Po with coordinates (xo,O) cut the 
spacelike "hypersurface" y = 0 in a dense countable set of 
points Pn and qn' whose coordinates are given by 

Pn···(un,O), qn···(Un'O), 

Un = Xo + n.J2 - [xo + n.J2], 

Un = Xo - n.J2 - [xo - n.J2], 
where [Q 1 is the greatest integer smaller than Q. Hence there 
is an uncountable number of different null geodesics. 

This suggests setting m = 0 in the action S. The phase 
space 9 is spanned by the coordinates (x,y,Px,py ) and r is 
given by the equation 

Z Z 0 Px -Py = . 

The super-Hamiltonian vector field X has the components 

X = (Px' - py,O,O) , 

so there is a set of critical points given by Px = Py = o. Thus 
r consists of four disconnected sheets of topology 
S I X S I X R I given by the equations and inequalities 

Px = Py' Py > 0 or Py < 0 

and 

Along any maximal integral curve of X, both Px and Py re
main constant. This guarantees that the orbits whose projec
tions are almost closed in the configuration space will be 
almost closed in the phase space. Thus the system is nonrepe
titive but weakly repetitive. 

The structure of the quotient space!!2 is very interesting 
in this example. Indeed, as any orbit comes arbitrarily close 
to any point of any other orbit, there are only two open sets: 
!!2 itself and 0. Thus the quotient set topology does not satis
fy the separation axiom TJ> and the system is, qf course, not 
Hausdorff. It seems that the separation axiom TI will not be 
satisfied for quite a large class of weakly repetitive systems, 
namely, for those in which some orbit spirals in approaching 
another orbit. 

The nontrivial topology in the present example origi
nates in the nontrivial topology of the phase space. In the 
next example, the topology of 9 will be trivial, so all of the 
nontrivial topology will originate from the super-Hamilto
nian. 
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B. Example 2: Strongly nonrepetltive and non
Hausdorff system 

The phase space 9 of this system is R4
, spanned by 

canonical coordinates Xl, XZ, PI' and Pz. The super-Hamilto
nian is 

JII"= !(PI)Z _ (pz)z _ (XI)Z + (xz)Z). 

It has a lot of symmetry: "Boosts" in the (xl,XZ), (XI,PI)' 

and (xz,Pz) planes generated by 

A = xlpz + XZPI' B = (PI)2 - (XI)Z, C = (pZ)2 _ (X2)2 

(B and C are also the two "separation" integrals), satisfying 
the algebra • 

{A,B} = 2D, {A,C} = 2D, {B,C} = 0, 

{A,D} = B + C, {B,D} = - 2A, {C,D} = - 2A, 

where 

D = xlXZ + PIP2 

is the "double rotation" in the (PI,X2) and (P2,X I ) planes, 
and one weak integral 

1= (X IX2 - PIP2)/(X lpl + XZp2) , 

which satisfies 

{JII",l} = - 2DJII". 

The super-Hamiltonian vector field has the components 

XII- = (PI' - P2'X\ - x
2
), 

so there is just one critical point, namely the ongm 
0= (0,0,0,0). If we delete 0, the constraint hypersurface 
has two components with the topology T2 X R I, and it is ad
vantageous to introduce the three coordinates x, 5, and 1] on 
it according to the relations 

PI = x sin~(5 + 1]), pz = x sin~(1] - 5), 

Xl = x cos~(1] - 5), x 2 = x cos!(5 + 1]), 

11/1 

FIG. 1. The torus x = const. The opposite sides of the square are identified. 
The angular coordinates", and rp have periods 211". For each Tfo' the curves 
Tf = Tfo adn Tf = Tfo - 211" together form a smooth closed curve that winds 
twice around the torus. The separatrices are represented by small circles. 
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FIG. 2. The surface 1] = 1]0,1]= 1]0 - 21Tin the polar coordinates x,g' with 
some typical integral curves. The separatrices are represented by thick lines. 
The parameter orientation is given by arrows. The origin is cut away. 

because of the following relations: 

1= cot 1J, D=x2 cos5' (13) 

The period of the angles qJ = ! (1J - 5) and ¢ = ! (5 + 1J) 
must be 21T and we take their ranges to be ( - 1T,1T): the qJ 

and ¢ directions are those of the minimal periodicity of the 
torus. Then the period of the coordinates 5 and 1J is 41T and 
their ranges are 

-21T<5<21T, -21T<1J<21T 

(see Fig. 1). 

The equations of motion in the coordinates x, 5, and 1J, 
and with the parameter given by d)' = a dt, read 

x= xsin 5, 5=2cos5, 1]=0. (14) 

If we project all integral curves onto the torus, then we ob
tain the following picture. All solutions lie within the curves 
1J = const. The curve 1J = 1Jo, 1Jo> 0, on the torus is a smooth 
continuation of the curve 1J = 1Jo - 21T and together they 
form a smooth circle winding twice around the torus. On 
each of these circles there are four special points with 
cos 5 = 0, where 5 remains constant. These points divide the 
circle into four segments within which all other solutions 
must lie. The solutions corresponding to the four points, the 
so-called separatrices, are given by 

5= +!1Tx=Ke", 5= -~1Tx=Ke-A, (15) 

5 = + ~1TX = Ke-\ 5 = - ~1TX = Ke". (16) 

Consider the submanifold of r given by the equations 

1J = 1Jo, 1J = 1Jo - 21T, 

where 1Jo> 0. It is topologically a plane with the origin re
moved; the plane carries the "polar" coordinates x and !5 
(see Fig. 2). There are, then, four purely radial integral 
curves-the separatrices given are the relations (15) and 
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( 16). They are, together with their orientations, illustrated 
in Fig. 2. 

Other integral curves are obtained by integrating Eq. 
(14) and by setting the result in Eq. ( 13). This yields, within 
the different segments, 

for -!1T<5< +!1T, +~1T<5<21T, -21T<5< -~1T, 

sin 5 = tanh 2()' - ).0)' 

cos 5 = l/cosh 2()' - ).0)' 

x = ~ID I cosh 2()' - ).0); 

for + !1T<5 < + ~1T, - ~1T<5 < - !1T, 

sin 5 = tanh 2(A - Ao), 

cos 5 = l/cosh 2(A - Ao), 

x = ~ ID I cosh 2(A - Ao)' 

The integral curves within the wedges between pairs of 
the four separatrices 5 = + ~1T, + !1T, - !1T, and - ~1T 

form four one-parameter families, the parameter being ID I 
(Ao determines the origin ofthe parameter A along the solu
tions). They are illustrated by Fig. 2. 

Within each of these families, we can choose a sequence 
of orbits, for example, D= 1,2- 1

, ... ,2- n
, ... , which con

verges to two different separatrices, namely, those forming 
the boundary of the corresponding wedge. Hence f!2 cannot 
be Hausdorff in this case. This property seems to have some
thing to do with the local behavior of the super-Hamiltonian 
vector field in a neighborhood of the critical point O. We are 
going to study the relations of the topology of f!2 and the 
behavior around critical points in a separate paper. 

The constraint hypersurface r of this example is multi
ply connected again. However, this time the pathology 
would not be removed by taking a covering space r' of r. 
The corresponding quotient space f!2' would be non-Haus
dorff in even a worse way than !!2: the number of pairs of 
points whose neighborhoods always intersect each other 
would grow from four to infinity in each (1J = const)-sur
face! 
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Linear kinetic particle transport in stochastic heterogeneous media is discussed. The analysis 
includes scattering in a three-dimensional setting and deals with arbitrary time-dependent 
statistics. Ensemble-average operators are used to derive two independent complete 
descriptions for the ensemble-averaged angular flux. The first description consists of an infinite 
system of integral, renewal-like equations for averaged flux values over spatially dependent, 
increasingly smaller sets. The second approach results in an infinite system of kinetic, 
balancelike equations for locally averaged flux values. Both types of equations include 
averagings over transitional sets of states that change locally of physical properties. Previous 
results are recovered from the limit form of these equations for no-memory statistics and 
purely absorbing media. Also, the Levermore-Pomraning-Wong proposed models are shown 
to correspond to truncated forms of these equations. 

I. INTRODUCTION 

Linear, deterministic transport within a domain D is 
entirely defined by the angular flux t/J(r,t,v) solution of the 
kinetic equation 1 

(L + v'i.)t/J = q + Ht/J, 
t/J = <1>, 

in X, 

onaX, 
(1) 

whereL=a, + v·V is the convective derivative, His the col
lision operator, 

(Ht/J)(r,t,v) = v f dv' 'i. s (r,t,v'-+v)t/J(r,t,v'), 

'i.(r,t,v) is the total cross section, and q(r,t,v) is the source. 
We will use the notation x = (r,t,v) to denote a point in the 
phase space X = {xlrED,t;>to, v,,;vmax }. In Eq. (1) initial 
and boundary conditions have been lumped together in the 
term <1> (x), which is defined on the set a X = {XEX I t = to or 
rEaD and v·n";O}, where n is the outward normal on aD. 
Particle transport within D is determined by the physical 
properties of the host medium and by the limit condition <1>: 
once the quartet ('i., H, q, <1» is known, then there is a unique 
particle distribution solution of Eq. (1). 

The problem we want to address here is that of stochas
tic transport, that is, the description oflinear particle trans
port when the physical properties of the host medium are 
only known in a statistical manner. In order to set up a statis
tical formulation we assume that all that is known about the 
system is that it can be in one of a set of possible states. More 
precisely, we assume that we are given a set of states 
n = {w} together with a time-dependent probability density 
p, (w): 

p,:n-+&f +:::::? L dwp,(w) = 1. 

Each state w represents a physical realization of the system, 
that is, a quartet ('i.w,Hw,qw ,<1> w). Although n is a fixed set, 
only the states with p, (w);>O can be present at time t and 
therefore our description allows for a variable set of states. 
Furthermore, since p, (w) is the probability of observing 

state w at time t, and therefore its corresponding angular flux 
t/Jw' we conclude that the ensemble-averaged angular flux is 
given by 

t/J =At/J = L dw p,(w)t/Jw' 

where A stands for the time-dependent ensemble-averaging 
operator. More generally, to each measurable subset x~n 
we will associate the time-dependent operators 

Mxt/J = Ldw p,(w)t/Jw' 
(2) 

where p x = M x 1 is the probability of observing a state in X 
at time t, and t/Jx = Axt/J is the ensemble-averaged angular 
flux over the states that belong to X. 

From now on and in order to lighten the notation we will 
omit the set index in set-related quantities and will write, for 
instance, M and A instead of M x and A x. Except if otherwise 
indicated our formulas will apply to any measurable subset 
x~n. 

Direct ensemble averaging of Eq. (1) results in the 
equation 

Lt/J+v('i.t/J)n = LdwP;(w)t/Jw +q+ (Ht/J)n, 

t/J = <1>. 
(3) 

Here, q and <1> are the n-averaged values of the source and of 
the limit condition, respectively, and ( )n represents also an 
ensemble average. Even in the simple case of stationary sta
tistics, p, (w) = p(w), the values of ('i.t/J)n and (Ht/J) n will 
be in general different from the respective products of aver
age values, 'i.t/J and Ht/J, and therefore Eq. (3) shows that the 
ensemble-averaged flux does not obey a classical kinetic 
equation. Thus the first objective of a stochastic theory of 
particle transport should be to derive an equation or set of 
equations for the ensemble-averaged angular flux t/J. In this 
paper we will obtain such a result for the case when the 
statistics can be related to a set of materials. Specifically, we 
assume that there is a finite set of materials {a}, where each 
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material is characterized by a quartet (!oa' Ha, qa' 4>a), 
and that each state cu can be viewed as a mapping 

cu:{ (r,t) I rED,f> fo} -+ {a} 

that associates a material cu(P) to each P = (r,f). Conse
quently, the physical propertiesofa state (!o." H." q." 4>.,) 
at point r and time f are those of the material a = cu(P). 

Such material-related statistics can represent, for exam
ple, the modeling of particle transport in a multi phase flow 
or in turbulent plasma. In such a case the suitability of 
adopting a stationary statistical description will depend on 
the existence of a well-defined time scaling, i.e., the charac
teristic time of motion of chunks of flow must be much 
slower than particle motion. We note also that a further sim
plification arises if the limit condition 4> is nonstochastic on 
a part (wall) or on the entire limit domain ax. 

A basic property of these statistics is the existence of a 
natural, space-and time-dependent partition of the set of 
states n such that for every X~ n: 

x = (UXa (P»UXI (0), (4) 
a 

where P = (r,t), XI (0) is the subset of states of X that are 
absent at time f, and 

Xa (P) = {cuEX Icu(P) = a} 

is the subset of states of X that "have" material a at r at time 
f. Since formula (4) is a partition of X we have the result 

(5) 
a a 

Here Ma (P) and Aa (P) are the operators (2) associated 
with Xa (P), andPa (P) = Ma (P) 11M 1 is the conditional 
probability of observing material a at r at time f knowing 
that the physical state is in X. From the second formula in 
(5) we obtain the local decomposition 

(6) 
a 

where x = (P,v). This equation gives the ensemble-average 
flux in terms of the local ensemble averages over the subsets 
of X which associate the same material to point r at time t. 
The above decomposition is local in the sense that the states 
participating to the averging of 1/Ia vary with rand f. 

Equation (6) reduces the task of finding a description 
for 1/1 to that of obtaining equations for each of the 1/Ia's. As 
we will show the 1/Ia's depend in tum on higher statistical 
moments of the angular flux and so do these new moments, 
so that this approach snowballs and results in an infinite set 
of coupled equations for increasingly singular averagings of 
the angular flux. Lately, the problem of stochastic transport 
in binary mixtures of fluids has been the subject of repeated 
attention. 2

-
5 However, a rigorous equation for the ensemble

averaged flux has only been obtained for collisionless, sta
tionary transport with time-independent Markovian statis
tics.2 Master equations3 and renewal theory4.5 have been 
invoked to extend this work to more general statistics and to 
include scattering, but results to date are limited and neces
sarily heuristic. An excellent summary of previous work is 
given in Ref. 5. To my knowledge, the only results that in
clude scattering in a correct form have been obtained recent-
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ly by Pomraning6 for a particular case of stationary trans
port in systems with planar symmetry and by Vanderhaegen 
ef al.7 for the so-called rod problem. In Ref. 6 the author 
considers a planar system comprising a single material with 
constant macroscopic properties «(T,h,q) but variable den
sity N(x): each of the states cu in the stationary statistical 
ensemble n can then be viewed as a spatial density distribu
tion N., (x) such that !ow (r,v) = N w (x)(T(v), Hw (r,v) 
= N w (x)q(fl,V), and qw (r,v) = Nw (x)q(fl,v). In these 
conditions, the author shows that, for nonstochastic bound
ary conditions, the ensemble-averaged angular flux 1/1 (x,fl,v ) 
can be obtained from ajoint probability density function that 
is directly related to basic properties of the statistical set n. 
A different approach, based on the application of the invar
iant imbedding method, has been used in Ref. 7 to incorpo
rate scattering effects in a monodirectional description of 
radiative transfer for a binary Markovian mixture. 

The main object of the present work is to derive a com
plete description of the ensemble-averaged angular flux for 
stochastic, time-dependent transport including scattering. 
Our only restriction is that the statistics are material-related 
but we believe that the method which we use can be easily 
generalized to other types of statistics. 

In Sec. II an ensemble averaging of the integral form of 
the transport equation is used to derive an infinite set of 
coupled, renewal-like equations. Each one of these equations 
gives the ensemble-averaged flux on a set x~n in terms of 
the ensemble-averaged fluxes over two families of subsets of 
X. This result is then confronted with previous findings. 

A different approach, based on the direct ensemble aver
aging of kinetic equation (1), is utilized in Sec. III to obtain 
this time a system of integrodifferential equations for local 
moments of 1/1, that is, for ensemble-averaged values over 
subsets x~n which depend only on local coordinates. In 
contrast, the ensemble averagings that appear in the renewal 
equations of Sec. II are defined over subsets that depend on 
one or more (r,t) values. We conclude in Sec. IV by special
izing our equations to no-memory statistics, such as Marko
vian statistics, and by recovering previous results. 

Since 1/1 does not obey a classical kinetic equation it is 
pertinent to obtain an approximate transport equation for 1/1 
or, equivalently, to define a quartet (!oeff' Heff , qeff' 4>eff)' 
The appropriate answer to this problem depends on the class 
of situations considered.3

-
5 In a future paper we will con

struct an approximate transport equation for the double
heterogeneity problem.s A different approach consists of us
ing a closure argument to obtain an approximate finite 
system of equations (not necessarily classical transport 
equations)2 for 1/1. Out conclusions are given in Sec. V where 
we also propose a truncation assumption to reduce the infi
nite system of equations to a finite system comprising a bal
ance differential equation and a renewal integral equation. 

Appendix A contains a discussion of some mathemat
ical details regarding operators used throughout this work. 
In Appendix B we give a summary of results for the case of 
stationary statistics. Appendix C is dedicated to an analysis 
of the application of continuous Markovian process to the 
description of three-dimensional multicomponent fluid mix
tures. 
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II. RENEWAL EQUATIONS 

The integral form of the transport equation gives the 
angular flux at x = (P,v) = (r,l,v) in terms of the local 
emissivity at velocity v along the past trajectory, i.e., along 
the set 

Tr(OI'x) = {P8 = (r - Ov, 1- 0) 10E[O, 01 )}, 

where 

01 (x) = min [ Obd (r,V),Oin (I)]. 

Here Obd is the time required for a particle of velocity v to 
travel from the boundary aD to location r, and 0in = I - 10 , 

Depending on whether 01 = Obd or 01 = 0in, the angular flux 
at x will be related to a boundary or to an initial condition. In 
order to ensemble-average the integral transport equation it 
is necessary to study the behavior of the states along the past 
trajectory. Assume that m assigns material a to P = (r,l), 
then the local behavior of m along the past trajectory can be 
characterized by the maximum length oftime during which 
a particle of velocity v can travel so that it reaches P seeing 
continuously material a. More precisely, for each x we de
fine the function 0 (x): n -+ &l + such that 

0", (x) = max{OE&l + Im(P') = m(P),VP'ETr(O,x)}. 

Thus, along the past trajectory m continuously takes on the 
value a over Tr(O", ,x) and changes of value at 
P", = (r- O",v, 1- 0",): m(P",)::;fm(P). 

Then, for a state mEna (P) we write the integral trans
port equation at x = (P,v) as 

tP", (x) = H( 0", - 0l )e - T
u (8"x)<I> '" (XI) 

+ H(OI - O",)e - T u (8,",x)tP(U (x",) 

J
min (8,",8/) 

+ " dOe- Tu(8,X)F",(x8). (7) 

In this equation H represents Heaviside's function, 

1'a (O,x) = v L8
dO' ~a (r - 0 'V,I - O',v) 

is the optical distance along the past trajectory Tr( O,x), <1>", 
can be a boundary or initial value depending on whether 01 

equals Obd or 0in' and F", is the local emissivity 
F",(x) =qa(x) + (HatP",)(x). 

The notation adopted for the coordinates along the past tra
jectory is X8 = (P8,v) with P8 = (r - Ov, 1- 0) and simi
larly for XI (0 = ( 1 ) and x'" (0 = 0",). 

Our purpose now is to obtain an equation for the ensem
ble-averaged flux tPa = Aa (P)tP by ensemble-averaging Eq. 
(7) over the subset Xa (P). To carry out this operation we 
will use an integral representation of the operator M a (P). 
As shown in Appendix A, for any 0;;;.0: 

Ma (P) =Maa (O,x) + L8
dO' Ma (O',x). (8) 

In this formula M aa (O,x) is the integral operator 

Maa(O,x)/= f dmPI(m)/", 
JXaa«(J,X) 

with support 
Xaa (O,x) = {mEX Im(P') = m(P), VP'ETr(O,x)}. 

For any point P 8 in the past trajectory of P we define the 
transit time 0 as the time required for a particle of velocity v 
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to go from P 8 to P; thenXaa (O,x) is the subset of states of X 
that assign material a to all points on the past trajectory with 
transit time greater than O. Also the operator Ma (O,x) is the 
directional derivative of Maa (O,x) at P8, and its support is 
essentially the subset of states inXaa (O,x) that change from 
material a to a different material at P 8' 

For more details the reader should look over Appendix 
A. Here we give a somewhat intuitive derivation of formula 
(8) based on a change-of-variable argument. The integra
tion over Xa (P) 

Ma (P)/ = f dm PI (m )/'" 
JXa(P) 

can be carried out by selecting a past trajectory at P and by 
collecting the states that have the same value of 0", (x). This 
is formally equivalent to the change of variables 
m = (0""m1), where m1 stands for the remaining coordi
nates. We can therefore write 

Ma(P)/= fOdO(uJdm1 P/(m)/"" 

where the integral over m1 , which is symbolized by the oper
ator M.a (0", ,x) in formula (8), is done over the subset of 
states of X that are continuously a along the past trajectory 
and that change to a different material within a dO", at P ",' 
From this argument it also follows that 

Maa(O,x) = l''''dO'Ma(O',X). (9) 

The operators M.a (O,x) are directly related to the chord 
distribution of material a along the past trajectory at x. In
deed, this is easily seen from the definitions 

Ra (O,x) = probability for wEXa (P) of having 0", (x) 
;;;.0 

Maa (O,x) 1 f;dO' Ma (0 ',x) 1 

Ma(P)1 fadO'Ma(O',x)l 

Qa (O,x) = - an R (O,x) = Ma (O,x,) I 
u a Ma(P)l 

(10) 

Hence, Ra (O,x) is the conditional probability for the states 
in X that the entire interval Tr(O,x) is in material a given 
that P is in material a ; and Qa (O,x) is the conditional prob
ability density of having the interval Tr(O,x) in material a 
and of changing to a different material at P 8 given that P is in 
a. In particular, the averaged transit time through material 
a along the past trajectory is 

la (x) = fO dO OQa (O,x) = loo dO Ra (O,x). 

Finally, ensemble-averaging integral equation (7) and 
with the help offormula (8) for 0 = 00 we obtain the result: 

tPa (x) = e - T u (8"x)Ra (OI'X) <1>:: (XI) + i8
'dO e - T a (8,x) 

X[Qa(0,X)tP~(X8) +Ra (0,x)F:'(x8)], (11) 

where 

F:' (x8) = qa (x8) + (Ha tP:' )(x8), 

and where we have defined the following ensemble-averaged 
values of the angular flux: 
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.1.1Jx = A (O,X) .1. = M.a (O,x) t/J , 
'r.a .a 'r M.a (O,x) 1 

.1.1Jx =A (OX).I.= Maa(O,x)t/J. 
'raa aa' 'r Maa (O,x) 1 

(12) 

Here t/Jo:a is the ensemble-averaged angular flux over the set 
of states wEX that have the entire interval Tr( O,x) in materi
al a, and t/Jo; is essentially the ensemble-averaged value over 
the wEX that have Tr( O,x) in material a and that change to a 
different material at P e' 

Furthermore, if we introduce the definition 

Qa (O,x) 
Aa (O,x) = = - ae In Ra (O,x) (13) 

Ra (O,x) 

then Eq. (11) can be written in the more compact form: 

where now 

7a(O,X) =7'a(O,x) + Ie dO' Aa(O',X). 

The value of Ra (0 + dO,x) can be written as the product of 
Ra (O,x) times the conditional probability P a (dO,O,x) for 
states in Xaa (O,x) to remain in a in the interval (0,0 + dO). 
At the limit when dO goes to zero, 

Pa (dO,O,x) = Ra (0 + dO,x)/R a (O,x) -+ 1-dOAa (O,x). 

This shows that Aa (O,x) is the conditional probability den
sity for states in Xaa (O,x) to change to a different material 
per unit transit time. 

Let us now come back to Eq. (11) and show how to use 
this result to generate a complete description of the ensem
ble-averaged angular flux t/J. First we recall that Eq. ( 11 ) has 
been obtained by averaging over the set X a (P) and therefore 
it cannot be directly used to compute t/Jo;. In order to be able 
to treat this latter ensemble-averaged value we will introduce 
the decomposition 

(15) 

Here 

is the ensemble-averaged angular flux over the states w E X 
that have the interval Tr (O,x) in material a and that change 
to {3 at P e' Also 

(0) MPa(O,x) 1 ({3...J. a ), PPa ,x = r 
Ma (O,x) 1 

is the conditional transition probability density that the 
states w EX that have the interval Tr(O,x) in material a and 
that change to a different material at P e will change to mate
rial {3. Moreover, the continuity of the particle flux at the 
interface between two materials (we assume here that there 
are no surface sources) leads to the continuity of the ensem
ble-averaged values. Consequently, the mean value t/J'!l'a can 
be viewed as the ensemble-average angular flux leaving ma
terial{3in direction n = v/vat Xe to travel through material 
a at least during a time 0. 

We see now how the use of Eq. (11) for the determina
tion of the t/J a's (for X = fl) leads to an infinite number of 
renewal-like equations for an infinite set of ensemble-aver
aged fluxes over a set of subsets of fl which starts with the 
fla (P),s. For X = fl Eq. (10) gives t/Ja in terms oft/Jo:a and 
of the t/J'!l'a 's for {3 =la. Next, using again (10) to compute 
first t/Jo:a and then t/J'!l'a produces four new types of ensemble
average fluxes, and so on. Each new equation brings in two 
new ensemble-averaged fluxes over increasingly smaller sub
sets of fla (P). Table I gives a summary of this situation for 
the first three equations of the system. It is worth noting that 
the ensemble-averaged fluxes depend on more than one spa
tial coordinate; for instance, t/J~~~(P',v) is the ensemble
averaged angular flux over the states that change from mate
rial r to {3 at p', have the interval Tr( 0' ,P e) in material {3, 
change to material a at P e and have the interval Tr( O,P) in 
material a. 

The system of renewal-like equations remains of infinite 
order even at the collisionless limit:Ha =0 for Va. In this 
limit the ensemble-averaged fluxes with two identical adja
cent indexes (such as t/Jaa or t/J{3{3a ) do not appear in the 
equations, and only ensemble-averaged fluxes with different 
adjacent indexes are necessary. Nevertheless, the remaining 

TABLE I.Types of ensemble-averaged fluxes entering the first three renewal equations. 

Equation 

2 

3 

Main flux 

tPa (P,v)" 

Collision 
term 

Interface 
term 

a For consistency one should write tfI:, to indicate that the averaging depends on the local point P. 
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Coordinates 

x = (P,v) = (r,t,v) 

Po = (r- Ov,t- B) 

x' = (Po,v') 

P" = (r - Ov - B'v', 
t- (B+ B'» 

P' = (r - (B + B')v, 
t- (B + B'» 
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equations still form a system of infinite order. It is the opin
ion of this author that the reduction of the exact, infinite 
system of renewal equations to only the first two equations is 
only possible for a special type of statistics. This is particu
larly true for the no-memory statistics that we discuss at the 
end of Sec. III, and for renewal statistics.4

•
5 In relation with 

the equations proposed in Ref. 5 we note further that for 
binary statistical mixtures the transition probability P (3a nec
essarilyequals I and then tP.a reduces to tPf3a' 

III. ENSEMBLE-AVERAGED BALANCE EQUATIONS 

Because of the spatial coupling inherent to the integral 
transport equation, ensemble-averaging of this equation 
brings in nonlocal ensemble-averaged fluxes, i.e., averages 
over sets of states that depend on a continuous segment 
along the past trajectory. The velocity spreading produced 
by the collision operator introduces further complications in 
that the averages have to be done over sets of states depend
ing on a zigzag-like subset of the past trajectory. In this sec
tion we will explore a different approach based on the local 
ensemble-averaging of the integrodifferential kinetic equa
tion. The result is a balance-like equation that brings into 
play two new velocity-dependent, local ensemble-averaged 
fluxes. 

LetXbe a measurable, but otherwise arbitrary, subset of 
nand Xa (P) the locally defined subset of states in X that 
assign material a to P = (r,t). Then, ensemble-averaging of 
kinetic equation (I) gives the local balance relation: 

Aa (P)LtP + v~a tPa = qa + Ha tPa' in X, 

tPa = <l>a' on ax, 
where Aa (P) is the ensemble-averaging operator associated 
with Xa (P) and tPa = Aa (P)tP is the corresponding aver
aged flux. In order to close this equation it remains to calcu
late the ensemble-averaging of the convective term LtP or, 
equivalently, to obtain the commutation rule for the opera
tors Aa (P) and L. As shown in Appendix A the commuta
tor of these two operators is 

Aa (P)L - LAa (P) 

=Q;- (x) [A;; (x) - Aa (P)] 

- Q: (x) [A .! (x) - Aa (P) ], (16) 

where x = (P,v). The quantities Q;; (x) measure the ratio 
at which states enter ( + ) or leave ( - ) the set Xa (P) as 
one moves with velocity v along the trajectory at P. In terms 
of the probabilities defined in Eq. (10): 

(17) 

Also, the operators A .~ (x) essentially indicate ensemble
averaging over the states that locally enter ( + ) or leave 
( - ) the setXa (P). IfAa «(J,x) denotes the averaging oper
ator 

Aa «(J,x)/ = Ma «(J,X)/, 
M.a «(J,x) 1 

then 
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A .~ (x) = limAa ( ± (J,x) 
0_0. 

M.~ (x) 

M a (x)1 

In regard to this last formula we note that for (J>O the opera
tor M.a «(J,x) is the result of a derivative over the future tra
jectory. 

With the help of commutation (16) the balance equa
tion for tPa can be written in the more explicit form: 

(L + v~a )tPa = qa + Ha tPa + /la' in X, 

tPa = <l>a' on ax, 
where the new term 

/la = Q a+ (x) [tP.! (x) - tPa (x) ] 

- Q;- (x) [tP.;; (x) - tPa (x) ] 

(18a) 

(18b) 

takes into account the convective derivative of the ensemble
average angular flux. This term, which vanishes at any x that 
has a finite neighborhood over which X takes on constant 
values, depends on the values of the local ensemble-averaged 
interface fluxes 

(19) 

By integrating Eq. (18) along the past trajectory one 
finds the equivalent integral equation 

tPa (x) = e - Ta(o"x)<I> a (x,) 

+ i
O
, d(J e - Ta

W
•
x

) [Q: (xo )tP! (xo ) 

- Q a- (xo )tP;; (xo ) + Fa (Xo )], (20) 

where all the averages are local, Xo = (r - (}v,t - (J,v) and 

ra«(J,x) =1'a«(J,x) + iOd(J'[Q:(XO,) -Q;-(xo')]' 

A comparison between (20) and renewal equation (14) 
shows that, in general, balance equation (18) is not equiva
lent to the renewal formulation. Similarly to the renewal 
equations, Eq. (18) can also be used to generate a system of 
infinite kineticlike equations for increasingly singular local 
flux averages. However, since the additional term /la' brings 
in increasingly higher derivates of averaging operators, the 
implementation of such an approach is bound to be more 
difficult than that based on the renewal equations. 

The new velocity-dependent local flux averages tP.~ (x) 
are the ensemble averages of tP over the set of states that per 
unit transit time enter ( + ) or leave ( - ) material a in the 
directionofvatP = (r,t). ThedecompositioninEq. (15) of 
tPe: into the separate contributions from the material-to-ma
teriallocal transitions can be carried over to the present case 
to obtain: 

tP.~ (x) = I Pia (x)tPla (x), (21) 
f3#a 

where the 

are flux-averaged values over states changing from 13 into a 
( +) or from a into p( -) per unit transit time at 
x = (r,t,v). The coefficients 
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MfJa ( + O,x) 1 pi (x) = lim -
a 8-0+ Ma ( ± O,x) 1 

are local conditional probabilities for states that emerge 
from material p to enter material a ( + ) or for states that 
leave material a to enter material P( - ). Likewise the 
P{3a (O,x) these new probabilities are normalized to 1: 

L Pia x = 1. 
(3#a 

We close this section by establishing a direct connection 
between our balance equation (18) and a similar result re
cently obtained by Adams and co-workers in an independent 
manner.9 By noticing that 

LPa =Pa [Qa+ (x) - Qa- (x)], 

one can rewrite Eq. (18) under the form 

(L + vl:a ) (Pa tPa) = Paqa + HaPa tPa + Oa' 

where 

Oa = Pa [Q a+ (x) tP.~ (x) - Q a- (x) tP;; (x) ] 

= [M~ (x) - M;; (x)] tP(x). 

This is the form of the balance equation that has been 
derived in Ref. 9 from the direct averaging of a binary statis
tical mixture in an arbitrarily small control volume. 

IV. THE COLLISION LESS CASE 

In the collisionless case, H = 0, the angular flux de
pends on the values of the source q and the cross section l: 
only along the past trajectory, and for all practical purposes 
the geometry of the problem simplifies to a half-line geome
try. Then, the angular flux tPw does not depend on the mate
rial composition over the future trajectory, and we can write 
tPw = tPw_' where w ± stands for the restriction of w to the 
past ( - ) or to the future ( + ) trajectories. Moreover, for 
an arbitrary x~n we have with w = (w_,w+): 

(M xtP)(x) = L dw p, (w )tPw (x) 

= L dw_p,(w_,x,x)tPw_ (x) (H==O), 

where X_is the factor set X / R by the equivalence relation 
wRw' ~w _ = w'_ , and p, (w _,x,x) is the density of proba
bility for the states in X that have the same w _ at x. A further 
simplification occurs when the statistics are such that the 
chord distribution along the future trajectory is independent 
of the material composition over the past trajectory. More 
precisely, we will say that .n == (n,p,) is a no-memory statis
tical set if at every x in phase space we can construct two 
statistical sets .n ± = (.0 ± ,p ,± ) such that .0 ± are the re
strictions of .0, respectively, to the pastA ( - ) and to the 
future ( + ) trajectories, and such that .0 is the Cartesian 
product of n + and .n _: 

v WEn:W = (w _ ,w + ), 

p,(w)dw =p,+ (w+)p,- (w_)dw+ dw_. 
(22) 

An example of stationary no-memory statistics is that of a 
binary Markovian process over a line.2 Further, all homoge-
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neous no-memory statistics are necessarily Markovian. 
However, whether all no-memory processes are Markovian 
or not is still an open question for this author. In Appendix C 
we show that the only homogeneous Markovian process in 
three-dimensional geometry is that with slab symmetry. 

No-memory statistics are important because they offer 
an example case for which the infinite system of equations 
for computing the ensemble-averaged flux can be reduced to 
a finite system. This is only true for collisionless transport 
where the relation tPw = tPw_ together with the local factori
zation (22) inherent to no-memory statistics imply that 

tP{3-t::,(x) = tP{3(x), tP{3~(x) = tPa(x),VP. (23) 

This identity simplifies the convective term in (18b) to 

tia = Q a+ (x) [ L Pita (x) tP{3 (x) - tPa (X)], 
(3#a 

and therefore closes Eq. (18a). Since we are confronted with 
a line problem we may adopt as the coordinate the transit 
time from the position of the initial or boundary condition 
and write tPa(x) = tPa(O,). Then the corresponding inte
gral form of the balance equation reads 

tPa (0,) = e - Ta(0,8')ct>a + i8
' dO e - Tu(8,8,) 

x [Q a+ (0) L P{3-t::, (O)tP{3(O) + qa (0)], (24) 
(3#a 

where now 

Ta (0,0,) = Ta (0,0,) + i8

'dO' Q: (0 '). 

Next, we turn our attention to the analysis of the renew
al equations for collisionless transport and no-memory sta
tistics. Since condition (22) must be true at every point 
x = (P,v) of the trajectory, we conclude that it is also true 
for the subset naa (O,x) of states that are continuously a in 
portion Tr( O,x) of the trajectory. [If w assigns continuously 
a between P 8 = (r - Ov, t - 0) and P = (r,t), then 
w = (w _, w + ), where w _ is the restriction of w to the past 
trajectory of P 8' and w + its restriction to the future trajec-

tory of P.] Therefore the averages <I>=~ (x,) and tPe;(x8 ) 

over spatially dependent sets of states become local averages 
ct> a (x,) and tP.a (x8 ) and renewal equation (14) becomes 
identical to Eq. (24). We note, in particular, that at the no
memory limit the conditional probability density to change 
to a new material, given that the state has kept a constant 
material during transit time 0, becomes independent of 0: 

Aa(O,X)-Q: (x8 )· 

We end this section with an analysis of the behavior of 
the ensemble-averaged angular flux in the collisionless, no
memory limit for homogeneous statistics. To define in a gen
eral way what we understand by homogeneous statistics we 
first introduce the concept of a group-invariant statistical 
set: we consider a group G of transformations acting on the 
set {p = (r,t) I rED,t> to} and, in the usual way, lift G to act 
on .0 by defining (gw) (P) = W(g-Ip). But nothing ensures 
that gw is a state in .0 and, if such is the case, no relation is 
given between p, (w) and p, (gw). This situation is regular
ized by defining a G-invariant statistical set .0 as a set that is 
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complete under transformations in G, Gn ~ n, and whose 
measure Pt (cu) is G-invariant: 

(dcuPt(cu)jw =J. dcupgt(cu)/g-, (cu), VgEG, Jx gX 

where the notation for gt is g(r,t) = (gr,gt). Furthermore, 
we will say that G acts transitively on n if n can be recovered 
from a single state: n = Gcu. If G acts transitively on n and if 
n is G-invariant, then for any P a and P such that P a = gP 
we have Xa (Pa) ::::Xa (P) and 

{ dcupt(cu)jw = ( dcuPt,<cu)/g-,(cu). 
JXa<Pl JXa<Pa l 

Finally, we say that n is homogeneous if G acts transitively 
on the phase space and on n and if n is G-invariant. In this 
case the previous result is true for any two locations P and P a 

since there is always a transformation g passing from P to 
P a' Therefore, for homogeneous statistics local averages are 
independent of position and spatially-dependent averages 
depend only on the G-invariant properties of the sets that are 
involved. For instance, the operator M a (P) does not depend 
on P and the operator M aa (B,x) depends only on B and v. In 
particular, local probabilities and transition probabilities, P a 

and P fa, are constant. 
Coming back to our collisionless, no-memory equation 

(24) we now define the group of motions over the particle 
trajectory 

G = {go Igo (r,t) = (r - Ov, t - B), BE&i'} 

and assume that the statistics n are homogeneous with re
spect to G. Moreover, we will assume also that the materials 
have constant cross sections. In these conditions 
:r a (B,B,) = (B, - B)Aa with Aa = v~a + Aa, and Eq. (24) 
becomes a convolution equation. The Laplace transform of 
this equation gives 

(Aa +s)¢a(s) = <I> a +Aa LPP+"¢p(S) +qa(s), Va, 
p #a 

having defined 

Solving this system of equations is only a matter of algebraic 
manipulation. For a binary mixture with constant sources 
and nonstochastic initial or boundary condition <I> we obtain 

(25a) 

and a similar result, interchanging a and p, for tPP (B). In 
this expression: 
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v~ = A + V(Pa~P + PP~a)' 
Aa =Pp[A(qa -qp) +qav(~a -~p)], 

and 

where A = Aa + Ap and ~mix = Pa ~a + Pp~p is the ho
mogenized cross section value. Also, we have simplified the 
expression of Aa with the help of the relationpaAa = PpAp 
which is a consequence of Debye's formula lO for binary ho
mogeneous statistics. The expression for the ensemble-aver
aged flux tP = Pa tPa + PptPP is then 

_ [ (V~mix _ s+)<I> + (v~ - s~ )qmix - A] 

(25b) 

where A = PaPp (~a - ~p )(qa - qp). This last result has 
already been obtained in Ref. 2 for a homogeneous, binary 
Markovian description for stationary, collisionless trans
port. 

At any point P = (r,t) the value ~mix is only a local 
statistical average that does not directly affect neutron mo
tion. Actually, neutrons moving around P "see" the cross 
sections of the materials defined by a given state cu. In gen
eral, these cross sections will differ from one state to another. 
However, if every state cu changes very rapidly from one 
material to another, then for any state the transport proper
ties will be those of the averaged state modulated with a very 
fast oscillating behavior characteristic of the state. For in
stance, ~w = ~mix + 8~w' here 8~w is a very fast oscillating 
cross section whose averaged value vanishes over very short 
transit times. In these conditions the angular flux will also be 
of the form tPw = tPmix + 8tPw' where again 8tPw is a very fast 
oscillating function. We can expect that at the limit when the 
frequency of the oscillating goes to infinity: tPw --> tPmix' This 
so-called atomic mix limit occurs when the transition proba
bility density Q.~ (x) goes to infinity. For the case of homo
geneous statistics described by Eqs. (25) the corresponding 
condition is A --> 00. This in turn implies S+ -->A,L --> V ~mix 
and the averages 

tPa (B),tPp (B),tP(B) --><I>e - V~m;'O + +-(1 - e - v~m"o) 
V~mix 

behave according to a classic transport equation. Notice 
that, although the bulk of the states will exhibit the same 
asymptotic behavior, one can have states of very small prob
ability which behave quite differently. 
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v. CONCLUSIONS 

A discussion of linear particle transport in random me
dia necessarily has to account for the behavior of the ensem
ble-average angular flux tP. In this work we have embodied 
the randomness in a statistical set n. whose elements are all 
the admissible physical realizations of the transport host me
dium as a time-dependent, heterogeneous composite of a fi
nite set of materials. Then we have used basic properties of 
the statistical set to derive two independent and complete 
kinetic descriptions for the average flux. Each one of these 
descriptions consists of an infinite number of equations but 
fully accounts for arbitrary statistics and includes scattering 
in the underlying kinetic equation in a three-dimensional 
setting. 

The first description has been obtained by ensemble 
averagings of the integral form of the time-dependent trans
port equation. Each averaging is done over a set Xa of states 
which share locally the same physical properties. The result 
is an integral, renewal-like equation for the averaged flux in 
terms of scattering and interface contributions which de
pend in tum on new flux averages over spatially dependent 
subsets of Xa' The coefficients in this equation are directly 
related to conditional chord distributions along particle tra
jectories. This system of equations is a complete description 
for the average flux and fully generalizes all previous at
tempts at obtaining such a result in more restricted condi
tions. 

Our second description, on the other hand, is based on 
the direct ensemble-averaging of the kinetic equation and 
provides a completely new set of kinetic, balancelike equa
tions for local ensemble-averages fluxes. Each one of these 
equations incorporates an interface term that depends on 
flux averages over transitional states, that is, over states that 
change locally of physical properties. Accordingly, the sta
tistics in these equations appear as local transition probabili
ties. Because the averages over transitional states depend on 
increasingly higher derivatives of averaging operators we be
lieve, however, that this formalism will be more difficult to 
implement than that based on the renewal equations. 

In any case, since both descriptions consist of systems of 
equations of infinite order they are of dubious interest for 
most practical applications. Their real interest resides in that 
they provide a sound theoretical basis for developing consis
tent approximate formalisms. In relation to this one has to 
mention that for no-memory statistics of collisionless trans
port both the renewal and the balance descriptions reduce to 
a single system of equations for the local flux averages, but 
such reduction is only possible for purely absorbing media. 
A first model inspired on the properties of binary Markovian 
statistics has been developed for collisionless transport using 
only two ensemble-average fluxes5

: the global average tPa 
over all the states that have locally the same physical proper
ties, and the average tP{3a over the states that change locally 
of physical properties. With regard to our renewal descrip
tion in Eq. (11) such a model can be viewed as a finite system 
of renewal equations obtained by forcing the truncation con
dition 

(26) 
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that is, by neglecting the dependence on the transit time of 
the fluxes averaged over transition states (see Appendix B). 
This is of course exact for no-memory statistics where, for 
the collisionless case, tP1:x (xe ) = tP{3a (xe ) = tPP (xe )· Also, 
a phenomenological model for stationary transport includ
ing scattering has been developed via the master equation 
formalism5 but proved to be unsatisfactory for the so-called 
rod problem.6 From our point of view this last model can be 
derived from balance equation ( 18) by forcing closure rela
tion (23). For a binary mixture the resulting equations read 

[ ( via -Qa+) (Ha )](tPa) (qa) 
L + _ Q;: vip - Hp tPP = qp , 

(27) 

where via = vl:a + Q: . By introducing now the average 
flux tP and the cross correlation function r, 

(tP) (tPa) (Pa Pp )(tPa) 
X = A tPP = ~PaPp - ~PaPp tPfJ ' 

we obtain 

[ (V~mix L+ _ 
v~ 

In this equation: 

~mix = Pa~a + PfJ l:fJ , 

i = Ppl:a + Pal:fJ' 

'i = ~PaPP (l:a - ~p), 
A. _ 

(28) 

and similar expressions for H rnix ' qrnix' H, q, and H; we have 
also 

VA c-
1 

= Q: + Q;, D = (PaQ: - PpQ; )/~PaPfJ' 
The matrix B in Eq. (28) comes from the commutation 
AL = LA - B. This matrix is of the form 

B = (ba bp
) 

b' -b ' 

where ba = Q: - Q,; and b = (ppba + PabfJ)/ 
(2~PaPp). 

Forisotropic statistics Q a+ = Q a- and matrix B vanish
es from Eq. (28). For Markovian statistics v/Q: is the 
mean chord length in material a (noted Aa in Ref. 5) and, 
according to Debye's formula for binary statistics, 10 we have 
fJ = 0 so that Eq. (28) reduces to the model proposed by 
Levermore and quoted as Eq. (4) in Ref. 5. It is important to 
note, however, that (23) is only true for no-memory statis
tics in purely absorbing media and that Debye's formula 
only applies to homogeneous statistics. Therefore the inclu
sion of the scattering term in Eq. (28) is incorrect even for 
inhomogeneous Markov statistics. 

With regard to Eq. (27) we will mention finally that a 
more tractable, self-adjoint equation can be readily obtained 
by operating in this equation with the matrix 

c=(Qa+)-1 ) 
(Q; )-1 . 

The result of this operation is 
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[CL+(~al ~pl)_(ha hJ](~:)=C(::), 
whereha = (Q:)-IHa andda =V(Q:)-Il:a + 1. 

Truncation assumption (26) is exact only at the limit as 
8--+0 and it is clear that problems would certainly arise if the 
statistics favors chord distributions with long optical paths. 
On the other hand, this assumption can be a good approxi
mation when the statistics enforces chords with small optical 
length. An improvement may result if we replace (26) with 
the assumption 

tP'!ta(xo)~€a(8,x)tPp(xo) + [1-€a(8,x)]tPPa(xO)' 
(29) 

where €a is a positive, rapidly decreasing function of 8 with 
the limiting values: €a (O,x) = 1, and €a (00 ,x) = O. Possible 
candidates for €a could be a step function of Ta (8,x) or an 
exponential function of T a (8,x). 

To be sound a model for stochastic transport has to re
spect general properties of the exact equations, such as limit 
behaviors, and to be validated for a general class of statistical 
sets. In a future paperll we will examine a formalism that 
uses balance equation (18) for the local averages tP a' and a 
truncated version of renewal equation (11) for the local 
transition fluxes tPPa' The truncation assumptions that we 
have selected are of the type of (29) : 

tP1fpa (xo ) - € P (8,x) tP pa (xo) + [1 - € P (8,x)] tP p (xo ) 

for the collision term, and 

tP~a(XO) -€p(8,x)tPya(xO) + [1 - €p(8,x) ]tPyp(xo) 

for the interface term. 
As it stands the present work provides a complete de

scription for the expected flux tP of particle transport in ran
dom media, but opens more questions that it answers. It is 
clear that there remains a large area of research for: (a) 
developing approximate models for practical problems, (b) 
analyzing in depth the renewal and balance equations to es
tablish general properties and limit behaviors of tP, (c) ob
taining general descriptions for different underlying equa
tions or different statistics (such as the one in Ref. 5), (d) 
deriving a formalism to account for statistical fluctuations, 
and many others. Also, the validity of the descriptions pre
sented here stands on assumptions of the existence of averag
ing operators and their Gateau's derivatives and it remains 
to provide the necessary rigorous mathematical description 
and, in particular, to build the statistical set into a measura
ble, topological space for which the assumptions in Appen
dix A will be true. 
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APPENDIX A: BASIC AVERAGING OPERATORS FOR 
STOCHASTIC KINETICS 

The object of this Appendix is twofold: to define in a 
more precise way the operators used in this work and to 
outline the derivation of some of the relations between these 
operators. 

To any measurable subset of states X~ n we associate 
the time-dependent operators: 

MxtP = L dliJ PI (1iJ ) tP", , 
(Al) 

AxtP = MxtP1Mx1. 

From now on we suppress the set index X and write simply 
M and A. These operators are positive in the sense that if 
tP", >0 over X then MtP>O and AtP>O. 

Let now E = {p = (r,t)} be an arbitrary subset of the 
space-time phase space E ~ X. Then we define Xa (E) as the 
subset of states in X that are constantly equal to a on E, 

Xa (E) = {IiJEX IIiJ(P) = a,VPEE}, (A2) 

and denote by Ma (E) and Aa (E) the corresponding opera
tors. When E reduces to a single point P, then X is the dis
joint union oftheXa (P),s plus a set of measure zero (absent 
states) and we have 

M=IMa(P), A=IPa(P)Aa(P), 
a a 

where Pa (P) = Ma (P) 11M 1 is the conditional probability 
for states in X to affect material a at position P. Subsets of 
the phase space of particular interest to us are the particle's 
past ( + ) and future ( - ) trajectories for finite transit 
times. The trajectories at x = (P,v) for a transit time 8 are 
the sets: 

Tr( ± 8,x) = {po' = (r - 8'v,t- 8')18'E[0,8)}, 8>0. 

For E = Tr( ± 8,x) we will writeXaa ( ± 8,x) to denote the 
set (A2) of states in X that are constantly a over the past 
( + ) or future ( - ) trajectories during transit time 8. We 
will adopt a similar notation for the associated operators and 
write Maa ( ± 8,x) and Aaa ( ± 8,x). With the usual topol
ogy in &;4 we note that 

lim Tr( ± 8,x) = P, 
0-0+ 

and we assume that we can construct a topology in n such 
that 

lim Xaa ( ± 8,x) = Xa (P). 
0_0+ 

and also 

lim Maa ( ± 8,x) =Ma (P). 
9 ....... 0+ 

We also assume the existence of the Gateau's directional 
derivative 

Ma ( ± 8,X) 

= + aoMa ( ± 8,x) 

=lim( liE) [Maa ( ± 8,x) - Maa [ ± (8 + E)Xj], 
E_O 

(A3) 
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which is a positive operator in the sense earlier indicated in 
this Appendix. This operator can also be written as 

where for E>O: 

X~a ( ± O,x) = {wEXaa ( ± O,x) Iw(P ±8') 

#a,30'E[O,O + E)} 

is the subset of states in X which affect material a to the past 
( + ) or future ( - ) trajectory continuously through tran
sit time 0, and that then change material at least once during 
the following E flying time. A similar expression can be writ
ten for E';;;O but, for simplicity, we will consider only the case 
E>O. 

To compute the integral in (A4) we will use local co
ordinates on the "surface" 

Xaa ( ± O,x) = {wEXaa ( ± O,x) Iw(P ± 6) #a} 

and write w = (w,wl ), where wEJXaa ( ± O,x) and WI is an 
orthogonal coordinate such that dw = dw dwi . Then for all 
. functions ¢ w that are continuous in w we can write: 

(A5) 

where 

Therefore, Aa ( ± O,x) =.M.a ( ± O,x)/Ma ( ± O,x) 1 is an 
averaging operator over the states that remain in material a 
along the trajectory from P to P ± 8 and change to a different 
material at P ± 6' Furthermore, this implies the decomposi
tions 

Ma ( ± O,x) =. I Mpa ( ± O,x), 
P ~a 

(A6) 
Aa ( ± O,x) =. I Ppa ( ± O,x)Apa ( ± O,x), 

p~a 

where Mpa is an operator like M.a in (A5) but with domain 
XPa ( ± O,x), the subset of Xa ( ± O,x) that affects material 
f3 at P ± 6' The operator Apa is the corresponding averaging 
operator, and 

Mpa ( ± O,x) I 
P ( + Ox) - ---..::.=---.:--

pa -, - M.a ( ± O,x) 1 
(A7) 

is the conditional probability for material f3 given that the 
state has kept material a during transit time ° and changes 
material at P ± 8' 

Also, whenever Maa ( ± O,x) is continuously differen
tiable in ° we have the integral repre~entation 

Maa ( ± a,x) =.Maa ( ± O,x) 

+ it/dO' Ma( ± O',x), Va,O>O, 

and, in particular, for a .... O+: 
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6' 

+ i dO' Ma( ± O',x), VO>O. (A8) 

In this work we have also assumed that the set of states 
which keep a constant value for all transit times is of measure 
zero: 

limMaa ( ± O,x) =.0, (A9) 
6-00 

which is equivalent to saying that the average transit time 
through any given material is finite. 

Observe also that for E -+ 0 we have, to first order in E, 

Ma (P) ~Maa (E,X) + IEIMa (E',X), E'E[O,E]. (A1O) 

We will use this last relation to compute the commutator of 
the convective derivative L with the averaging operator 
Ma (P). By definition 

[LMa (P)] ¢(x) = limO/E) [Ma (P _ £ )¢(x _ £) 
£-0 

- Ma (P)¢(x)], (All) 

where x_£ = (P _£,v) and P _ £ = (r + EV,t + E). But, to 
first order in E, we can write ¢(x_ £) =¢(x) + E(L¢) (x), 

and using (A 10) first with - E, and second replacing P with 
P -E: 

Ma (P) ~Maa ( - E,X) + IEIMa ( - E',X), 

Ma (P _ E) ~Maa (E,X _ £) + IEIMa (E',X - E)' 

where E'E[O,E]. Finally, by using these expressions in (All) 
and by noticing thatMaa ( - E,X) =.Maa (E,X_ E ), we obtain 

LMa (P) =.Ma (P)L + M.! (x) - M-;. (x), (Al2) 

where 

M.! (x) =. limMa ( ± O,x). 
8-0, 

Now, since Aa (P) =.Ma (P)/Ma (P) 1 it is a matter of 
simple algebraic manipulations to obtain the result 

LAa (P) =.Aa (P)L + Q: (x) [A .! (x) - Aa (P)] 

-Qa-(x)[A-;'(x) -Aa(P»), (AI3) 

where 

A.! (x) (AI4) 

and where 

(AI5) 

is the density of probability for states in X to enter ( + ) or to 
leave ( - ) material a at P per unit transit time in direction 
v. When the density of probability P t (w) is continuous in t 
the local averaging operators in (A 14) are symmetric: 
A! (P,v) =A.! (P, - v). 

The formulas in this Appendix are based on formal deri
vations from assumptions on the continuity and differentia
bility ofthe measure operators over n. For a deeper under-
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standing it will be necessary to relate such properties to the 
basic topological and material properties of n and of the 
spaces of functions and operators that have been implicitly 
assumed. A natural step would be to lift topology and Borel 
sets from phase space into the space off unctions ¢w (x) and 
into the statistical set and from there into the set of measure 
operators. In particular, the notion of closeness of states 
cu-w should be related to that of the corresponding particle 
fluxes ¢ w - t/t;, and, from the properties of the kinetic opera
tor, to the closeness of materials cu (P) - w (P). In this sense 
we can define a quasidistance in the statistical set d (cu,w) as 
the measure of the set {p = r,t) Icu(P) #w(P)} on which 
the two states are different, and then built n into a metric 
space by identifying states which differ only over a set of 
measure zero. 

Next we consider no-memory statistics for which the set 
Xa (P) can be viewed as the Cartesian product 
X a- (x) xX a+ (x), where X a± (x) are the sets of states de
fined over the past ( - ) or over the future ( + ) trajectory 
and whose limit value at P is a. Then, since 
X a- (x) xX a+ (x) preserves also the measure, we have for a 
purely absorbing medium 

Ma(p)¢=i dcup,(cu)¢w_ = W a+ (x)M;; (x)¢, 
Xa{P) 

where 

M! (x)¢ = i dcu ± p,± (cu ± )¢w+ 
x,f{x) -

and W a± (x) = M a± (x) 1. Hence ¢a (x) = A;; (x)¢ is the 
averaged flux over X;; (x). 

Consider now the set XaP (e,x) that for no-memory sta
tistics can be written as X;; (xe ) XXp/J(e,x), where 
X p/J (e,x) is the subset of X p+ (xe ) whose states are constant 
on Tr(e,x). As before we have 

Map(e,x)¢=i dcup,(cu)¢w_ 
X a {3{e,x) 

= W p+ (e,x)M;; (xe )¢, 

with 

w;(e,x)¢=i dcu+p,+(cu,). 
xJp{e,x) 

Therefore Aap (e,x)¢ = A;; (xe )¢ which means that 
¢~ (xe ) = ¢a (xe) for arbitrary e. Furthermore, when 
e-+o+ we also get ¢aP = ¢a' 

APPENDIX B: STATIONARY STATISTICS 

A case of practical interest occurs when particle motion 
is much faster than the motion of the materials composing 
the host medium, Then one can assume that the statistical set 
is stationary,p, (cu) = p(cu), and view the states as mappings 
of the spatial domain into the set of materials cu:D-+ {a}. The 
corresponding formulation can be obtained from the gen
eral, time-dependent formulation by formally posing P = r 
in all P-dependent subsets and operators. For easy reference 
we summarize in this Appendix the more important results. 
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We note first that all dependence of subsets of states and 
operators on the velocity variable v reduces presently to a 
dependence on only the direction 0 ofv. Indeed, by using the 
flight distance x = ve instead of the transit time e, we intro
duce now the notion of back ( + ) and forth ( - ) trajector
ies 

Tr( ± x,r,O) = {rx' = r - X'OIX'E[O,X)}, 

and note that Tr( ± x,r,O) = Tr( +x,r, - 0) so hereto
fore we will consider only the back ( + ) trajectory. We 
characterize a state cu over the back trajectory at r by the 
maximum distancexw (r,O) over which the state keeps on a 
constant material. Then the equivalent of renewal equation 
(11) is now 

¢a (x) = e - Ta{r"r) Ra (r/,r)<I>::a (Xl) 

+ iX'dxe-Ta{rx,r) [Qa(rx,r)¢r,;(xx) 

+v-lRa(rx,r)F~(xx)]' (Bl) 

where rx = r - xO, Xx = (rx,t - X/V,v) , and r(rx,r) is the 
optical distance between r x and r. The mean flux 

M (r'r)'" 
",'r = A (r' r)'" = aa , If' 
If'aa aa' If' M (' ) 1 aa r ,r 

is the average over the set of states Xaa (r',r) which affect 
continuously material a to the segment (r' ,r] , and similarly 
for the other mean fluxes in (Bl) with 

M.a (rx,r) == - axMaa (r - xO,r), 

Also, in Eq. (B 1) we have the definitions 

Maa (rx,r) 1 
Ra (rx,r) = , 

Ma (r) 1 

Qa (rx,r) = - axRa (rx,r), 

Note that now Qa is a density of probability per unit distance 
and not per unit time. By defining A.a (rx,r) 

-ax InRa(rx,r) wegettheequivalentofEq. (14): 

(B2) 

with 

-Ta(rx,r) =ra(rx,r) + fdX' A.a(rx"r), 

where presently A.a is the conditional transitional probabili
ty density per unit length. 

The stationary equivalent to the balancelike equation is 
like Eq. (18) with the only difference that Jia has to be re
placed by vJia: 

(L+v~a)¢a =qa + Ha¢a +vJia· (B3) 

We end this Appendix by showing how to derive finite 
systems of renewal equations by forcing a truncation condi
tion on the infinite system of equations (Bl). We consider 
stationary transport in a purely absorbing binary mixture. 
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Then we can use as spatial coordinate the distance to the 
boundary and write (B 1) under the form 

tPa(x) =e-Ta(O,X)Ra(O,x)ct>~-: + iXdye-TU(y,x) 

x [Qa (y,x)I/IP"'a (y) + Ra (y,x)Sa (y) ], 

where Sa = vqa' Next, by integrating by parts the source 
term and with the help of the relation Qa (y,x) = ayRa (y,x) 
we obtain 

tPa(x) = Ra(O,x)¢a [O,x;ct>~"'a] + fdyRa(Y,X) 

X¢a[Y,x;I/IP"'a(y)], (B4a) 

where 

¢a [y,x;b] = e-Ta(y,x)b + iXdX' e-Ta(X',X)Sa (x'), y<;;;x, 

is the nonstochastic flux at x with an angular flux b at y when 
material a occupies the entire segment (y,x]. In Eq. (B4a) 
the quantity tfY,;. (y) is the flux at y averaged over the set of 
states that change from material {3 to a at y and then keep 
material a over the entire interval (y,x]. 

The average flux 1/I:,p (x) can also be calculated from an 
equation similar to (B4a): 

1/I:,p(x) = R ~p(O,x)¢a [O,x;ct>~-;:p] 

+ iXdy R ~p(y,x)¢a [y,x;l/IP-;:p(y)], (B4b) 

and so on for the new average I/IP-;:p (y). Even in the present 
collisionless situation this process cascades into an infinite 
number of equations. We know, however, that for no-mem
ory statistics 

(BS) 

and (B4a) closes in a natural way; moreover, in this case 
(B4a) is identical to (B4b) and to all the other equations in 
the cascade. As we have seen such is not the case for general 
statistics and one is faced with the difficult task of solving an 
infinite system of integral equations. In practice one can 
choose instead to deal with an approximate system of equa
tions obtained from an artificial truncation. The more rudi
mentary example of such a truncation will be to enforce con
dition (BS) an obtain a system oftwo renewal equations of 
the type of (B4) for tP a and tP P . A better approximation is to 
use the truncation condition 

tfYiap (y) = 1/IP"'a (y) = tP pa (y), 
(B6) 

which gives a model with two equations of the type of (B4a) 
for tPa and tPP' and two equations of the type of (B4b) for 
tPfja and tPap· With the notation'll a = tPup and'll p = tPpu 
these equations read: 

tPu (x) = Ru (O,x)¢u [O,x;ct>u] 

+ i
X 
dy Ra (y,x)<Pu [y,x;qt p (y)], 
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A 

'II a (X) = Ra (O,x)¢u [O,x;ct>a] 

+ L'dy Ra (y,x)¢a [y,x;qt p (y)]. (B7) 

This model is exact, however, for alternate renewal pro
cesses4

,5 which fulfill rigorously relations (B6) in the colli
sionless case. 

Notice that approximation (BS) implies that we do not 
make any difference between transitional and nontransi
tional states: tP p (y) is an average over states that have mate
rial {3 at y regardless of whether y is an end point for material 
{3; on the other hand 1/IP"'a (y) is an average that is done exclu
sively on a subset of transitional states, i.e., over states that 
change aty from{3 to a. Approximation (B6) is less drastic 
because it only says that an average on a subset of transition
al states equals the average over all transitional states 
tPpa (y). Axcordingly R ~p (y,x) in Eq. (B4b) has been re
gIaced by Ra (y,x) in the second of Eqs. (B7). The function 
Ra (y,x) is the probability for the states that change from a 
to {3 at x to have material a in the entire interval (y,x). We 
recall that Ra (y,x) is a similar probability but for all states, 
transitional and nontransitional, that have material a at x. 
Finally, the original R ~p (y,x) is the corresponding proba
bility but for only the transitional states that have the inter
val (x,z] in material {3. 

APPENDIX C: THREE-DIMENSIONAL STATIONARY 
MARKOVIAN PROCESSES 

Stationary Markovian processes have been used to de
scribe the statistics of one-dimensional turbulent binary mix
tures and, although such processes can be extended to a 
plane, 12 questions have been raised with regard to the possi
bility of constructing similar statistics in the three-dimen
sional case. 2 The purpose of this Appendix is to investigate 
the use of continuous, three-dimensional Markovian pro
cesses for modeling random multicomponent fluid mixtures. 

For simplicity we will consider stationary statistics. We 
assume that the fluid consists of a random mixture of a finite 
number of materials, and denote by Pa (r) the probability for 
material a at r, and by PuP (s-r) the conditional transition 
probability for material {3 at r given that material is a at s. 
Our aim is to analyze the properties of continuous Marko
vian processes with the properties: 

LPa (r) = 1, \;Jr, 
a 

Pa (r) = L Pp (s)Ppa (s-r), \;Js,r. 
(el) 

p 

It is customary to work with the more basic quantities 
Pap(s-r». From Eq. (e1) it follows that the transition 
probabilities obey the relations 

y 

L Pap(s-r) = 1, 
p 

PaP (r-r) = 8ap . 

(e2) 

To solve these equations we assume that the PaP (s-r) 
are differentiable with respect to rand write·for small dr: 

Richard Sanchez 2509 



                                                                                                                                    

PaP (s-+r + dr) -PaP (s-+r) + dr,VPalJ (s-+r). (C3) 

Finally, from this assumption and the first equation in (C2) 
we obtain the well-known Chapman-Kolmogorov forward 
equations: 

(C4) 
r 

Here the 

faP (r) = lim V PaP (s-+r) 
(s-r) 

have been defined from the limit form, s-+r, ofEq. (C3): 

PaP (r-+r + dr) -oaP + dr·fap(r). 

Since we must always have O<.P ap <. I, it is clear from the last 
relation that the value of faP depends on the way in which 
s-+r or, equivalently, that one should not naively accept 
(C3) without imposing a "flow" condition of the type r;;.s. 
We will return to this point later. 

From (C2) and the solvability condition, V X V PaP = 0, 
of Eq. (C4) we obtain the following relations for the faP's: 

Lfap(r) = 0, 
P 

VXfap(r) = 0, 

L far(r) Xfrp(r) = 0, 
r 

(C5) 

which show, in particular, that these quantities derive from a 
set of potentials. Note also that (C4) implies an equivalent 
equation for the probabilities P a (r) 's: 

VPa (r) = LPp(r)fpa (r). (C6) 
P 

In order to solve the Chapman-Kolmogorov equations 
we will consider only the no-memory situation 

(C7) 

which is certainly the case for binary mixtures. Then, with 

fer) = L fa (r), 
a 

properties (C5) yield 

fa(r) =Pa(r)f(r), (C8) 

with 

fer) XVPa (r) = 0, Va, 

VXf(r) = 0. 
(C9) 

Hence f comes from a potential f = vet> and the Pa's are 
constant along the trajectories parallel to f. By adopting a 
local coordinate system which moves with the trajectories 
we can write r = re + r1 where e = f/fis the unit vector in 
the direction of f at r, and e'r1 = O. Then f = f(r)e and 
Pa =Pa(r1 )· 

The interest of assumptions (C7) is that now the Chap
man-Kolmogorov equations uncouple 

2510 J. Math. Phys., Vol. 30, No. 11, November 1989 

VPap(s-+r) = [pp(r) - PaP (s-+r)]f(r), 

and can then be integrated to yield: 

(ClO) 

PaP (s-+r) = e - r(s,r) P~p (S1 -+r1 ) + (1 - e - r(s,r) )pp (r1 ). 

(CII) 

In this equation P~p is the value of PaP on the equipotential 
surface et> (r) = 0. These "boundary" values must satisfy 
conditions (C2). Also, thepp (r1 ) represents the value ofpp 

on the surface et> (r) = 0, and the function 7 is defined as the 
integral of f'e along the trajectory: 

7(s,r) = r dtf(t) , (CI2) 

wheref;;>O is the length off. 
The PaP (s-+r) ofEq. (Cll) will be actual probabilities 

if and only if 7(s,r);;'0 which, in view of definition (CI2), is 
equivalent to the condition r;;'s. This last condition amounts 
to an ordering of the spatial locations and gives the answer to 
the riddle posed by assumption (C3) that ought to be con
sidered valid only for r;;'s. 

We can use (CI) together with (Cll) to obtain an 
expression for the absolute probability of presence of a given 
material: 

Pa(r) =e-r(O,r)p~(rl) + (1-e- T(O,r»Pa(r
1

), 

(C13) 

where the p~ are "boundary" values on the equipotential 
surface et>(r) = ° which satisfy relations (Cl) on this sur
face. Notice that a possible solution of Eq. (13) is 
Pa (r) = Pa (r1 ) with the Pa 's satisfying conditions similar 
to (C I). This is indeed the unique solution for homogeneous 
statistics for which faP must be invariant under arbitrary 
translations and therefore the Pa 's and f = fe are constants. 
In this case PaP (s-+r) = Paper - s) with 

PaP (x) =e-IX/LP~P(Xl) + (l-e-1x/L)pp, /1;;.0, 

where x = Ixl and /1 = e·x/x. When the P~p's are constant 
this solution gives the slab statistics discussed elsewhere. 2 

We can also consider isotropic statistics for which faP 

are invariant under arbitrary rotations with center the origin 
of coordinates. Then we have again P a = P a and PaP (s -+ r) 
depends only on s,r and /1 = s'r/(sr): 

PaP (s-+r) = e - r(s,r) P~p (/1) + (1 - e - T(S,r) )pp. 

We close this Appendix by noticing that it is also possi
ble to write the transition probabilities in terms of operators 
defined over the associated statistical set. Indeed, if 
~e define the symmetrical subsets of states 
Xap(s-+r) =xa(s)nXp(r) then 

A. 

P 
MaP (s,r) I 

ap(s-+r) = , 
Ma (s) I 

where Map(s,r) is the operator associated to Xap (s,r). 
Moreover 

Pa (s)Pap (s-+r) = Pp (r)Pap (r-+s), (C14) 

in agreement with (C 1) and (C2). Furthermore from the 
definition of the fap's and that of Qa in Appendix A we 
obtain 
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Qa(r,O) = 100 I fap(r)l, 
f3#a 

which with assumption (C7) reads 

Qa(r,O) = (l-Pa)IOofl· 

Note finally that in a statistical set the notion of causality is 
irrelevant and that therefore (C 14) gives the correct defini
tion of PaP (s-+r) for s)-r. 
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Sequences of point transformations and canonical linear transformations are considered in 
classical and quantum mechanics. It is shown that the unitary representations of such 
transformations can be obtained, in general, in the sense that in the limit, classical behavior is 
retrieved. In the particular case of one point transformation combined with two linear 
transformations, the results found in this way are exact. A new class of differential equations is 
thereby solved by quadratures. 

I. INTRODUCTION 

The representation in quantum mechanics of classical 
canonical transformations is a problem set by Dirac, I which 
has been treated extensively in the literature (see, e.g., Refs. 
2-4 ). The classical transformations themselves exhibit fairly 
complicated behavior as soon as we leave the linear domain.5 

Clearly, the composition of two canonical transformations is 
again canonical, i.e., canonical transformations form a semi
group. If we restrict ourselves to bijective transformations, 
the group obtained is not understood well at all. Further
more, it is very frequently necessary to deal with nonbijec
tive transformations. The machinery developed for this pur
pose, however, does not restore the group property.6 

A further restriction to linear transformations leads to 
ISp (2N,R), the inhomogeneous group of real symplectic 
transformations in a 2N-dimensional space, as well as its 
subgroups. This group and its unitary representations are 
well understood. Similarly, the group of bijective point 
transformations, while it has a complicated structure, car
ries a trivial unitary representation. In this paper, we shall 
analyze sequences oflinear transformations and point trans
formations. A conjecture that arbitrary transformations can 
be approximated by such sequences is proposed. We shall 
give a number of relevant examples and then proceed to 
show that sequences containing at most one point transfor
mation, are of particular interest because their unitary repre
sentations are exact solutions of the quantum mechanical 
problem. Therefore they yield a class of differential and hy
perdifferential equations that can be solved by quadratures. 
We display some examples for this class. 

We also show that the Feynman path integral represen
tation of time evolution may be interpreted as the representa
tion of a particular sequence of point and linear transforma
tion. 

II. CANONICAL SEQUENCES OF LINEAR AND POINT 
TRANSFORMATIONS 

Linear canonical transformations in two-dimensional 
phase space are defined as maps L such that 

(2.1) 

Thus the transformations L form the group Sp(2,R) 

= SO (2,1) = SU (1, I). The isomorphisms are useful when 
the representation properties of the group are needed, which 
are more readily available for unitary unimodular groups for 
arbitrary metric than for symplectic groups. Inhomogene
ities could be added, but are irrelevant in the present context. 

Point transformations Pin the same space are defined by 

P: q=f(q), p=Plf'(q)+x(q), (2.2) 

where the derivativef' (q) is assumed to exist, as, otherwise, 
the Poisson bracket is ill defined. These transformations 
form a group as long as the map P is bijective. We now 
consider more general canonical transformations that are 
alternating sequences of L 's and P 'So For example, the trans
formation to action and angle variables for the harmonic 
oscillator 

q = !(p2 + q2), P = arctan(plq) , 

may be written as P IL 2P3L 4 with 7 

PI: Iqll=!q2, (sgnql)PI=plq, 

L 2 : q2 = PI' P2 = - ql , 

P3: q3 = arctan q2' P3 = P2( I + q~ ) , 
L4: q4 = - P3' P4 = q3 . 

Similarly, we have for a linearly increasing potential, 

L I : ql =p, PI = -q, 

P2: q2=qllqll, P2=P I / 2Iqll, 
L3: q3 = P2' P3 = - q2 , 

P4: q4 = ~qj, P4 = P3/4q~ , 

L5: q5 = - P4' P5 = q4 , 

P6: q6=![(-sgnq5/~1+2Iq51 112)+1], 

P6 = 8Pslq51 3/2 ( 1+ 2Iqsl-1/2)3/2, 

L7: q7 = P6' P7 = - q6 , 

Pg : qg = Iq71, pg = (sgn q7)P7' 

L9: q = q9 = Pg, P = P9 = - qg . 

(2.3 ) 

(2.4 ) 

(2.5 ) 

Note that we used the absolute value of q and the sign, in 
order that q and P be defined throughout the plane. This is 
needed in order to lift ambiguities resulting from the nonbi
jective nature of this transformation.s For the present con-
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siderations, however, this point is not relevant. 
For unbound problems we can make similar transfor

mations to energy and time variables. Thus, for the repulsive 
oscillator, we have the following transformation: 

q = !(p2 _ q2), P = -lnw + q\ , (2.6) 

which can be decomposed as L I P2L 3, 

L I: ql=q+p, PI=P, 

P2: q2 = Iniqli, pz = Plql - !qi , 

L3: q3 = Pz, P3 = - q2' (2.7) 

As a further example, the free falling particle can be 
transformed to energy and time variables by the following 
sequence of transformations: 

L I : ql = -p, PI =q, 

P2: q2 = ql' P2 = PI + !qi , 

L3: q = q3 = P2' P = P3 = - q2 . (2.8) 

Finally we may discretize the time evolution of a Hamil
tonian of the formH = ~2 + V(q) with arbitrary V(q) into 
canonical steps, 

qn =qn-l +pnll.t, Pn =Pn-l - VI(qn_I)ll.t. 
(2.9) 

These can be composed as 

Pn: q~ =qn-l' p~ =Pn-l - V1(qn_l)ll.t 

Ln: qn =q~ +p~ll.t, Pn =p~. (2.10) 

Thus the time evolution is given by the limit of a sequence 
P1L1···PNLN· 

Thus we find that sequences oflinear and point transfor
mations have many relevant applications. It is also obvious 
that very complex canonical transformations can be formed 
in this way. We therefore venture the conjecture: Every ca
nonical transformations can be decomposed into a sequence 
of alternating linear and point transformations or can be 
approximated by such a sequence. 

The basis for such a conjecture is as yet slim, but the 
time evolution is more than an isolated example; it is an 
important and general class of transformations. If the con
jecture is wrong it will be important to determine the sub
class of transformations that admit the decomposition. 

III. THE QUANTUM REPRESENTATION 

The quantum representation of linear transformation 
[Eq. (2.1)] is well known2 and given by 

(qi U iq) = (1/~21Tib i )exp[ (jIb) qaq2 _ qq + !dq2)] , 
(3.1 ) 

while the one of the point transformations is given by8 

(qi U Jq) = 8(q - f (q) )~lf'(q) iexp( - i<fo(q)} , (3.2) 

where the phase is determined by the additive term X(q) in 
Eq. (2.2) through the relation <fo(q) = SX(q)dq. 

The representation of sequences L IP2L 3 ' •• Pk is then 
given by the integral 

(qiL IP2" 'Pk Jq) = f dql" 'dqk_1 , 

(qiLliql) (qliP2iq2)'" (qk- I iPk iq) , (3.3) 
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where half of these integrations will be trivial because of the 
presence of delta functions. 

Note that each individual transformation will transform 
the operators for the coordinates and momenta exactly like 
classical variables, but that this is no longer true for the se
quence. In general, the nonlinear nature of the point trans
formations will create a quantum mechanical ordering prob
lem once coordinates and momenta are mixed. Thus the 
operator transforms will only coincide with the classical 
transformation to the loweset order in Ii. Hence the above 
scheme does not yield a representation of the group of se
quences. As is usual in this context, the representation prop
erty is retrieved only in the classical limit. Exact results are, 
in this sense "accidental." 

Yet the occurrence of these additional terms of higher 
order in Ii is of crucial importance as far as practical applica
tions are concerned. We shall therefore introduce the con
cept of a precise representation of a classical transformation. 
By definition, such a transformation transforms the quan
tum mechanical operators for the coordinates and the mo
menta exactly as their classical counterparts. In such a case, 
the unitary representation will lead to exact quantum me
chanical results, whereas otherwise it will only yield a semi
classical limit. 

In particular, we readily see that the subset of sequences 
of type L I P2L 3 will have precise representations as a result of 
the fact that the quantization off (q) and pi f' (q) is always 
unique. On the other hand, a sequence involving more than 
one nonlinear term will not, in general, admit such a repre
sentation, as the reSUlting classical functions will in general 
contain nonuniquely quantizable terms. 

Thus the transformation to action and angle variables of 
the harmonic oscillator and its decomposition given in Eq. 
(2.3) yields for the integral 

(qJUJq) = f dql dq2 dq3 8(iqli- ~)Jlqf 

which can be simplified to 

(qi U Jq) = 2Jlqf J dx COS(q2 x) 1 
1T 2..[f+"? 

x(I+Z:X)9/2. i 8(q-2m). (3.5) 
I-IX m=-oo 

The nonbijective nature of the first point transformation 
gives rise to the separation of odd and even states as well as to 
the appearance of negative actions. A careful discussion of 
such ambiguities allows us to resolve such problems in terms 
of Riemann-type sheets in phase space or ambiguity spin.4,5,9 

More importantly, however, it can be seen that the re
sult is wrong. Indeed, it has been shown4 that (qi U Jq) is 
simply the expression for "'9 (q). By inspection, we find that 
for any q the integral diverges logarithmically as q -+ O. Thus 
we have 

"'9 (q) = O(ql/21n q) (q-+O) , (3.6) 
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in manifest contradiction to the properties of the harmonic 
oscillator functions. 

On the other hand, as we have seen, the repulsive oscilla
tor can be reduced to energy and time variables using only 
one point transformation. This gives 

(qlU@=fdqldq2 e-(i/2)(q-q,l' o(q2- ln lqll) 

.J2ii 
ii,/4 I eiq,q Xe 1. ____ , 

J[qJ .J2ii 
(3.7) 

which again simplifies to 

(ql u Iq) = _e__ dx e- i(x'/4-qXl·lxliq-1I2. - iq'/2 f 

21T 
(3.8) 

It is then straightforward to relate this integral to the 
parabolic cylinder functions (see, e.g., Whittaker and Wat
son,1O p. 349) or else to insert it in the Schrodinger equation 
and verify that it is indeed exactly satisfied. 

The case of the free falling particle is handled similarly. 
One has 

which is indeed the exact solution. Thus the above examples 
vindicate the claim that no ordering problems occur in com
binations of the typeL I P2L 3 , while they do occur in the com
bination L I P2L 3P4 , which is next in order of complexity. 

If we finally consider a single step of the time evolution 
transformation (2.9), it is readily represented by 

_ 1 [.At(l(qn-qn-I)2 - exp - la - __ .::..:.:...---c... 

~21Tat 2 at 

(3.10) 

Note that, in the limit at ..... 0, this becomes e - iL(q,q)I!>." where 
L(qlq) is the Lagrangian of the system. 

Thus the full time evolution operator is obtained as a 
limit of successive iterations of the transformations (2.10) 
and we recover the Feynman path integral representation. 
Furthermore, we know this representation to be precise. 
Note that this does not imply that the representation of a 
finite product PILI· - - . PNPN is also precise. 

IV. THE MOST GENERAL LPL TRANSFORMATION 

The procedure outlined above can in fact be inverted: it 
is not hard to write down the most complicated form of p and 
q that can occur (as p or q) as the result of a transformation 
of the type L I P2L 3• It is given by 

F(Plq) = (ep+dq)f(ap+bq) +g(ap+bq) , (4.1) 
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wheref(x) andg(x) are arbitrary functions of a, b, e, and d 
are real constants with ad - be =1= 0 (or, without loss of gen
erality, ad - be = 1). 

Thus a Hamiltonian of the form (4.1) can be diagonal
ized by quadratures. This means, in other words, that the 
entire class of differential and hyperdifferential equations 
given by Eq. (4.1) can be solved in closed form. While this is 
an interesting result of the theory of canonical transforma
tions developed above, it also has a far simpler derivation: 
consider a basis where the operator ap + bq is diagonal (i.e., 
is the multiplication operator). If ad - be = 1, one has 

[ap+bq, ep+dq] =i, (4.2) 

so that, calling this basis 1..1. ), we have for t/J = Sa (A.) 1..1. ), 

(ap + bq)a(..1.) = ..1.a(..1.), 

(ep + aq)a(..1.) = 1. ~ a(..1.) , 
i d..1. 

and hence the operator defined above becomes 

- --f(..1.) + f(..1.)-- +g(..1.). 1(1 did) 
2 i d..1. i d;{ 

(4.3) 

(4.4) 

This is a linear differential operator of the first order, which 
is readily solved by quadratures, while the basis 1..1.) can 
readily be expressed in terms of elementary functions. 

We have seen that the repulsive oscillator, the free fall
ing particle, and the free particle belong to this class of Ham
iltonians. Unfortunately, it can be shown that the only Ham
iltonians of the form H = T(p) + V(q), which can be cast 
into the form of Eq. (4.1) are the following: (i) T(p) or 
V(q) is linear and the other arbitrary; (ii) T(p) and V(q) 
are quadratic polynomials of opposite sign. Thus there are 
no physically relevant Hamiltonians significantly different 
from the two mentioned above. 

To show this, note first that the first case is obvious. We 
therefore limit ourselves to the case where neither T(p) nor 
V(q) are linear. We can further assume that a =1=0, since oth
erwise it is impossible to construct Hamiltonians that are not 
linear in p. But from Eq. (4.1) follows 

F((1/a)(C - bq)lq) = A(C)q + B(C) , (4.5) 

for any value of C. Applying this to the above Hamiltonian 
one gets 

T((1/a)(C - bq») + V(q) = A(C)q + B(C) , (4.6) 

and taking the derivative with respect to C, 

,(I ) (dA dB) T -(C-bq) =a -q+- , 
a dC dC 

(4.7) 

which is only possible if T(p) is quadratic (since we have 
excluded the linear case). This, however, leads immediately 
to the fact that V(q) is also quadratic in q, thus proving the 
claim. If a, b, e and d are real further it is easy to see that the 
leading coefficient in V(q) must be negative, showing that 
the attractive oscillator cannot be incorporated in this for
malism without using complex extensions. Such extensions 
have been shown to lead to the algebraic solution of the oscil
lator by introducing Bargmann-Hilbert spaces. II If we ap
ply them in the spirit of this paper, we end up with the well
known expression of Hermite polynomials in terms of 
parabolic cylinder functions. 
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v. CONCLUSIONS 

We show that sequences oflinear and point transforma
tions describe a number of relevant canonical transforma
tions; a conjecture was put forward that such sequences may 
approximate an arbitrary canonical transformation, but a 
proof is not given. On the other hand, the subset of such 
transformations is readily represented by unitary transfor
mations or, more generally, isometries. This is obtained by 
folding the representations for each member of the sequence. 
If the conjecture is true, this result is of great importance, 
because it solves the representation problem by quadratures. 
Should the conjecture prove false, we still have solved this 
problem for a large and relevant class of transformations. 

We show that only a few examples correspond to Hamil
tonians of the type ~2 + V(q) and these are discussed expli
citly. On the other hand, interesting special cases that are not 
of this type may be found in this class of transformations. 

The concept of precise representation has thus proven 
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useful, and we may study whether other classes of transfor
mations exist for which we can give precise representations. 
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It is shown that by change of variables, the equations of motion of the inviscid fluid can 
transform into a differential equation for a wave function "', consisting of two complex 
components. A unit spin vector s can be formed by means of the wave function. The fluid flow 
vorticity is determined only by the spin vector. The dynamical equation for the'" reduces to a 
linear equation with constant coefficients, if the flow is potential (s = const) and the state 
equation has some special form. Use ofthe wave function", reduces the nonlinearity connected 
with the convective term (vV)v. It means that the velocity expansion over powers of E (E~ 1) 
associates with the wave function expansion over powers of €2. 

I. INTRODUCTION 

It is known I that the wave function satisfying the Schro
dinger equation describes a potential flow of some inviscid 
fluid. But a solution of the reciprocal problem of describing 
an arbitrary (non potential, generally speaking) flow in 
terms of the wave function meets some difficulties, because 
of a discrepancy in the number of variables (four variables p, 
v for the hydrodynamical description and two variables 
Re ""1m,,, for the quantum description). In the present pa
per this problem is solved by means of doubling the wave 
function components. It leads to appearance of the spin and 
spinors. 

The equations of isentropic motion of the inviscid fluid 
have the form 

av - + (vV)v = F, at 
(1.1 ) 

: + V(pv) =0, 

F = {Fi,F2,F3}, Fa = - (1lp)af3 p af3, a = 1,2,3, 

(
au au) au p af3 = Daf3 p ~ - u + ---;;- Pr - paa ---;;-, 
up up r up f3 

( 1.2) 
a,{J = 1,2,3 , 

a 
Pf3 =A3P, aj =-., i = 0,1,2,3 , 

ax' 
where X O = t is the time, x = {X

I
,X

2
,X

3
} is the position vec

tor, and p, v = {V I,V2,V3} are correspondently the density 
and the velocity of the fluid. U = U(p, V p,S) is the internal 
energy of the unit volume. The U depends on the density p, 
on the density gradient Vp, and on the entropy density S, 
which is supposed to be constant. Furthermore, the depen
dence of S will be omitted. In the special case when the U 
does not depend on V p, the fluid is barotropic, and the stress 
tensor paf3 becomes isotropic. In relations (1.2), and later 
on, the summation is made over repeated latin sub- and su
perscripts from ° to 3 and over Greek ones from 1 to 3. 

Let us change variables, 

f=p = "'*"', 
}==pv = - (ia!2)( ",*V", - V",*",) , (1.3 ) 

where", and "'* are correspondently a column and a line of 
two complex variables "'I and "'2' 

'" = (~J. "'* = (t/1,,,,!), f*g=ffgl + f!g2' (1.4) 

An asterisk denotes the complex conjugate. The a is a con
stant, having dimensionality of the kinematic viscosity 
(cm2/s). 

Now let us consider the equation for "', 

.a'I/J A A A A. A. 

1O-=L"" L =Lo+LD +Lc, at 

where CT = {al>a2,a3} are 2X2 complex matrices known as 
spin matrices or Pauli matrices and ao is the unit matrix: 

ao = (~ ~), a l = (~ ~), 

a2 = e ~ I} a3 = (~ ~ J ' ( 1.6) 

p = "'*"', Sa = ",*aa ",/",*"" a = 1,2,3, So = 1 , 

U'= U'(p)=au -aa au . (1.7) 
ap apa 

The variable", will be called the wave function. The fact is 
that in the special case, when 

U=a
2 

(Vp)2, U'= -~VV;';, "'2=0, (1.8) 
8 p 21P 

one obtains S = const (a = 1,2,3). As a result, all terms 
depending o~ '" disappear in the operator L. Setting 
a = fzlm, "'I = f 1m, where fz is the Planck's constant, one 
obtains instead of ( 1.5) the Schrodinger equation 

ifz af = _ ~ V2f (1.9) 
at 2m 
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for wave function/, which describes the motion of a spinless 
particle with the mass m. 

If¢' is a solution of the system of equations (1.3), where 
p, v is a solution of the system ( 1.1), then the ¢' satisfies Eq. 
( 1.5). Vice versa, if ¢' is a solution of Eq. (1.5), then p, v 
determined by Eq. (1.3) satisfy the system (1.1). A direct 
verification of these statements is rather bulky and compli
cated. For instance, a direct substitution of Eqs. (1.3) into 
Eqs. (1.1) leads to four equations. Each term of these equa
tions is an even combination of ¢" whereas each term of Eq. 
( 1.5) is an odd combination of ¢'. In other words, to obtain 
Eq. (1.5), some additional nontrivial transformation is 
needed. 

Strictly speaking, one cannot say that the system (1.1) 
is equivalent to Eq. 0.5), because every solution of Eqs. 
(1.1) associates with a set of solutions ofEq. (1.5), whereas 
every solution ofEq. (1.5) associates with one and only one 
solution of Eqs. (1.1). It is associated with the fact that the 
relation ( 1.3) betweenp, v, and ¢' is differential in terms of ¢" 
but it is finite in terms of p, v. 

Let us constitute a system I of Eqs. (1.1 )-0.3), and a 
systemIIofEqs. (1.3), (1.5)-(1.7). Theneverysolutionp, 
v, ¢' of system I is a solution of system II. Vice versa, every 
solution p, v, ¢' of system II is a solution of system I. The 
following theorem takes place. 

Theorem 1: The system of equations (1.1)-( 1.3) for 
variables p, v, ¢' is equivalent to the system of equations 
(1.3), (1.5)-(1.7) for the same variablesp, v, ¢'. 

Let us show that both system I and system II are systems 
of Eulerian equations (extremals) for the same variational 
problem. Such a way of proving the theorem seems the most 
simple. 

Proof of Theorem 1: Equations (1.1) and (1.3) can be 
obtained as extremals of the variational problem with the 
action functional 

S [p,j,q:>,~] = J {~: - U(p) - a/(a;q:> 

+ Eaf3r ba 17f3a;17r ) } d 4X , 

where 

j 0 = p, j = pv, ~ = {tl,t2,t3}' 11 = ~/I~I ' 

(1.10) 

b=const, b2 =1, a;=~, i=0,1,2,3. (1.11) 
ax' 

Here, Eaf3r is the Levi-Civita pseudotensor (E l23 = 1) and ~ 
are Lagrangian coordinates numbering the fluid particles. 
Among variables q:>, 11 only three are independent, because 
112 = 1. The variables q:>, 11 are related to the wave function ¢' 
by means of relations 

¢' = /jiei'P17aO'aX, ¢'* = X*O'a 17a e - i'P /ji , 

where 

0.12) 

X = (;J = const, X* = (xT,x!), X*X = 1, (1.13) 

(1.14 ) 

the last Eq. (1.14) being a corollary ofEq. (1.13) and of the 
identity 
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(1.15 ) 

Equations (1.12) determine one-to-one relation between ¢' 
andp, q:>, 11 (p>O, Iq:> 1<1T)· 

Varying (1.10), one obtains 

8S '2 
- ~ - u' (p) - a(aoq:> + Eaf3rba 17f3ao17r ) 

8p 2p 

=0, 

8S j 
8j = P - a (a/1-q:> + Eaf3r ba 17f3a/1-17r ) 

= 0, f..l = 1,2,3, (1.16) 

8S a'; ° 8q:>=a i1 = , 

8S 2'i b a ~ - 171317/1-
8t/1- = - alEaf3r a ;17r I~I 

= 0, f..l = 1,2,3 . 

Eliminating q:> from the first two equations in (1.16), one 
obtains 

ad" + a/1-(v2) + a/1- U'(p) at 2 

= 2aEaf3rbaao17f3a/1-17r' f..l = 1,2,3, (1.17) 

ayd" - a/1- u
y 

= 2aEaf3rbaav 17f3a/1-17r , f..l,v = 1,2,3. (1.18) 

Let us convolute the last equation in (1.16) with a y 17/1- and 
take into account that because of 112 = 1, 

17/1-ai 17/1- = 0. (1.19) 

Then one obtains 

/Eaf3r baay 17f3a;17r = ° . (1.20) 

Let us eliminate 171' from Eqs. (1.17) and (1.18). For 
this purpose let us multiply Eq. (1.17) by r = p, Eq. (1.18) 
by r, and add them. Due to Eq. (1.20), the right-hand side 
of the equation vanishes. After transformations, the first 
equation in (1.1) arises. The third equation in (1.16) coin
cides with the second equation in (1.1). The relations ( 1.3) 
result from Eq. (1.12) and from the second equation in 
( 1.16). 

Thus system I of Eqs. (1.1), (1.3) describes extremals 
of the functional (1.1 ° ) . 

Let us add the conditions (1.3) to the variational prob
lem ( 1.1 0) by means of the Lagrangian multipliers qo and q a 
(a = 1,2,3). Equations (1.3) are necessary conditions of the 
functional (1.10) extremum. Hence joining Eqs. (1.3) as 
additional conditions, one does not change the variational 
problem. As a result, one obtains instead of Eq. (1.10), 

S2[P,j,¢"q] = J d 4x{ ~ (¢,*ao¢' - ao¢'*¢') 

_ a2 [i( ¢'*V¢' - V¢,*¢,) ] 2 

8 ¢'*¢' 

- U(¢'*¢') + qo(p - ¢'*¢') 

+qa~'(Z+ i;(¢,*aa¢,-aa¢'*¢')]}. (1.21) 

By means of the identity 
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[i(ifJ*VifJ - VifJ*ifJ) f 
=.4(ifJ*ifJ) (VifJ*VifJ) 

- [V (ifJ*ifJ)] 2 - (ifJ*ifJ)VSa VSa , ( 1.22) 

where Sa is defined by Eq. (1.7), the functional (1.21) can 
be represented in the form 

S2[P,j,ifJ,q] = f d 4x{ i; (ifJ*aoifJ - aoifJ*ifJ) _ ~2 VifJ*VifJ 

+ a
2

[ [V(ifJ*ifJ) ]2 + ,/,*,/,VS Vs ] 
8 ifJ*ifJ 'f' 'f' a a 

- U(ifJ*ifJ) + qo(p - ifJ*ifJ) 

+qa~"a+ i;(ifJ*aaifJ-aaifJ*ifJ)]}. (1.23) 

Variation over / leads to 

q; = 0, i = 0,1,2,3. (1.24) 

Variating (1.23) over q; and ifJ, and taking into account des
ignations ( 1.7) and Eq. ( 1.24), one obtains correspondently 
Eq. (1.3) andEq. (1.5). 

Thus system II of Eqs. (1.3), (1.5) describes extremals 
of the action functional (1.10). It proves the theorem. 

Let us refer to the unit vector s = {s I,S2,S3} with compo
nents defined by Eqs. ( 1.7) as the spin vector, or merely spin. 
As a result ofEq. (1.15), 

( 1.25) 

Theorem 2: The unit spin vector s is constant for any 
fluid particle of the inviscid fluid, 

ds as 
-=.- + (vV)s = 0. (1.26) 
dt at 
Proof: The action functional ( 1.21) is invariant with re

spect to transformation 

( 1.27) 

where UJk = const (k = 0,1,2,3) are the transformation pa
rameters. The action (1.23) is invariant with respect to 
transformation ( 1.27) also. As a result of Nether's theorem2 

one obtains the conservation laws of the form 

!...(pS;) + V (pvs;) = 0, i = 0,1,2,3 . 
at 

( 1.28) 

For i = ° Eq. (1.28) leads to the second equation in (1.1). 
For i = 1,2,3 Eqs. (1.28) coincide with Eq. (1.26) due to 
Eq. (1.28) for i = 0. 

Theorem 3: The vorticity of the inviscid fluid is deter
mined by the field of the unit spin vector s, 

Vxv = ~{..!...[VSI XVs2] + ..!...[VS3 XVS1] 
12 ~ ~ 

+ ..!...[VS2XVS3]} . 
SI 

( 1.29) 

Proof: It follows from Eq. (1.3) and from the second 
equation (1.16) that 

Vxv = a{b l [V112XV113] + b2[V113X V7JI] 

+ b3[V7J1XV7J2]}' (1.30) 
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i.e., curl v depends on 11, but not onp and (/1. Using Eq. (1.1) 
and the properties of Pauli matrices, 

( 1.31) 

one can obtain the relation between unit vectors s, 11, b. It has 
thefQrm 

11 = (b + s)/~2(1 + bs) . ( 1.32) 

From a geometrical standpoint, it means that 11 is directed 
along the bisectrix of the angle between the constant vector b 
and the spin s. Substituting Eq. (1.32) into Eq. (1.30), one 
obtains after some calculations the relation (1.29). As one 
should expect, the curl v does not depend on a choice of the 
constant vector b, i.e., on the wave function representation. 
The vorticity is determined completely by the spin s, but the 
reverse statement is not valid, generally speaking, because 
the spin s depends on the wave function representation. 

It is worthwhile to note a more interesting circum
stance. According to Eqs. (1.3) and (1.29), both v and 
curl v are expressed through first-order derivatives of the 
wave function. All second-order derivatives of ifJ arising at 
action of the operation curl upon v vanish. 

II, CONNECTION BETWEEN DIFFERENT WAYS OF 
DESCRIBING THE INVISCID FLUID 

Usually such concepts as the spin and the wave function 
are associated with quantum mechanics. Their appearance 
in the continuous medium mechanics seems to be rather un
expected. To explain this question, let us try to establish a 
connection between the Lagrangian description (LD), the 
Eulerian description (ED), and the description in terms of 
wave function (DTWF). In this section only, the case will be 
considered when U does not depend on Vp, i.e., 

U/(p) = dU(p) . 
dp 

The system of equations of LD has the form 

dx dv 
-=v(t,x), -=F. (2.1) 
dt dt 

It contains six equations for six dependent variables x, v, 
which depend on four independent variables t, ;. The 
; = {tl,t2,t3} are the Lagrangian coordinates, whichnum
ber the fluid particles. 

The system of the ED equations has the form (1.1). It 
represents four equations for four dependent variables p, v 
which depend on four independent variables t, x. The LD 
contains more equations than the ED, and solutions of the 
system (2.1) describe the trajectories and velocities of fluid 
particles, whereas a solution v = v (t, x) of the system ( 1.1 ) 
describes only the fluid particle velocities. For describing the 
trajectories, it is more necessary to integrate the system of 
ordinary differential equations 

dx dt = v(t,x) , (2.2) 

where v(t, x) is some solution of Eqs. (1.1). 
The ED can be obtained from the LD by substitution of 

independent variables t, ; by t, x. At such a transformation, 
the system (2.1) takes the form 
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·,. aJ 
J=-

aSO,,. 

a(X",SI,S2,S3) 
a(t,xi,x2,X3) , 

av -+ (vV)V= F, 
at 

i = 0,1,2,3, / = {P,pv}, (2.3 ) 

(2.4) 

where 

J = detllS,.,k II 

a(SO,SI,S2,S3), S,.,k =aks,., i,k = 0,1,2,3 (2.5) 
a(xO,x l ,x2,x3 ) 

is the Jacobian, which is a four-linear function of variables 
S,.,k =ad,. (i,k = 0,1,2,3), the So being the time Lagrangian 
coordinate. The So is fictitious, and it is not contained in Eqs. 
( 2.3) and (2.4). The term p denotes the Jacobian, 

aJ a(SI,S2,S3) 
P=-a'f;- = a( I 2 3)' 

~o,o x,x ,x 
(2.6) 

The system (1.1) is obtained from Eqs. (2,3) and (2.4), if 
one eliminates Lagrangian coordinates S, using identity 

aJ a,.-=o. 
aSo,,. 

(2.7) 

The substitution of Eq. (2.3) into Eq. (2.7) leads to the 
continuity equation [the second equation in (1.1)]. Equa
tion (2.4) coincides with the first equation in (1.1). 

Let us note that the Lagrangian coordinates S play the 
role of a vector stream function in the sense that the combi
nation (2.3) of the first-order derivatives of S is a solution of 
the continuity equation (2.7) for any choice of the quantities 

s· 
Elimination of the Lagrangian coordinates leads to re-

ducing the order of the system, what is connected with some 
arbitrariness of their choice. Indeed, the quantities p, v are 
invariant with respect to the transformation 

a(S ; ,S ~ ,S ~) = 1 . 

a(SI,S2,S3) 
(2.8) 

It means that the S are determined to within two arbitrary 
functions S ; , S;· But the S 3 is determined by the relation 
(2.8). Thus the transition from the LD to the ED is a trans
formation of variables (t,s) --. (t,x) which is accompanied 
by a substitution of three variables S by one variablep, thep 
being a function of spatial derivatives of s. 

The transition from the LD to DTWF is also a transfor
mation of variables (t,s) -+ (l,x), butthe Lagrangian coordi
nates are not eliminated. The wave function t/J contains infor
mation about the fluid particles' trajectories in the finite 
form. For instance, if the t/J is a solution of Eq. (1.5), then 
three independent relations 

t/J(t,x) _ (XI) - * * _ 1 --- - - const, XIXI + X2X2 - , 
~t/J*t/J X2 

(2.9) 

describe the fluid particle motion in the finite form. In this 
respect t/J is distinguished from the solutionp, v ofEq. (1.1), 
which describes the fluid particle motion only by means of 
the differential equations (2.2). The DTWF arises after par
tial integration of the system (2.3), (2.4). 
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The invariance of the system (2.3), (2.4) with respect to 
the transformation group (2.8) enables us to reduce the or
der of the system (2.3), (2.4). The last can be represented in 
the form of a system of four first-order equations for four 
variables S = {S,.}, i = 0,1,2,3, 

g aOSk = ------ -- - U (p), k 1 aJ aJ(aJ)-2 I 

2 aSo.a aSo.a aSo.o 

gaaSk =-- --, a= 1,2,3, k aJ /aJ' 
aSo.a OSo,o 

(2.10) 

where gk (k = 0,1,2,3) are functions of the Lagrangian co
ordinates S and satisfy the conditions 

agO agP 
-=-, /3= 1,2,3. 
asp aso 

(2.11) 

In particular one can set gO = 1, ~ = ~ (s). The relations 
(2.10) are a result of integration of the system (2.4). One 
can verify this by means of substituting the relations (2.1 0) 
into identities with respect to S, 

aa: ap (g'Ss,i) - a:J a,. (g'Ss,p) 
~O.l ~O.l 

=Sa.pa[ g'a,.Ss = 0, ( 
a2J ) 

a50,laSa,l 
/3= 1,2,3, (2.12) 

which are valid for g' (s = 0,1,2,3) satisfying Eq. (2.11). 
Substituting relations (2.10) into the left-hand side of Eq. 
(2.12) and using designations (2.3), one obtains Eqs. (2.4) 
as a result. Thus the system of equations (2.10) is equivalent 
to the system of equations (2.3), (2.4). Its order is reduced 
because arbitrariness of the Lagrangian coordinates S is tak
en into account by a choice of functions g' , So' The wave 
function ( 1.12) corresponds to the choice of the function g' , 
So in the form 

50 = arp, gO = 1, It' = (a/lsI2)€apl' baSP, J.l = 1,2,3, 

ba = const, ba ba = 1, a = const . (2.13) 

Essentially, Eq. (1.5) for t/J is the system (2.10) represented 
in terms of (1.12), (2.13), and (2.6). Appearance of the 
second-order spatial derivatives in Eq. (1.5) is connected 
with relation (2.7) which is used for the calculation of ap/ at. 

III. APPLICATION OF THE DESCRIPTION IN TERMS OF 
WAVE FUNCTION 

The DTWF reduces the nonlinearity connected with the 
convective term (vV)v, but it does not concern nonlinearity 
connected with the dynamical term F in Eq. (1.1). Let us 
manifest this in the example ofthe "quantum fluid" with the 
internal energy U of the form (1.8). In this special case, the 
dynamical term LD and the first term ofLc compensate for 
each other, and Eq. (1.5) takes the form 

. at/J A. A. I 

lQ - = Lot/J + Lc(t/J)t/J, 
at 

A a2 

L; (t/J) = -"8 VSa VSa 
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A 

Let us consider the solutions ofEq. (3.1) for which IL; 
(tP)tPl<ILotPl. Let 

tP = tPo + £2tPz + £41/14 + ... (3.2) 

ia atPo - LotPo = 0 , at 
. atPz LA .1. 1 LA, (,I. ),1. (3.3) za -at - 0'1'2 = £2 c '1'0 '1'0' 

ia atP4 - LOtP4 = ~{L; (1/10 + £2tP2) (1/10 + £2tPz) at € 

-L;(tPo)I/Io} . 
Such an expansion arises, if the zeroth approximation tPo is 
taken in the form 

I/IoU,x) = L d kf(k)exp{ - ia:
2 

t + ikX} , 

f(k) = (II (k)) (3.4) 
J;(k) , 

where f(k) is a column of two complex functions of the 
wavenumber k. The functions do not vanish only inside the 
volume.o. of the k-space, the line size X of the .0. being small 
as compared with the mean wavenumber K inside.o., i.e., 

K= (kdk, x=max{lk-k'l} for kE.o., k'E.o., JIl 
K=IKI, X=€K, €<1. (3.5) 

The following estimations can be obtained from the defi-
nitions (1.7) and relations (3.4), (3.5), 

IVsa I =€K, IVpl =€K Ipl, IV2sa I =£2K2, 
A 2ZZ 2A IL;(tPo)tPol=f--a K ItPol=f- ILotPol· (3.6) 

Thus if the solutions of Eqs. (3.3), I/IO,I/IZ,I/I4' ... ' have the 
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spectrum unvanishing only inside.o., then relation (3.2) is 
an approximate solution of Eq. (3.1). 

On the other side, if one searches for the solution of Eq. 
( 1.1) associating with Eq. (3.1), then the expansion has the 
form 

v = Vo + €VI + £2vz + ... , 
P = Po + €PI + £2p2 + ... , (3.7) 

p, v being connected with tPo,tPz, ... , by means of relations of 
the form 

Po = const, Vo = canst, Po + €PI = t/itf/;o, 

ia 
Vo + €VI = - --(t/itVf/;o - Vt/itf/;o) , 

2f/;~f/;0 

Po + €PI + £2pz + CP3 = (f/;~ + £2f/;!) (f/;o + £2f/;2)'··· . 
( 3.8) 

Thus the transition from ED to DTWF enables us to 
substitute the expansion in series over powers of € by the 
expansion in series over powers of £2. 
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The method of inverse scattering is extended to solve the initial value problem of a variable 
coefficient and nonisospectral Korteweg-de Vries equation with time varying boundary 
condition. One- and two-soliton solutions are examined in detail. By an appropriate 
decomposition, soliton interactions and asymptotic behaviors are investigated. Oscillating and 
asymptotically standing two-soliton solutions are discussed. 

I. INTRODUCTION 

The purpose of this paper is twofold. We first describe 
some extensions of the inverse scattering in solving a noniso
spectral and variable coefficient Korteweg-de Vries (KdV) 
equation with time varying nonvanishing boundary condi
tion. Second, we obtain some nonpropagating soliton solu
tions and demonstrate their behavior. The experimental dis
coveries of them have only been recently reported.··2 Our 
aim is, therefore, to provide a mathematical model for such 
solitons. At present, theoretical results on them are sketchy. 
However, here we show clearly that the factors that contrib
uted to their presence are (1) the coefficients of the evolu
tion equation are time varying, (2) the scattering problem is 
nonisospectral, and (3) the time varying boundary condi
tion is nonvanishing. The first author3 has initiated the study 
of a KdV equation with (1) and (2) and constructed one
soliton solutions by Backlund transformation. Au-Yeung et 
al. considered a special case of (3), i.e., with constant non
vanishing boundary condition.4 They argued forcefully the 
relevance of such condition but no non propagating soliton 
appeared in their study since (1) and (2) were not treated. 
Our emphasis is on two-soliton solutions and we adopt the 
approach of Moloney and Hodnett5 in decomposing them 
into individual solitons in order to examine their interac
tions. Specifically, we consider the following variable coeffi
cient and nonisospectral KdV equation (h-t-KdV equation) 

u, + Ko(uxxx + 6uux ) + 4K.ux - h(2u + xUx ) = ° 
(1.1 ) 

under the time varying boundary conditions 

u(x,!) .... L(t), U
X 

(x,!) -+0 as X-+ + 00, ( 1.2) 

and 

(1.3 ) 

where (A) Ko, K., h, and L are smooth functions of t; (B) 
the Lax pair of (1.1), from Ref. 3, is 

t/lxx+ut/l=At/l, (1.4) 

t/l, = Kouxt/l+ [hx- 2Ko(u+U) -4K.lt/lx; (1.5) 

(C) A, = 2hA, (1.6) 

where A is a function of t. 

This paper is organized as follows. In Sec. II, the meth
od of inverse scattering is extended to solve the initial value 
problem of ( 1.1 ). In particular, we establish a relation con
necting the nonisospectral condition and the non vanishing 
boundary condition. Examples of one-soliton solutions are 
given in Sec. III while two-soliton solutions are examined in 
detail in Sec. IV. The method of Ref. 5 is extended to investi
gate soliton interactions and their asymptotic behavior. In 
Sec. V oscillating two-soliton solutions and asymptotically 
standing two-soliton solutions are discussed. Qualitatively 
they reproduce experimental observations in Ref. 1. 

II. INVERSE SCATTERING 

We consider the initial value problem ofEq. (1.1) with 
the initial value condition 

u(x,O) = uo(x), 

and 

f"co (1 + Ixl) luo - L(O) Idx < 00 

under the conditions (1.2), (1.3), (1.6). 

(2.1) 

(2.2) 

Theorem 1: A necessary condition for the above prob
lem to be solvable is 

L, = 2hL. (2.3 ) 

Proof Let u(x,t) be the desired solution. Taking trans
form 

u = u' +L(t) 

and substituting it into (1.2)-( 1.5), so that 

u' .... o, u~-+O, as X-+ + 00, 

u' (x,O) = uo(x) - L(O), 

{COco (1 + Ixl>lu'ldx< 00, for all t, 

and (1.4) and (1.5) become 

-t/lxx + (-u')t/l=k 2t/l, k 2 =L(t) -A, 

t/l, = Kou~ t/l + [hx - 2Ko(u' - 2k 2 

+ 3L(I) - 4k.]t/lx· 

(2.4 ) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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From Ref. 6, it is clear thatthe system (2. S) and (2.9) has a 
solution 

f(x,k,t) = C1 (t)tPl (x,k,t) + C2(t)tP2(X,k,t). (2.10) 

where 

tPl (x,k,t) -+exp( - ikx), 

tP2(x,k,t) -+exp(ikx) as X-+ 00 

and c~ (t) + c~ (t) #0. Hence 

f(x,k,t) -+C1 (t)exp( - ikx) + c2(t)exp(ikx) as X-+ 00. 

(2.11 ) 

Substituting it into (2.9), and as x -+ 00, 

C; (t)exp( - ikx) - iktc1 (t)x exp( - ikx) + c; (t)exp(ikx) + ik,c2(t)x exp(ikx) 

= 4ik [ - Kok 2 + ~KoL + KI] C1 (t)exp( - ikx) - ihkc1 (t)x exp( - ikx) 

- 4ik [ - Kok 2 + ~koL + Kdc2(t)exp(ikx) + ihkc2(t)x exp(ikx). (2.12) 

Comparing the coefficients of the terms x exp ( - ikx) on 
both sides of (2.12), we have 

kt=hk. (2.13) 

Hence2k k t = 2h k 2, (k 2) t = 2hk 2. By (2.S) and (1.6), we 
have (2.3). The proof is completed. 

Remark: From this theorem, if Ko = 1, Kl = 0, h = 0, 
then L (t) can only be a constant and Eq. (1.1) becomes the 
standard KdV equation. This is the case studied by Au
Yeung et al. 

In the proof of Theorem 1, it is shown that the eigenval
ues k 2 of the Schrodinger equation should satisfy 

k 2(t) = L(t) - A(t) 

= [L(O) - A(O) ]exp( - 2 L h dt) 

= k 2(0)exp( - 2 L h dt ). 

Theorem 2: Let {a(k,t), r(k,t), k" b, (t)} be the scatter
ing data with respect to - u' = - u(x,t) + L(t), where u 
is a solution of (1.1) under the conditions (1.2), (1.3), 
(1.6), (2.1), (2.2), and (2.3). Then thefollowing equalities 
are valid. 

The transmission coefficient 

(2.14 ) 

the reflection coefficient 

r(k,t) = r(o)exp [ - Si Lk( - Kok 2 + ~KoL + Kl )dt l 
(2.15) 

A [k, exp( - L h dt )] = 0, k, = i77" 1= 1,2,3, ... ,N, 

(2.16 ) 

and 

(2.17) 

where k = ~L - A, reO) = r[k(O) ,0]; A (s) is a function of 
s; b, = reO) A [k, (0)] and 

II (t) = - Si L k, [ - Kok 7 + ~ KoL + Kl ]dt 

Proof' First we recall that the scattering data with re
spect to - u' is derived from the Schrodinger equation 
(2. S). Following the proof of Theorem 1 and using (2.13), 
(2.12) becomes 

c; (t)exp( -ikx) + c; (t)exp(ikx) 

= 4ik [ - Kok 2 + ~KoL + K 1 ] C1 (t)exp( - ikx) 

-4ik [-Kok2+~KoL+Kdc2(t)exp(ikx). 
(2.19) 

Comparing the coefficients of terms exp( - ikx), exp(ikx) , 
respectively, on both sides of (2.19), we obtain the system 

c; (t) = 4ik [ - Kok 2 + ~KoL + K 1 ] C1 (t), (2.20) 

c;(t) = -4ik [-Kok2+~KoL+Kdc2(t). (2.21) 

Solving for C 1 (t) and C2 (t), we deduce 

C 1 (t) = C1 (O)exP{4i L k [ - Kok 2 + ~ KoL + Kl ]dt }, 

(2.22) 

c2(t) = c2(o)exp{ - 4i L k [ - Kok 2 + ~KoL + Kl ]dt }. 

(2.23 ) 

In particular, taking 

f(x,k,t) = ¢(X,k,t)exp{ 4i L k [ - Kok 2 

+~KoL+Kl]dt}, (2.24) 

where¢(x,k,t) -+exp( - ikx) , asx-+ - 00. From Ref. 6, we 
have 

f(x,k,t) = a(k,t)tPl (x,k,t) W(t) + b(k,t)tP2(X,k,t) W(t), 

where 

W(t) = exp{4i L k [ -Kok
2 + ~ KoL + Kl]dt}. 

In this case, C1 (t) and c2(t) of (2.22) and (2.23) become 

C 1 (t) = a[k(t),t] W(t), c2 (t) = b [k(t),t] W(t) 

and 

CI(O) = a[k(O),O], c2(0) = b [k(O),O]. 

Hence we obtain 

= S L 77, [K0777 + ~ KoL + Kl ]dt. (2.1S) a(k,t) = a[k(O),O], (2.25) 
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b(k,t) = b [k(O),O] [W(t)] -2. 

By (2.13), 

a[k(O),O] = a[ k exp( - f h dt ),0], 
and setting 

(2.26) 

then (2.14) and (2.15) are thus true, since r(k,t) 
= b(k,t)/a(k,t). 

It is clear6 that 

A [k exp( - L h dt )] = 0 

has N pure imaginary roots kl = i1]1 (l = 1,2, ... ,N), i.e., the 
Schrodinger equation (2.8) has N negative eigenvalues 
k; = -1];. This is (2.16). Hence 

bl (t) = b(k{,t) = r(k{,t)A [k{ exp( - f h, dt ) ] 

= r[ kl (O),O]A [kl (0)] 

xexp{ - 8i f kl[ - Kok7 + ~ ~oL +KI]dt}. 

Setting bl = r[ k{ (0),0] A [kl (0)] and 

It (t) = - 8i L kl [ - Kok f + ~ KoL,+ KI ]dt 

(2.27) 

we have (2.17). The proof is completed. 
If Ko = 1, KI = 0 and h = 0, then this theorem reduces 

to the case of the KdV equation. 
Now according to Ref. 6, we can recover - u' from the 

scattering data {a(k,t), r(k,t), kl' bl (t)} by solving the Gel
fand-Levitan integral equation 

K(x,y;t) + F(x,y;t) + LX> F(z + y; t)K(x,z;t) dz = 0, 

(2.28) 

where 

F(S;t) = (_1_) foc r(k,t)exp(ik;)dk 
21T - ao 

+ It I {b{ exp[1t (t) + f h dt - 1]{S ]} 

X({iA '[i1](O) ]})-I 

to get K(x,y;t). Then we compute 

u'(x,t) = 2 ~K(x,x;t) ax 

(2.29) 

(2.30) 

and by (2.4) recover U (x,t), which is a solution of ( 1.1 ), 

a 
u(x,t) = L(t) + 2 - K(x,x;t). (2.31) ax 

III. ONE-SOLITON SOLUTIONS 

When reO) = 0, i.e., r(k,t) = 0, the solution (2.31) is 
called the N-soliton solution to Eq. (1.1) under the condi-
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tions (1.2), (1.3), (1.6), (2.1), (2.2), and (2.3). For simpli
city, we only consider the cases N = 1,2 below. 

Let 

K(x,y;t) = p(x,t)exp( - 1]IY + f h dt)' (3.1) 

Substituting it into (2.28) and (2.29), and by direct compu
tation, we obtain 

K(x,y;t) = - {21] lbl exp[fl (t) -1]1 (x + y)]} 

X ({2i1] I (O)A '[i1]1 (0)] 

+ bl exp[J;.(t) - 21] IX]})-I. (3.2) 

From (2.31), we have the one-soliton solution 

u(x,t) = L(t) + 21]i sech2 ()I' (3.2) 
where 

()I = a l + II (t)/2 -1]IX, (3.3) 

a l = pn{b l /2i1] I (O)A '[i1]I(O)]}, (3.4) 

L(t) = L(0)exP(2 L h dt)' (3.5) 

1]1 = 1]1 (o)exp(L h dt)' (3.6) 

From (3.2), we can show some of the properties of the 
soliton u(x,t). Thus, for a given t, the value of x where the 
peak of the soliton appearing satisfies the following condi
tion: 

()I = a l + J;.(t)/2 -1]IX = O. 

Solving for x, we obtain 

x=/I(t)/(21]1) +a l /1]1 

and the traveling velocity of the soliton is 

VI = dx = [I; (t)1]1 - 1];/1 (t)] (a l 1]; ) 

dt (21]i ) 1Ji 
whereJ;. (t) is defined by (2.18). 

(3.7) 

(3.8) 

(3.9) 

Because Ko, K I' and h are functions of t, the properties of 
the soliton are more complex than the one for the KdV equa
tion. They are illustrated by the following examples. 

Example 1: Suppose Ko = 1, KI = 0, L(O) = j, a l = 0, 
1] I (0) = 1, and h = 2t / [ 3 (1 + t 2)( 2 + t 2) ], we obtain 

u(x,t) =j[(2+2t 2 )/(2+t 2 )]2/3 

+ 2[ (2 + 2t 2 )/(2 + t 2
) ]2/3 sech2 ()I' 

where 

()I = 8 [2t - ~ arctan{t /~)] 

- x[ (2 + 2t 2 )/(2 + t 2 )] 1/3. 

For fixed t, the peak appears at 

x = 8[ (2 + t 2 )/(2 + 2t 2 )] 1/3 

X [2t - ~ arctan(t /~)] 

with the traveling velocity of the soliton 

V= ¥[(2 + t 2 )/(2 + 2t 2 )]1/3 

X [4t 2 + 3t 4 + 3 + ~t arctan(t /~)] 

X { [ (2 + t 2)( 2 + 2t 2) ]} - I. 
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u(x .t) 

______________ L-____________ ~x 

o 

FIG. 1. u(x,t) along the path 8, = O. 

Figure 1 shows how the peak values of u(x,t) depend on x. 
Example 2: Suppose Ko = h = cos t 1[3(2 + sin t)] 

and the other conditions remain the same as Example 1. We 
obtain 

u(x,t) = H (2 + sin 1)12](2/3) 

+ 2[ (2 + sin t)/2](2/3) sech2 (JI' 

where 

(JI = ~ sin t - x[ (2 + sin t)/2](I/3l. 

Here the soliton has the peak at 

x = H2/(2 + sin t)] 113 sin t, 

for fixed t. 
We can see that for each t, the value of x where the peak 

of the soliton appearing falls in the finite interval 
[ - 2(7/3)/3,2(j)(4/3l] on the x axis. One of the reasons for 
this is that Ko depends on t. Figure 2 shows how the peak 
values of u(x,t) depend on x, along the path 

x = H2/(2 + sin t) ](1/3) sin t. 

The soliton u(x,t) only oscillates periodically in the above 
interval but never outside of it. 

IV. TWO-SOLITON SOLUTIONS 

Let K(x,y;t) be 

K(x,y;t) = mt I Wm (x,t)exp( -1JmY + f h dt ). 

u(x .t) 

-----------------L------------__ ~x 
o 

FIG. 2. u(x,t) along the path 8, = O. 
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and substituting it into (2.28) and (2.29), then solving for 
W m' we obtain 

K(x,x;t) = - fJf, 
where 

(4.1 ) 

f= 1 + exp(2(J1) + exp(2(J2) +A exp(2(J1 + 2(J2)' 
(4.2) 

()m = am + fm (t)/2 -1Jm (t)x, (4.3) 

am = (1I2)ln{bm/[ iA '{i1Jm (O»1Jm (0) p, m = 1,2, 
(4.4) 

A = {[1J1(0) -1J2(0)]/[1J1(0) + 1J2(0)]F. (4.5) 

Hence, 

and 

a 
- K(x,x;t) = (!xxi - !,; )IP ax 

(4.6) 

In the spirit of Ref. 5, we obtain the decomposition of 
the solution u(x,t), i.e., 

U(X,t) = L(t) + UI + U2, 

where 

(4.7) 

U I = 21Ji (t)HI «()2)sech2[()1 + G«()2)], 

u2 = 21J~ (t)H2«()I)sech2[(J2 + G«()I)], 

(4.8) 

(4.9) 

HI «(J2) = [1 +A (1/2) exp(2()2)]2 

X ({ [1 + exp(2()2)][ 1 + A exp(2()2)] })-I, 
(4.10) 

H 2«()I) = [1-A(l/2)exp(2(JI)f 

X ({ [1 + exp(2()1)][ 1 + A exp(2(J1) ]})-I, 
(4.11 ) 

G«()m) = ~ In{ [1 + A exp(2()m »/[1 + exp(2()m) p. 
( 4.12) 

We call U I and U2 soliton also. 
Considering the asymptotic behavior of the second term 

of (4.7) for any fixed () I (as t --+ + 00 ) and the asymptotic 
behavior of the third term of (4.7) for any fixed ()2 (as 
x --+ + 00 ), we have the following theorem. 

Theorem 3: Suppose that h - = f 0- 00 h dt and 
h + = fO' h dt are all finite but 

L-00[Ko exp(3 f hdt )]dt=P-, 

fO[Ko exp(3 f hdt )]dt=P+, 

where p- and p+ are either finite or 00 (or - 00). Then, for 
any fixed ()I' it holds that 

and 

U I ::::::21Ji (0)exp(2h - )HI (¢2- )sech2 [()I + G(¢2- >], 

U2:::::: 21J~ (0)exp(2h - )H2 «(JI )sech2 [¢2- + G( (JI) ] 

as t --+ - 00 ( 4.13 ) 

u l ::::::21Jf(O)exp(2h +)HI (¢2+ )sech2[()1 + G(¢t >], 

u2::::::21J~(0)exp(2h +)H2«()I)sech2[¢2+ + G«()I>] 

as t--+ 00, (4.14) 
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where 

¢l = 4112(0) [11~ (0) - 11i (0) ]p+ 

- [112(O)/111(O)](a 1-01) +a2. (4.15) 
Proof First, in view of (2.13) and (2.16), 

11I(t) = 111 (o)exp(f h dt )-11I(O)eXP(h-) 

as t- - 00, (4.16) 

11I(t) = 111 (o)exp(f h dt )-11I(O)eXP(h +) 

as t- 00. ( 4.17) 

Besides, from (4.3), for any fixed 01, we express O2 in 
terms of 01 and t to get 

O2 = a2 + fz(t)/2 - [112(t)1111 (t)] 

X [at + !t(t)!2 - Od· 
By (2.18), (2.16), and (2.13), it is rewritten as 

O2 = 4112(0) [11~ (0) -11i (0)] 

Hence 
O2- 4112(0) [11~ (0) -11i (0) ]p-

- [112(0)/111(0) ](a l - ( 1) + a2 = ¢2-' 

(4.18 ) 

as t- - 00, 

O2-4112(0) [11~ (0) -11i (0) ]p+ 

- [112(0)/111(0)](a l -OI ) +a2 =¢2+' 

as t- 00. 

Taking t- - 00 and t- 00 in Eq. (4.8) and (4.9), and 
using the results above, we have (4.13) and (4.14). Hence 
the proof is completed. 

Under the conditions of Theorem 3, generally the effects 
of the interaction of U I and U2 are, as t varies from - 00 to 
00, (1) the amplitude of U I increases exp [2 (h + - h -)] 
XH I (¢2- )IHI (¢2+) times; (2) the phase shift is 4 112(0) 
X [11~(0) -11iCO)](p+ -p-). 

In particular, if h - = h +, p- = 00, p+ = - 00, then 

U I ;::::;211i (0)exp(2h - )sech2(OI)' 

u2;::::;211~ (0)exp(2h -)H2(OI)' as t- - 00, 

ul ;::::;211i (0)exp(2h -)sech2[OI + !lnA], 

U2 ;::::;0, as t- 00. 

This case is the same as the two-soliton solution of the 
KdV equation discussed in Ref. 5, i.e., the effect of interac
tion of U I and U2 is that only U I has the phase shift! In A. 
Similar results are given for U2' 

Example 3: Suppose Ko = 2/( 1 + t 2), KI = h = 0, 
L(O) = - j, 111 (0) = 2112(0) = 1, a l = a2 = O. We obtain 

2525 

u(x,t) = - (1/3) + U I + U2, (4.19) 

UI = 2HI (82)sech2[OI + G(02)]' 

U2 = ~H2(OI)sech2[02 + G(OI)]' 
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(4.20) 

(4.21 ) 

where 

01 = 4 arctan t - x, O2 = - arctan t -!x. 
Here, h - = h + = 0, p- = -1T, p+ = 1T. Hence, for any 
fixed OJ> we have 

UI ;::::; 2Hl UOI + ~1T] sech2{Ol + G UOI + ~1T]}, 
u2;::::;!H2(OI)sech2UOI + ~1T + G(OI)]' as t- - 00, 

and 

UI ;::::;2HI [!Ol - ~1T]sech2{O) + G UOI - ~1T]}, 

u2;::::;~H2(OI)sech2UOI - ~1T + G(O)], as t- 00. 

Figure 3 shows the dependence of ul and U 2 on t, for 0) = O. 
If the conditions of Theorem 3 are not satisfied, the sta

tus is more complex. Let us consider the following example. 
Example 4: Suppose Ko = 2 cos t and the other condi

tions remain the same as in Example 3. Then we have ( 4.19), 
(4.20), and (4.21) but 01 = 4 sin t - x and O2 = - sin t 
- !x. Here, h - = h + = 0, but p- = lim, __ 00 2 sin t, 

p+ = lim,_ 00 2 sin t, i.e., p- and p+ do not exist. Thus the 
result of Theorem 3 is not valid. For any fixed 01, since O2 is a 
periodicfunction of t with period 21T, HI (02), G(02)' UI , U2' 
and U are so as well. 

v. OSCILLATING AND ASYMPTOTIC STANDING 
SOLITONS 

Following Ref. 5, we define the interaction point of the 
solutions U I and U2 as the point of intersection of the paths 
along which U moves 

0 1 = - !lnA (5.1) 

and 

O2 = -! InA, (5.2) 
i.e. 

a l + !!t(t) -11I(t)x = -! InA, (5.3 ) 

a 2 + !/2(t) -112(t)X = - pnA. (5.4 ) 

Solving for x and t, we obtain the time td and the coordinate 
Xd corresponding to the interaction point satisfying 

(5.5) 

and 

Xd = 4[ 11~ (0) + ~ L(O) ]8 exp( - fd h dt) 

+ 4 exp( - fd h dt )fd[K I exp(f h dt)] dt 

u. 

-----------------------
FIG. 3. u, (x,t) and u2 (x,t) along the path 8, = O. 
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(h) 

(e) (d) 

FIG. 4. Asymptotic standing two-soliton solution. (a) t< - 100; (b) 
- H)()<t<td; (c) t= td; (d) td <1< I; (e) I <t< 100; (f) t>IOO. 

where 

{) = [a27]1 (0) - a 17]2 (0)] 

X ({ 47]1 (0)7]2 (0) [7]i (0) - 7]~ (0) ] })-I 

+ (lnAI4)/{47]1(0)7]2(0)[7]1(0) +7]2(0)]). (5.7) 
The above results will now be illustrated by the following 
examples. 

Example 5 (Asymptotically standing solitons): In Ex
ample 3, we have (4.19), (4.20), and (4.21). Here, by (5.5), 
(5.6), and (5.7), we find that td = - 0.0916 and 
Xd = - 0.9155. 

Figure 4 is the graph of a two-soliton u(x,t) traveling 
along the x-axis. It shows that (i) for t<, - 100, u(x,t) is in 
the finite limiting position Xmin (as t -+ - (0), the left wave is 
just the soliton U 1 (x,t) (exceptthe term - j), the right wave 
isjust the soliton u2 (x,t); (ii) for - 100 < t < td, u(x,t) tra
vels to the right, and so does U 1 (x,t) but u2 (x,t) to the left; 
(iii) for t near td, u(x,t) travels to the right but its form has 
considerably changed, because u1(x,t) (to right) and 
U2 (x,t) (to left) interact at X d • In this case, the amplitude of 
U 1 decreases and U2 changes from a single-peak wave to a 
double-peak wave; (iv) for td < t < 100, u(x,t) continues to 
the right and so does U 1 (x,t) but U2 (x,t) to the left; (v) for 
r> 100, u(x,t) is in the finite limiting position Xmax (as 
t -+ 00 ). The left wave is just U2' it is in the limiting position of 
U2 (as t -+ 00 ). The right wave is just U I' it is in the limiting 
position of U 1 (as t -+ 00 ). The two waves thus move apart 
and maintain a fixed separation indefinitely. 

Example 6 (Oscillating solitons): In Example 4, we 
have (4.19), (4.20), and (4.21) also. Here, we find 
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Ie} Id) 

Ie} 

Is} 

FIG. 5. Oscillating two-soliton solution. (a) t = - 1T/2, 31T/2; (b) 
-1T/2<t<td; (c) t=td; (d) t near td; (e) td<t<1T/2; (f) t=1T/2; 
(g) 1T/2 < t < 31T/2. 

td = - 0.0918 + 21Tm, m = 0, + 1, + 2, ... , and Xd 
= - 0.9155. 

Figure 5 shows that in the interval [ - (l/2)1T, (21 
3)1T], as t changes from - (l/2)1T to (2/3 )1T, u(x,t) travels 
along the x axis from the finite limiting position Xmin to the 
finite limiting position X max ' At t = - 1T12, the left wave is 
just U 1 which travels to the right. But the right wave isjust U2 

which travels to the left. For t near t d , at the point X d , the 
form ofu(x,t) changes because U1 and U2 interact (similar to 
Example 5). At t = 1T12, the left wave is u2 but the right 
wave is U 1. As t changes from 1T12 to 31T12, u(x,t) travels 
back to Xmin along the x axis until t = 31T12; the positions of 
u 1 and u2 are interchanged again. In other words, as t 
changes from - 00 to 00, u(x,t), U 1 (X,t) , and u2(x,t) oscil
late in the finite interval [xmin 'Xmax ] on the x axis but never 
outside of it. 
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WKB theory of wave tunneling for Hermitian and nearly Hermitian vector 
systems of integral equations 

H. J. Kull,a) R. J. Kashuba,b) and H. L. Berk 
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A general theory of wave tunneling in one dimension for Hermitian and nearly Hermitian 
vector systems of integral equations is presented. It describes mode conversion in terms of the 
general dielectric tensor of the medium and properly accounts for the forward and backward 
nature of the waves without regard to specific models. Energy conservation in the WKB 
approximation can be obtained for general Hermitian systems by the use of modified Furry 
rules that are similar to those used by Heading for second-order differential equations. Wave 
energy absorption can then be calculated perturbatively using the conservation properties of 
the dominant Hermitian operator. Operational graphical rules are developed to construct 
global wave solutions and to determine the direction of energy flow for spatially disconnected 
roots. In principle, these rules could be applied to systems with arbitrary mode complexity. 
Coupling coefficients for wave tunneling problems with up to four interacting modes are 
calculated explicitly. 

I. INTRODUCTION 

Wave tunneling is a well-known phenomenon which al
lows waves to penetrate into regions that would not be acces
sible along their ray trajectories. This effect has been particu
larly well studied for second-order,pifferential equations in, 
the quantum mechanical context. 1 More generally, tunnel
ing can occur in systems described by higher-order differen
tial equations and by integral equations. This is often the 
case in mode conversion problems in magnetized plasmas. 2 

In this work, we wish to examine the general tunneling prob
lem for Hermitian vector systems of integral equations in the 
Wentzel-Kramers-Brillouin (WKB) approximation. A.s a 
special case, this formulation includes Hermitian differential 
operators of arbitrarily high order. The theory can also be 
extended to nearly Hermitian systems including weak dissi
pation. The primary motivation for this study comes from 
the linear Vlasov-Maxwell theory, which leads to Hermitian 
operators when particle resonances are not present or ne
glected, e.g., for wave propagation perpendicular to the mag
netic field. 3

•
4 As a consequence of Hermiticity, the total wave 

energy flow is exactly conserved. 5.6 It is therefore a basic goal 
of the present treatment to obtain consistency of wave tun
neling rules with wave energy conservation. 

In the WKB approximation, waves propagate along the 
inhomogeneity direction with a spatially slowly varying real 
wave number. Tunneling occurs across spatial regions where 
the wave number is complex. Across these regions, the usual 
WKB approximation fails and couplings occur among the 
various WKB waves. The mode conversion tunneling prob
lem consists in the determination of the various coupling 
coefficients that arise between the ingoing and outgoing 
waves surrounding the tunneling region. 

a) Permanent address: Institut flir Angewandte Physik, Technische Hoch
schule, D-6100 Darmstadt, Federal Republic of Germany. 

b) Permanent address: McDonnel Douglas Corporation, Astronautics-Eas
tern Div., P. O. Box 516, St. Louis, MO 63166. 

Previous work has been mostly based on specific model 
equations for tunneling regions. Mode conversion in thermal 
plasmas has been studied extensively using certain fourth
order differential equations with linearly varying coeffi
cients.2

•
7

-
9 Attempts to formulate unified descriptions of 

pairwise coupling have led to further model representations 
by second-order differential equations lO

•
11 and by systems of 

coupled first-order equations. 12-14 In the present treatment, 
we consider general linear systems and carefully discuss the 
aspect of wave energy conservation. For this purpose, we 
apply and extend WKB techniques developed for higher
order equations. 15

-
17 This approach is advantageous since 

the tunneling problem can be discussed in terms of the gen
eral dielectric tensor of the homogeneous medium, which is 
regarded as a known quantity. Furthermore, it allows one, in 
principle, to deal with arbitrary tunneling structures and 
mode complexity in slowly varying media. 

The WKB formulation provides a general way of deter
mining the energy flow direction of propagating waves. Us
ing general properties of the dielectric tensor, we show how 
the energy flow direction of each wave can be obtained rela
tive to the incident flow. It is found that the vector represen
tation is particularly important for this problem. It deter
mines the proper orientation of the energy flow along 
spatially disconnected branches by the sign change of certain 
cofactors of the dielectric tensor across the tunneling region. 
The identification of the direction of energy flow is essential 
to the physical interpretation of the theory, and we believe 
our method for identification is a new contribution to this 
field. 

We also develop a graphical procedure based on modi
fied Furry rules that enables one to describe the coupling 
between the waves in the mode conversion tunneling prob
lem. The wave amplitudes are represented by isomorphic 
diagrams for the complex wave numbers, and a mUltiplica
tion is defined that allows one to describe the propagation of 
waves by observing a set of basic operational rules. 
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Energy conservation in the WKB theory of nondissipa
tive systems is achieved by a modified Furry rule for the 
wave representation inside a tunneling region. This rule has 
been discussed by Heading for second-order differential 
equations. 18 Previously, phase integral methods have been 
applied for determining generalized Furry rules for higher
order equations. 15.16 Following these methods, the modified 
Furry rule can be derived from a bifurcation of the steepest 
descent path in a contour integral representation of the wave 
solution. This rule is shown to conserve wave energy for 
general tunneling structures. With weak dissipation, the bi
furcation of the steepest descent path is still present, and the 
additional damping due to dissipation can be explicitly cal
culated. The general formulation of the mode coupling rules 
by graphical methods and its resulting energy conservation 
in nondissipative systems is the principal result of this work. 

The paper is organized as follows. In Sec. II, the present 
WKB techniques are introduced. The wave diagrams and 
Furry rules are explained and subsequently used to demon
strate consistency with wave energy conservation and weak 
dissipation. In Sec. III, we use this formalism to analyze 
conventional tunneling through a potential barrier and 
make a comparison of this approximate method with an ex
act solution. In Sec. IV, we treat mode conversion between 
waves which tunnel with nonzero real parts of the wave 
numbers. Finally, in Sec. V, representative cases of the four 
wave tunneling problem are considered. In particular, a 
form is analyzed that describes mode conversion near ion
cyclotron frequencies. 5

•
9

•
19 

II. WKB METHOD 

In this section, we define the general rules for construct
ing global solutions to the tunneling problem. These rules 
generalize the usual Furry rules and are expressed by wave 
diagrams that allow one to determine graphically the 
changes of wave amplitudes. By observing these rules, con
sistency with wave energy conservation is obtained in the 
WKB theory. 

A. Local dispersion relation 

We consider the propagation of waves with a frequency 
fJ) in a Vlasov-Maxwell system with spatial variations along 
the x direction. The electric field E(x) is governed by a vec
tor system of integral equations of the general form, 

J dx' K(x,x') 'E(x') = o. (1) 

The dependence on the constant frequency and a constant 
wave vector perpendicular to the inhomogeneity direction x 
is suppressed in the notation. First, we will neglect dissipa
tion by assuming that the matrix elements of the kernel have 
the Hermiticity property, Kij (x,x') = KJi(x',x). The effect 
of weak dissipation will be discussed separately in Sec. II G. 

For systems with weak inhomogeneities, the WKB 
method determines asymptotic solutions of Eq. (1). The di
electric tensor of the medium can be introduced as the Four
ier transform of the integral kernel with respect to the differ
ence of its arguments, 15-17 
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D(x,k) = J dqK(X+; ,x- ;)exP( -ikq). (2) 

The wave solutions are characterized by local wave numbers 
k = k(x), which are the roots of the local dispersion rela
tion, 

A(x,k) = detIDij(x,k) 1= o. (3) 

This is generally a transcendental equation and we assume 
that A(z,k) is an entire function of the complex variables z 
and k. According to complex analysis, it can then be repre
sented in the product form,20 

A(z,k) = exp{g(k)}k m II (1 -~) exp{pn (k)}. 
n k n 

(4) 

Here z is considered fixed, g(k) represents an entire func
tion, P n (k) are convergence producing polynomials, m is the 
multiplicity of the root k = 0, and n labels all zeros kn #0. 
The number of zeros can be zero, finite or infinite. In the 
following, we assume that all zeros are distinct in the asymp
totic regions Ixl-+ 00 and coalesce only pairwise elsewhere. 
From Eq. (4), the condition for pairwise coalescence is 
found to be 

A(z,k) = A,k (z,k) = 0, A,k,k (z,k) #0, (5) 

where A,k denotes the partial derivative of A with respect 
tok. 

If z varies in the complex plane, a branch k = k n (z) of 
the dispersion relation (3) becomes in general a multivalued 
function of z, To determine the analytic continuation of a 
given branch, it is convenient to consider a parametric repre
sentation z( 7), k( 7) of the zeros with a complex variable 7. 

In analogy with the real Hamiltonian ray equations, the 
functions z( 7) and k( 7) are determined by the system, 

dz 
-=A k , 
d7 ' 

dk = -A 
d7 ,z' 

(6) 

Since A(z,k) is assumed analytic, there exists a unique ana
lytic solution to initial conditions z( 7 0) = zo, k( 70) = ko at 
7 = 7 0, We now choose A(zo,ko) = 0 and a path in the 7 

plane such that z( 7) maps on a given path in the z plane. The 
branch k = k(z) then is uniquely defined by the correspond
ing values of k( 7), The continuation of a given branch can 
therefore be reduced to the solution of an initial value prob
lem. The WKB solutions in the complex plane depend on 
these trajectories and their behavior around branch points. 
Wave trajectories will be used in Sec, II C to represent and 
propagate wave solutions. 

A branch point (zB,kB) of k = k(z) occurs when 
A,k = O. Expanding about (z B,k B)' the solution ofEq. (6) is 
obtained locally in the form, 

8k = Os, & = - ~ (A,k,kl A,z )8il, (7) 

with8k = k - kB'& = z - zB,andOs = - A,z(7 - 7 B ), If 
we propagate &= 1&lexp(iI,b) around the branch point, it 
follows from Eq. (7) that a phase change t,b of & implies a 
phase change t,b/2 of 8k, This rule is useful to gain a qualita
tive picture of the behavior of wave trajectories. Analogous
ly, a branch point of the inversion function z = z(k) occurs 
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when A.z = ° and here the phase change of", in 8z implies a 
phase change of 2", in ~k. 

B. Local asymptotic solutions 

The local asymptotic solutions of Eq. (1) assume the 
well-known form, 

E(z) = a(z)exp{iS(z)}. (8) 

The exponent S(z) represents the rapidly varying function, 

S(z) = S(zo) + I: dz' k(z'). (9) 

For Hermitian operators, the solution for the components of 
the vector amplitude can be represented in the form, 15 

ai(p) = (Ci/CjJ) af(p), 

af(p) = (D.k (Po)ID.k (p»l/2af (po)' (10) 

with the definitions, 

D'C = AI, D = AICjJ' p=(z,k(z»). (11 ) 

Here I denotes the unit tensor, C the transposed matrix of 
the cofactors of D, and, for simplicity, the dependence on z 
and k(z) is expressed by a single variable p. For A = 0, one 
of the columns of C, with an arbitrary but fixed index J, has 
been used to express the components of the solution vector in 
Eq. (10). It is then sufficient to describe the variation of the 
single scalar quantity a f' We remark that the main difference 
between a scalar equation and a vector system lies in the 
appearance of the cofactor CjJ in the expression for D. For 
scalar equations, one can set CjJ = 1 and therefore D = A in 
Eq. (10). 

C. Diagrammatic representation 

We now develop a graphical procedure for constructing 
WKB solutions of the mode coupling problem. For this pur
pose, a diagrammatic representation ofWKB waves is intro
duced and basic operational rules are defined that allow one 
to determine mode coupling coefficients graphically. 

We propagate the vector component Ef(z), as defined 
by Eqs. (8 )-( 11), from PI to P2 along a path in the complex 
plane that avoids branch points. The ratio Ef (p2)1 Ef(PI) 
can then be written in the form, 

(k 11,2) = a(k 11,2)ei{ - (I/2)6(k JI.2l+ S(k 11.2)} (12) 

with 

a(k 11,2) = 1 (D. k (PI) )1121 ' 
D.dP2) 

~(k 11,2) = arg(D.k (p))I~:, S(k 11,2) = S(p) I~:· 

This expression is uniquely determined by the path of 
k = k(z) in the complex k plane and by the end points PI.2' 
We therefore represent the WKB wave (k 11,2) by an iso
morphic diagram, 

(k 11,2)= 
: (\ 
I 
I I 2 

(13) 

-+ ------- --. 
I 
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This diagram indicates schematically the path in the k plane 
(solid line), the direction of propagation (arrow), and the 
end points (indices). The horizontal and vertical dashed 
lines represent the real and imaginary k axis, respectively. 
We now introduce a diagram product by defining, 

(k 11,2)(k'13,4)= (14) 

For simplicity of notation, we can often suppress the coordi
nate lines, the end point indices, and the multiplication sym
bolo. 

We now discuss some basic graphical operations for 
wave diagrams. If the wave amplitude (12) is propagated 
from point 1 to point 3 across an intermediate point 2, the 
following multiplication rule holds: (k 11,2) (k 12,3) 
= (k 11,3). This property is expressed graphically in the 
form, 

= (\. (15) 

3 

Replacing in Eq. (15) the end point 3 by the initial point 1 
yields the identity, 

n 
2 

f\ 
2 

o 
I . (16) = 

We can therefore define the inverse of a diagram by reversing 
its direction of propagation, 

(\ (17) 

2 

Propagation of waves around branch points is of partic
ular importance for the mode coupling problem. Here the 
diagrams automatically keep track of the correct phases of 
the waves. We symbolize branch points, where A.k = 0, by a 
dot. By propagating ~k around such a branch point, we ob
tain from Eq. (12) that for a complete circle ~(k 11,2) 
= ± 21T. The plus sign corresponds to counterclockwise 

and the minus sign to clockwise rotation. A branch point, 
where A.z = 0, is symbolized by a cross and in this case we 
obtain from Eq. (12) that the amplitude for a complete cir
cle is analytic, therefore unity. Thus the phase rules for en
circling branch points are expressed by the diagrams, 

-;1r =e , = 1 • (18) 

To define further graphical rules, we will now assume 
that D(z,k), defined in Eq. (11), obeys the common rela-
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tions D(z,-k) =D(z,k) and D*(z,k) =D(z*,k*). The 
first relation is satisfied, if the determinant A and the diag
onal elements of the dielectric tensor are even functions of k. 
We are therefore dealing with media where waves with op
posite signs of k propagate with opposite group velocities Vgr 

- A,k' The second relation is a consequence of the reflection 
principle for analytic functions,20 if D(z,k) is assumed real 
for real arguments. 

Let us now consider the product of two diagrams which 
are symmetric with respect to the origin, 

-I 2 

(19) 

-2 

The two diagrams represent waves with wave numbers k and 
-k and with end points: 1=(k1,ZI); 2= (k2,Z2); 
- 1 = ( - k1,ZI); - 2= ( - k2,Z2)' According to Eq. (12), 

they are related by a( - k I - 1, - 2) = a(k 11,2), 
8( - k 1- 1, - 2) = 8(k 11,2), S( - k 1- 1, - 2) = - S 
X (k 11,2). The product diagram ( 19) therefore has the val
ue 

(k 112)( - k 1- I - 2) = ID,dl) I e- ili(kll,2) 
, , D

k
(2) 

D,k (1) 
(20) =---. 

D,k (2) 

Another diagram that occurs frequently is given by a 
closed loop around two branch points on the real axis, 

(21) 

Alternatively, using Eq. (17), this diagram can be represent
ed by the product, 

-~ 
2 

o 
( 

2 I )-1 
~ 

It corresponds to the ratio between two diagrams which are 
symmetric to the real axis. Reflection at the real axis is ob
tained by substituting k-k * andz-z*, From Eq. (12), one 
finds the corresponding relations, a (k * 11,2) = a (k 11,2), 
8(k * 11,2) = - 8(k 11,2), S(k *11,2) = S *(k 11,2). The 
loop diagram (21) then can be evaluated as, 
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(kll,2) =aexpii.kdz 
(k*ll,2) J' 
a=e- ili(k 1l,2)=sgn(D (l)ID (2») 

,k ,k' (22) 

where sgn(x) = ± 1 denotes the sign of x, and the integra
tion path is taken along the loop. 

We finally discuss the product of two diagrams which 
are symmetric with respect to the imaginary axis, 

Reflection at the imaginary axis k - - k * combines the 
symmetries k - - k and k - k *, yielding 
a(-k*l-l,-2)=a(kll,2), 8(-k*l-l,-2) 
= -o(kll,2),S(-k*I-I,-2)= -S*(kll,2).Ac

cordingly, the waves (k 11,2) and ( - k *1 - 1, - 2) repre
sent complex conjugate solutions. Their product gives the 
squared magnitude of each diagram and can be expressed by 
a diagram of the form (19) times a loop diagram (21) by 
using Eq. (16), 

I I 
I I 

-~~Q- = _C::''-:'r--r 0 
I I~ 
I I 

I I 

(23) 

We will find this representation particularly useful when 
evaluating energy expressions of wave solutions. 

This completes the summary of the graphical identities 
that will be used in the subsequent sections. 

D. Furry rules 

In this section, phase integral methods are used to ob
tain an asymptotic representation of the solution inside wave 
tunneling regions. The result is expressed as a modified Fur
ry rule that allows one to construct global tunneling solu
tions, We shall first present the rules and then justify them 
using a phase integral steepest descent method. The details 
of the derivations are presented in the Appendix. 

The tunneling region is assumed to consist of two or 
more separated branch points x B where the mode coupling 
condition A(xB,kB) = A,k (xB,kB ) = 0 is satisfied. At each 
branch point two roots coalesce and the corresponding 
WKB solutions (8) fail. When passing around these points 
in the complex z plane, a change in the asymptotic represen
tation can take place across Stokes' lines. These are defined 
by the condition, 15-18 

1m (i L: (kl - k 2 )dz') = o. / (24) 

In the neighborhood ofxB , the Stokes lines form a star with 
three rays intersecting at x B under an angle 21T/3 (Fig. 1). 
On a Stokes line, the ratio between the two merging solutions 
acquires a purely real exponential factor. The exponentially 
large solution is called dominant and the exponentially small 
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FIG. 1. Stokes lines emanating from a branch point xB into the complex 
plane with one line along the real axis. The lines are labeled by the sign of 
1m (ok). (a) Dominant wave and path of wave propagation. (b) Subdomin
ant wave induced by dominant wave. (c) Dominant and sudominant wave 
with path straightened. 

solution subdominant. In the tunneling problems we consid
er, one of the Stokes lines is directed along the real axis. In 
general this requires, according to Eqs. (7) and (24), that 
x Band k ~ are real. As shown in Fig. 1, we indicate the 
dominant wave on each Stokes line by the corresponding 
sign of Im(bk). On the real x axis, the dominant wave 'has 
1m (bk) > 0 if the Stokes line is directed towards - 00 and 
1m ( bk) < 0 if the Stokes line is directed towards + 00. 

The change of the asymptotic representation across a 
Stokes line is expressed by the following Furry rule: If a 
dominant WKB wave is propagated across a Stokes line, one 
has to add a subdominant wave. The subdominant wave is the 
analytic continuation of the dominant wave along the path in 
the z plane that encircles the branch point in the opposite sense 
of the dominant wave. In Fig. 1 (a), we propagate the domi
nant wave with Im(bk) <0 in the z plane across SI' The 
subdominant wave solution is obtained by propagating the 
wave underneath the branch point. In Fig. I (c), we indicate 
the paths of propagation for the dominant and subdominant 
waves for x < x B' The lower curve must be included in the 
asymptotic solution by noting that the subdominant wave is 
"induced" when the dominant solution (top curve) crosses 
SI' More specifically, to the solution that is obtained along 
the path shown in Fig. 1 (a), one adds an induced wave 
"created" at the dominant Stokes line as is shown in Fig. 
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1 (b). When kinks of this curve are removed, the lower path 
of Fig. 1 ( c) is obtained. 

This Furry rule can be readily represented by the wave 
diagrams in the complex k plane. According to Eq. (7), bk 
rotates around the branch point in the same sense as & but 
only by half the angle. This gives rise to the connection for
mula, 

~~6~~+-P:

- ~-+~. 
(25) 

The lhs in Eq. (25) represents the wave just before crossing 
the Stokes line, which occurs in the complex k plane at an 
angle 1T/6 to the real axis. The middle grouping represents 
the dominant wave just after the crossing of the Stokes line 
and the subdominant wave that is obtained by backward 
propagation at the Stokes line. The final result represents the 
wave solution when the path returns to the x axis with 
x < x B' In this last grouping kinks are straightened. 

To deal with wave propagation along the Stokes line on 
the real axis, we now state a second modified Furry rule 
which has been discussed by Heading for second-order equa
tions. 18 It is proved for higher-order equations and integral 
equations in the Appendix and the method of proof will only 
be outlined in the main text below. 

We find that the modified rule can be expressed as fol
lows: If a wave is propagated on a Stokes line without actually 
crossing it, one addes to the wave one-half of the solution ob
tained along the subdominant path. To illustrate this rule, 
suppose we propagate a wave with 1m (bk) > 0 on the path in 
Fig. l(a) and then further along the Stokes line S2' This 
wave, being dominant on S2 without crossing it, induces one
half of the subdominant wave that corresponds to propaga
tion on the lower curve in Fig. 1 (c). In the k plane, we thus 
arrive at the diagram rule, 

I 

I ___ ~L ---~ + I--

(26) 

The derivation of the Stokes phenomenon described 
thus far can be obtained by use of phase integral methods 
discussed in Refs. 15 and 16. The starting point is a contour 
integral representation of the solution, 

E(z) = _1_ r dk E(k)eikZ, 

~211'i Jc 
(27) 

where the contour C connects two remote regions in the k 
plane where the integrand vanishes. It is assumed that there 
exist as many independent contours as independent solu-
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tions. For the vector field E(k), the following asymptotic 
solutions have been derived in Ref. 15, 

Ej(k)=(~if_l_)1 e-i?i(k), 
ff.Jl5:: z ~ z( k) 

S(k) = S(ko) + lk dk' z(k '). 
k" 

(28) 

This representation fails near the branch points ofz = z(k), 
but it is accurate near the branch points of k = k(z) where 
the waves coalesce in x space. One can therefore use this 
representation to obtain asymptotic expansions near the 
mode coupling points in x space. According to the method of 
steepest descent, the contour C is deformed into a steepest 
descent path across saddle points. The saddle points follow 
from the condition, 

~(kZ- rkdk'Z(k'»)=Z_Z(k) =0, (29) 
dk Jk" 

and are coincident with the roots of the local dispersion rela
tion at the point z. Performing the integration across the 
saddle at k = k(z), the contribution to the contour integral 
is found to be 

Ej(Z)_(~if _1_) I ejS(Z). 
ff..[i5:;. k ~ k(z) 

(30) 

In this way it follows that for each saddle crossed by the 
contour C there is a corresponding WKB solution in x space. 
In the vicinity ofa branch point of k(z) the contour can pass 
across a second neighboring saddle giving rise to a sub
dominant solution. The method of evaluation is given in the 
Appendix and in this process the modified Furry rule is de
rived. 

E. Wave energy flow 

We now consider wave propagation in the asymptotic 
regions surrounding the tunneling structure. Generalized 
mode coupling coefficients are defined that express global 
energy conservation. Then the connection of the energy flow 
with respect to spatially disconnected roots is specified. 

At the boundaries lxi- 00, the solution is taken as a 
superposition ofWKB waves. We thereby assume that sepa
rate WKB solutions exist without further coupling. Specifi
cally, there should be no mechanism for reflecting outgoing 
waves. In accordance with our symmetry assumptions in the 
local dispersion relation, the wave numbers occur in pairs of 
k, - k and k,k *. Outgoing wave conditions prescribe one 
solution of each k, - k pair if k is real, and for a stable system 
boundedness determines one solution of the k,k * pair if k is 
complex. The number of constraints from both boundaries 
then equals the number of independent wave solutions. In 
unstable systems our boundary conditions can be somewhat 
different. For example, a convectively unstable wave can 
amplify as it propagates. Then boundedness is not required 
and instead the amplifying wave is allowable at infinity. 
However, as long as the appropriate boundary conditions as 
to which waves can exist at infinity are determined, the wave 
scattering problem considered here is well defined. A discus-
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sion of how to determine the appropriate complex k solu
tions is well known from the theory of convective instabil
ity.21 

For complex wave numbers, we allow only convergent 
solutions satisfying x Im(k) > O. In the Hermitian case, 
these convergent waves do not transport wave energy at in
finity. For real wave numbers, we define the group velocity 
Ugr , the wave energy W, and the energy flow Jby the expres
sions, 

JOJ A,k 
ugr = Jk = -A' ,., 

W=E*'D ·E . ., , 

J = - E* . D.k . E. (31 ) 

Asymptotically, J is conserved for each wave and obeys the 
familiar relation J = ugr W, as follows also from Eqs. (10) 

and (11). Boundary conditions are assumed for incoming 
waves which have group velocities satisfying xUgr < O. The 
group velocity and the phase velocity uph = OJ/ k are related 
by 

OJ A.k ----
k A . ., 

(32) 

where A is a function of k 2 and OJ
2

• The waves with opposite 
wave numbers always have opposite group velocities but can 
in general be forward waves, if the rhs is positive, or back
ward waves, ifthe rhs is negative. 

Let us now assume that the region x- - 00 supports 
one incoming wave (ugr >0) and Noutgoing waves (ugr <0) 
and the region x- 00 M outgoing waves (ugr > 0). Global 
energy conservation requires that 

N M 

J j + I Jrn = I JIm' 

with 

n= 1 m= 1 

J j = Ugr•j Wj' Jrn = Ugr•rn Wrn , 

JIm = Ugr•lm Wlm , 

(33) 

where the indices i,r,t denote incident, reflected, and trans
mi~ted waves, respectively. Defining mode coupling coeffi
cients R n = IJrn / J j I for the reflected waves and T m = IJlm / 
Jj I for the transmitted waves, one can rewrite Eq. (33) in the 
form, 

N M 

I unRn + I umTm = 1. (34) 
n= 1 m= 1 

The sign of each term Uk = sgn ( Wk / Wj ) is defined by the 
sign of the ratio of the wave energies Wk and Wj' Some of the 
Uk can be negative, if negative energy waves occur. We also 
remark that the coupling coefficients Rn and Tm depend in 
general on both the wave amplitudes and the group veloc
ities. 

We now wish to specify the ingoing and outgoing waves 
among the various branches of the local dispersion relation 
on both sides of the tunneling region. For this purpose, we 
use a graphical procedure that determines the direction of 
energy propagation along each branch relative to the inci
dent flow. Inserting the wave representation (10), (11) into 
the energy flow expression (31) and using the relation 
D· C = AI, one finds, 
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J= -E*·D.k·E= - (E*'D'E),k 

= _ (Ct~ijCif IEfI2) = _ (~ IEfI2) 
C ffCff ,k Cff ,k 

- D,k IEfI2. (35) 

In Eq. (35), the energy flow is expressed by the amplitude of 
the single component Ef and by the function D(x,k) 
= A(x,k)/Cff(x,k). This function is well defined for real x 

and k and is zero along the branches k = k(x). 
In Fig. 2, we illustrate by two examples how the function 

D(x,k) determines the relative direction of energy flow. Sol
id lines represent the contour lines A(x,k) = 0, where 
k = k(x), The dashed line in Fig. 2(b) is a contour line Cff 
= 0, where the cofactor changes sign. From these lines one 

can determine the sign of D(x,k) in each region of the (x,k) 
plane relative to its sign in one particular region. For defi
niteness, we assume D > 0 in the shaded regions and D < 0 in 
theunshaded regions. According to Eq. (35), the propaga
tion direction of wave energy is determined by the sign of the 
derivative of D with respect to k. From the topology of Fig. 
2, it is then clear that waves propagate to the right on the 
branches that pass above a shaded and below an unshaded 
region. Likewise waves propagate to the left, if their 
branches lie below a shaded and above an unshaded region. 
For instance, in Fig. 2, kc is a right-going and kd a left-going 
wave. 

(0) k 

FIG. 2. Directions of energy flow. D(x,k) is assumed positive in the shaded 
regions and changes sign across the solid contours where A(x,k) = 0 and 
across the dashed contour where Clf(x,k) = O. The direction of propaga
tion on each branch is indicated by arrows. (a) Tunneling region with 
Clf#O. (b) Tunneling region with Clf = o. 
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The presence of a zero in the cofactor C ff can allow for a 
change of propagation ordering across a tunneling region. 
This is illustrated in Fig. 2 by two examples leading to differ
ent orderings for the spatially disconnected branches. In Fig. 
2(a), where no zero ofCff is assumed, ka and kb correspond 
to waves propagating to the right and left, respectively. On 
the other hand, in Fig. 2 (b), D reverses sign across the zero 
of Cff and then ka would be a left-going and kb a right-going 
wave. Thus the understanding of the structure of the cofac
tor is crucial to interpreting the relative propagation direc
tion in regions separated by a tunneling structure. A sign 
change of the cofactor is a particular feature of vector sys
tems. For scalar wave equations (Cff = 1), the cofactor is 
nonzero by definition and the propagation ordering would 
have to correspond to Fig. 2(a). 

We finally wish to demonstrate the independence of our 
determination of propagation ordering from the particular 
coordinate representation that has been used. For this pur
pose, we show that the sign of a nonvanishing cofactor C ff is 
independent of the index f on each real branch k = k(x). 
Consequently, if the cofactor Cff changes sign on opposite 
sides of the tunneling region, the same must hold for each 
cofactor Cgg corresponding to a different vector component 
g. For real x and k, the dielectric tensor is Hermitian, 
Dij (x,k) = D .t(x,k), and there exist real eigenvalues An and 
eigenvectors en' determined locally by the eigenvalue prob
lem, 

D'en = Anen. (36) 

Along a nondegenerate branch k = k(x), one of the eigen
values has to vanish while the others are nonzero. Specifical
ly, we set, ..1,\ = 0, ..1,2#0, ..1,3#0, corresponding to a soluti@n 
E = ae \. Using this representation, the energy flow (31) as
sumes the form, 

J=A\,klaI 2
• (37) 

Comparing this expression with Eq.(35) and using 
A = A\AZA3, we find, 

Cff(x,k(x») = AzA3( IErlz/laI2). (38) 

This representation holds on each branch, showing that Cff 
does not change sign along the branch. Furthermore, the 
sign is independent of the particular component f that has 
been chosen to represent the wave. However, we note that 
C ff can be zero, if a poor choice of representation is used such 
that Ef = O. 

F. Energy conservation of mode coupling rules 

We now return attention to the Furry rules and discuss 
their consistency with energy conservation. For this pur
pose, we propagate a general solution around a real branch 
point x B and compare the asymptotic energy flow on both its 
sides. Inside the tunneling region pairs of wave solutions 
E / ' E r- with complex conjugate wave numbers k +, k -
give rise to an energy flow, 6 

(39) 

where c.c. denotes the complex conjugate expression. Equa
tion (39) generalizes the expression (35) for real wave 
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(a) 

a 

(b) b+ 

a 0+ - -
b-
d+ 

C c+ - -
d-

FIG. 3. Branch points (a) on the real and (b) on the imaginary axis in the k 
plane. The notation used for the merging roots is indicated. 

A-(_e)+A+(e_)~ A-h.+ fe)+A+(e'-) 

numbers to the complex case. It should, however, be noticed 
that both asymptotic results apply in different regions. These 
regions are separated by the region around the branch point 
kB (i.e., the point where k + and k - coalesce). Since the 
energy flow (39) couples only complex conjugate branches, 
we consider first a single real branch point kB' as in Fig. 
3 (a), and then a pair of complex conjugate branch points k B 

and k ~ on the imaginary axis, as in Fig. 3 (b). 
For real branch points kB' two propagating waves un

dergo tunneling. We denote by a ± the k values of the real 
branches with Re(8k) 'SO for X>XB , and by b ± thekvalues 
of the complex branches with Im(8k) 'SO for x <XB , respec
tively. The corresponding wave solutions for the component 
Ef are analogously written as A ± and B ± . Using Eqs. (35) 

and (39) the energy flows on both sides of X B can be ex
pressed in the form, 

J(x>xB ) = - [D,a+ IA + 12 + D,a-IA -1 2
], 

J(X<XB ) = - [D,b+B+(B-)*+c,c.]. (40) 

We now propagate the waves A ± to the region x < x B on the 
path shown in Fig. 1 (a) and obtain for the subsequent 
Stokes lines S. and S2 the connection formulas, 

~ A+(!L + ~ () + A-( /.+ ') + ~ 7) 
= A+(!L+~rr)+A-(.J.+~'l)' 

(41) 

From Eq. (41), tke solutions B ± in the tunneling region are found to be 

(42) 

Noting that the complex conjugate diagrams are obtained by reflection about the imaginary axis [Eq. (23)], one finds with 
Eq, (42), 

(43) 

We now use Eq. (20) to obtain, 
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(44) 

From Eqs. (40), (43), and (44) it follows that J(x>xB ) 

= J(x < x B)' We have thus obtained energy conservation 
for branch points on the real axis. 

Next, we consider a pair of complex conjugate branch 
points on the imaginary axis and choose an analogous nota
tion [Fig. 3 (b) ]. In this case, the waves are tunneling on 
both sides of x B and the corresponding energy flows are 

J(x>xB ) = - [D,a+A +(C+)* 

+D,a-A -(C-)*+c.c.], 

J(x<xB ) = - [D,b+B+(D-)* 

+ D,b - B - (D + ) * + C.c. ] . (45) 

ThewavesB ± are related to the waves A ± by Eq.(42) with 
the branch point taken in the upper half-plane. Similarly, the 
waves D ± are related to the waves C ± by choosing the 
branch point in the lower half-plane. Evaluating the prod
ucts in Eq. (45), one finds, 

2S+0-*: ~ A+C+* + -A A-C-* 

') ( 

~ A+C-* + --J. A-C+* , + 
( 'l 

(46) 

The diagrams in the last line can be written as 

;r ~ ~ '1 ~J. 
: = 

~ ~ J. ~) ( 

(47) 
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which leads to cancellation of the corresponding terms in the 
first product. The remaining diagrams can be combined to 
the expression for J(x > x B ) by using the identities 

~ O'OT ..!. 0'0-
= : 

') O.b+ (" O.bT 

(48) 

( °'0+ 'l °'0-

.J. 
= = 

O,b- ~ O'b-

These results demonstrate energy conservation of the 
modified Furry rules for any combination of branch points 
on the real and imaginary k axis and thereby generalize the 
discussion of Heading for branch points at the origin 
(kB =0).18 

G. Dissipation 

The present results for Hermitian systems can readily be 
generalized to nearly Hermitian systems with weak dissipa
tion. If dissipation is sufficiently small, it affects only the 
slowly varying wave amplitudes without changing the mode 
coupling rules at branch points. This approximation will 
now be explained and thereby dissipative corrections to the 
coupling coefficients for tunneling regions are obtained. 

For nearly Hermitian systems, the wave numbers can be 
calculated perturbatively by expanding about the wave 
numbers k H of the associated unperturbed Hermitian sys
tem. Specifically, this expansion is written in the form, 

k= kH + ik A, 

D(k) = DH(kH) + ikAJkDH(kH) + lDA(k H), (49) 

E = Eo + iDE, 

where H refers to the Hermitian part and A to the anti-Her
mitian perturbation. Inserting Eq. (49) into the governing 
equation D· E = 0, yields up to first order the relations, 

DH(kH)'Eo = 0, 

DH(kH)'DE= - [kAJkDH(kH)'Eo 

(50) 

If Eo = Eo(k H) represents a solution to the Hermitian oper
ator DH(k H), then Eo+ = Eo(k H*) will be a solution to the 
adjoint operator Dff+(k H) =Dff*(k H) =Dff(k H*). 
Multiplying the second equation in Eq. (50) by (Eo+ ) *, the 
Ihs vanishes and from the rhs there follows 

(E+ )*'DA'E 
k A =_ 0 o. 

(Eo+ )*·JkDH·Eo 
(51) 

Using Eqs. (10) and (11) for the components of Eo, one can 
write Eq. (51) alternatively in the form, 

C*if(k *)D A. (k) Cjf(k) 
kA(k) = _ 1 IJ (52) 

C}(k*)A,k 
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For each wave number of the unperturbed problem, the 
expression (52) represents a dissipative correction. For real 
k, it follows from the symmetry relations D t (k) 
= Df;*(k *), A(k) = A*(k *), C;(k *) = Cjf(k), that 
kA(k) is real: 

= 

= 

Cif(k)Df(k *)CJ{(k *) 

Cjf(k)A:'k,* 

Ct(k *)Df;*(k *)Cjf(k) 

Cjf(k)A:'k,* 

C *if(k * )DA. (k) Cjf(k) 
, 'J = kA(k). 

C;(k*)A,k 
(53) 

Accordingly, the propagating waves are damped by an addi
tional slowly varying factor to the wave amplitudes, 

E(z) -exp( - f kAdZ') . 

Near branch points the damping expression is integrable as 
follows from 

kAdz'= - 1](z')~= 1](k')--l
z lZ d' ik(Z) dk' 

z" z" A,k k(z,,) A,z 

with 

Ct(k *)Dt(k)Cjf(k) 

C;(k *) 
1]= 

In the derivation of the mode coupling rules in the Appen
dix, the slowly varying amplitude is treated as a constant. To 
this approximation, dissipation will not alter these rules for 
mode coupling. 

The dissipative corrections to the mode coupling coeffi
cients can be obtained in the following way. Consider a tun
neling region XI <x <xz. In the regions of wave propagation, 
the energy flow of the incident, reflected and transmitted 
waves varies as 

J;(X) =J;(xl)exp( -2 i~ k 1dX), 

Jrn(X)=Jrn(xl)exp( -2 fk1n dX), 

JIm (x') = JIm (x2 )exp( - 2 i~' k1m dX), 

respectively, with k 1> 0, k 1n < 0, and k 1m > O. Analogously 
to the definitions (34) for Hermitian systems, we define 
mode coupling coefficients by 

2536 

Rn = I Jrn(x l ) I 
J;(x l ) 

I 
Jrn(x) I (lX' A A ) = -- exp 2 (k; - krn)dx , 
J;(x) x 

Tm = I JIm (X2
) I 

J;(x l ) 

I 
J (x') I (lX' lX' ) = 1m exp 2 . k 1 dx + 2 k 1m dx . 
J;(x) x x, 

(54) 
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These definitions compensate for the damping ofthe propa
gating waves and the coupling coefficients are therefore in
dependent of the observation points x <XI and x' >X2 of the 
reflected and transmitted waves, respectively. 

The connection formulas between the asymptotic wave 
representations on both sides of a tunneling region depend 
on certain loop integrals q. These loop integrals will be dis
cussed for Hermitian systems in the subsequent sections. 
With dissipation, the loop integrals have to be evaluated 
with the corrected wave numbers yielding, 

ij = exp( - i~' [k A (k) - k A (k *) ] dX) q 

= exp( - 2i i~' Im[kA(k) ]dX) q. 

Here k is the wave number of the unperturbed Hermitian 
problem that is propagated from k(x l ) to k(x2 ) along the 
same path as defined for q. The complex conjugate wave 
number k * is propagated from k(x2 ) to k(x l ), and k A(k *) 
= kA*(k) according to Eq. (53). 

The reflection and transmission coefficients (54) are 
obtained from the connection formulas by taking the 
squared magnitudes of the wave amplitudes. In this process, 
additional loop integrals are obtained as in Eq. (23). In the 
Hermitian case, these are identical with q; however, they are 
different from ij in the non-Hermitian case. Taking the 
squared magnitudes of amplitudes yields in the dissipative 
case 

q=exp( - i~' [kA(k) +kA*(k)]dx)q 

= exp( - 2 i~' Re[kA(k) ]dX) q. 

The difference between ij and q arises because the wave 
numbers of non-Hermitian systems no longer occur as pairs 
of complex conjugate roots. 

The dissipative corrections can be included when the 
tunneling problem for the Hermitian case has been solved. 
As an example, the mode coupling coefficients given by Eq. 
(58) can be generalized to nearly Hermitian systems by the 
expressions, 

R = 11 - ij/41 2 

1 + ij/4 ' 

In the following, we always assume Hermiticity and derive 
the mode coupling coefficients for a number of examples. 

III. TUNNELING WITH ZERO REAL PART OF K 

We first apply the WKB method to one of the most 
common tunneling problems. It consists of a tunneling re
gion with a negative k z branch between two cutoff points 
where k = O. In this case, tunneling is analogous to the quan
tum-mechanical problem of wave penetration through a po
tential barrier. We derive the general connection formula 
graphically and make comparison with an exact solution for 
second-order equations with a parabolic profile. 
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k 
(b) 

x 

FIG. 4. Potential barrier model of wave tunneling. (a) Tunneling region 
with k 2 <0. (b) Branches of A(x,k) = 0 and energy flow directions. (c) 
Stokes lines. 

A. Graphical solution 

If k 2 becomes negative for some values of x, we obtain a 
tunneling region as shown in Fig. 4. It has branch points of 
the function k = k(x) at k = 0, x = X I ,2 where mode cou
pling takes place. There are also branch points of the func
tionx = x(k) atx = xo, k = ± iko. For definiteness, we will 
assume that the k 2 branch describes forward waves with 
positive wave energy. We propagate the transmitted wave 
(k> 0, x> x2) back to the region x < x I along the path indi
cated in Fig. 4 (c). The asymptotic representation is changed 
whenever a dominant wave crosses, follows, or leaves a 
Stokes line. The transmitted wave is subdominant on SI' but 
on the subsequent lines S2' S3' S4 the following waves are 
induced: 

~ + I 
2 ( 

I I ~ 2;t + (I--q) 
4 

(1+ iq) ~+ 1 jt 
(I - - q) 

4 

(55) 
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where 

q = = 
i~kdz 

e 

In these diagrams, the inner arcs around k = 0 correspond 
to the passage around X 2 and the outer ones to the passage 
around XI' The last line ofEq. (55) shows the wave solution 
in the region x <XI' consisting of an incident wave (k> 0) 
and a reflected wave (k < 0). Dividing by the incident wave, 
there follows the connection formula, 

+ 
I-~ 

4 

I+~ 
4 

q 
1+-

4 

(56) 

To determine the mode coupling coefficients, we have to 
evaluate the energy flow expression (35) for each wave. This 
can be done graphically by use ofEq. (23) for the magnitUde 
of wave amplitUdes. For the diagrams ofEq. (56), one ob
tains, 

= o 

I ~12 .• 
(57) 

With these relations, the reflection and transmission coeffi
cients, as defined in Eq. (34), assume the form, 

R=(1-q/4)2, T= Iql . 
(1 + q/4)2 (1 + q/4)2 

(58) 

In the expression for T, we have taken the magnitude of q to 
allow for later generalizations where q may become negative. 
It is readily seen that this result obeys energy conservation in 
the form R + T = 1. This is a consequence of the modified 
Furry n~le that introduces an appropriate correction to the 
reflected wave amplitUde. 

B. Model equation 

As an example for wave tunneling with a negative 
branch of k 2, we consider a second-order equation with a 
parabolic profile, 

'II" (x) + (x2/4 - a)'II(x) = 0, (59) 

and a constant a> O. We specialize the general solution to 
the present case by setting 

Ef='II, Cff = 1, A= -k 2+x2/4_a. (60) 
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(-«>,-«» 
i17" 

(-210,0) 
(- <Xl, <X» 

(O,-ilO) 

( 00,00) 
(210,0) 

( "",-00) 

(0, ilO) 

(-co,-co) 
(-210,0) 

(-<0,00) 
- i 17" 

FIG. 5. Strip - iff < lm( r) <i1Tofthe rplane with values of (z,k) at repre
sentative points. 

To evaluate the diagrams for the wave amplitudes, it is con
venient to define the branches of A(z,k) = 0 in the paramet
ric form, 

z = 2~ cosh ( 7), k = - ~ sinh ( 7). (61) 

This representation is a particular solution of Eq. (6) that 

corresponds to the initial conditions z(O) = 2~, k(O) = 0 
at 7 = O. The mapping (61) is 21T periodic along the imagi
nary 7 axis and one can therefore restrict attention to the 
strip - i1T < Im( 7) < i1T. Some values of (z,k) correspond
ing to representative points in the 7 plane are shown in Fig. 5. 

The 7 representation of the path becomes especially use
ful for the loop diagram q. The integration path, connecting 

the points (- 2~,0), (O,i~), (2~,0), (0, - i~), is 
mapped on the section of the imaginary axis between - i1T 
and + i1T. Noting that, 

f f dz( 7) [ 1. ] kdz= k(7)~d7=a 7-Tsmh(27) , 

f k dz = 21Tia, 

one finds, 

q = exp(i f k dZ) = exp( - 21Ta). 

(62) 

(63) 

Using for the reflected wave the relations a(k 11,2) = 1, 
tJ(k 11,2) = 1T and for the transmitted wave the relations 

a(k 11,2) = ~ k]lk2 , tJ(k 11,2) = 0, one obtains the expres
sions, 

...f:\.., 
21 

. uSj = -Ie 

where 

2538 

J
X

, (X2 )112 
S] = - dx --a , 

- 2[ii 4 

l X, (X2 )112 
S2= dx --a . 

2[ii 4 
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(64) 

k2 

k
2 
2 --------------

X 
X, 

FIG. 6. Tunneling region with real branch points kB "",0. 

With Eqs. (63) and (64), the WKB connection formula 
(56) becomes, 

1 I - 2tra 

1 . - ije 2iS -/ e ' 
1 + !e - 21Ta 

e-
tra (k )112 -+ -..!. ei(S,+s,). 

1 +!e - 2na kz 
(65) 

For comparison, we also present the exact solution for 
the present boundary value problem. It is given by the para
bolic cylinder function E( a,x) with the asymptotic represen
tation22 

(66) 

The approximate result (65) becomes valid for extended 
tunneling regions with separable branch points. This ap
proximation requires exp( - 21Ta) ~ 1. We note that both 
results (65) and (66) conserve wave energy, predict the 
same phases, and are in agreement up to the order 
exp( - 21Ta). This accuracy could not have been obtained 
by using the usual Furry rules. 

IV. TUNNELING WITH NONZERO REAL PART OF K 

We now assume branch points k B > 0 on the real k axis 
and tunneling waves with a nonzero real part of k. In con
trast to the previous case, the cofactors can change sign in 
these tunneling regions where k 2 is no longer real. 

A. Graphical solution 

In Fig. 6, we show the general structure of the tunneling 
region with two branch points at XI' k] and Xl. k2 which we 
take to be positive. We identify the incoming wave with the 
upper k branch in the region X < X 1 and assume first that the 
transmitted wave is given by the lower k branch in the region 
x> x 2• Analogously to the procedure in Sec. III, we propa
gate the transmitted wave back to the region X <XI and ob
tain there the asymptotic representation, 

(67) 
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with 

It has the same form as in Eq. (55). The mode coupling 
coefficients are still given by Eq. (58); however, with the 
loop diagram q as defined in Eq. (67). The conservation 
relation now assumes the form R + aT = 1. If a is negative, 
the reflection coefficient becomes larger than 1. 

In the case where the transmitted wave is given by the 
upper k branch, energy conservation is obtained in exactly 
the same manner. It follows from Eq. (42), that all diagrams 
are only changed at the arcs around k2 • Accordingly, the 
contour in the q diagram passes around k2 on the opposite 
side. Using Eq. (22), we obtain also for this case the expres
sion (67) for the sign a. 

B. Model system 

As an example of tunneling with a reversed ordering of 
the transmitted energy flow, we consider the crossing of two 
branches a(x,k) = 0 and b(x,k) = O. A weak coupling 
between these branches can often be described by a matrix, 12 

D .. = [a(x,k) ie] (68) 
IJ _ ie* b(x,k) ' 

where e denotes a small coupling constant and the functions 
a(x,k), b(x,k) have a common zero at XO, ko. Expanding 
about the crossing point X O, ko up to linear order and setting 
A(x,k) = 0, one obtains 

- - B +x + (B -2X2 
- 4A leI 2 )1/2 

kl2 = (69) , 2A 

with k = k - ko' x = x - x o, A = a.kb.k and B ± = a,xb,k 
± a,k b,x' Tunneling occurs if A > 0, yielding for the branch 

points X B and the maximum imaginary part of the wave 
number k m the expressions 

xB = ± 21ela liB -I, k m = leila. (70) 

The integral around the branch points that determines the 
transmission coefficient then follows to be 

£ k dz = 1Tk Ix I = 21T 1L . J m BIB-I (71) 

This expression agrees with previous results for coupled dif
ferential equations. 12 

We now discuss the role of the cofactors in this model. 
From Eqs. (11) and (68) the matrix of the cofactors follows 
to be 

C. = [b(x,k) 
Ij ie* 

- ie ] 
a(x,k) . 

(72) 

According to the discussion following Eq. (35), the energy 
flow direction is determined by the zeros of one of the cofac
tors CII or C22 • The equations CII = 0, C22 = 0 describe the 
uncoupled branches that intersect inside the tunneling re
gion at the crossing point. The corresponding energy flow 
directions are determined as in Fig. 2(b). 
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Outside the tunneling region, the asymptotic solution 
can be written in the form 

[EI] = [ 1 ] I '1'1 + [C12/C22
] I '1'2 (73) 

E2 C2 /C II a=O 1 b=O' 

where the waves '1'1 and '1'2 correspond to the branches a = 0 
and b = 0, respectively. The polarization ratios, entering 
this expression, are given by 

.* - Ie a,k 
C211 
CII a=O B-x 

(74) 

They have apparently first been noted in Ref. 12, by iterati
vely solving a system of coupled wave equations. Our treat
ment shows that these factors arise naturally from the WKB 
theory of vector systems. 

V. FOUR-WAVE TUNNELING PROBLEMS 

In the presence of additional branch points, more than 
two waves can be coupled in a tunneling process. We now 
discuss two examples that are commonly encountered in 
four-wave interactions. 

A. Exterior cutoff 

Suppose we have the configuration of Fig. 7 with branch 
points at (xo,O), (XI' ± k l ), and (x2, ± k 2 ). The positive 
and negative branches are connected by the cutoff at XO' In 
the region X < X O, we assume an incoming wave with k> 0 
and demand that no growing waves exist with Im(k) > O. In 
the region x> X 2, the transmitted waves are taken on the 
lower k branches. 

Let us first construct the particular solution where only 
one transmitted wave (k> 0) is present. For this wave, the 
asymptotic representation in the region Xo < x < X I is given 

(a) 

(b) 

k2 k2 C 
2 : 

k~ 

I 
I 
I 
I 
I 

x 

FIG. 7. Four wave tunneling problem with an exterior cutoff. (a) Tunnel
ing configuration. (b) Schematic representation of Stokes lines. 
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by Eq. (67). Propagating this solution further into the re
gion x < xo, only the outgoing wave proceeds to the cutoff 
and induces there another wave on S6' For x < x o, the asymp
totic representation then is, 

(75) 

where q is given by Eq. (67) and the + sign indicates that 
the branch points are taken on the positive k axis. The trans-

mitted wave with k < 0 for x> X 2 leads analogously to the 
representation, 

(I-~)~+(I+*)(~ 

+~~), 
(76) 

with the branch points taken on the negative k axis. We have 
also used Eqs. (17) and (20) to obtain the identity 

0: -8+6- 0 O:q· 
I 

(77) 

We now combine both particular solutions such that the 
growing waves with Im(k) > 0 cancel. This can be achieved 
by adding to the first solution (75) the second solution (76) 
multiplied by the factor, 

l-q/4 
. r= . 
, 1 + q/4 

(78) 

Dividing the result by the incident wave yields the connec
tion formula, 

+ 
+~r2 

+ 

+y-r.'-r 

t--
I+~ 

4 

+ 
+r~ I + ~ 

4 

(79) 

The transmission coefficients TI and T2 for the waves with 
k> 0 and k < 0, respectively, and the reflection coefficient R 
then are found to be, 

2540 

TI = !q!/(1 + q/4) 2, 

T2 = rTI = TI( 1 - T I ), 

R = r4 = (1 - TI)2. 
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(80) 

Energy conservation holds again in the form R + 0'( TI 
+ T2 ) = 1. This result is consistent with the physical consi
deration that from the incident power a fraction TI is trans
mitted to the first wave and a fraction 1 - TI reflected to the 
cutoff. The latter energy flux can transmit a fraction 
TI (1 - TI ) to the second wave while a fraction (1 - T I ) 2 

remains for the reflected wave . 

(0) 

------~~r-+-----~X-2--~X 

- k~ 

(b) 

FIG. 8. Four wave tunneling problem with an additional complex branch 
point. (a) Tunneling configuration. (b) Corresponding Stokes lines. 
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B. Interior complex branch point 

We now analyze the case where the incident wave first 
reaches the cutoff and tunnels then to an additional complex 
branch point as shown in Fig. 8. While the example in Fig. 7 
could be described by two subsequent tunneling events in the 

• 
5, 

+ ~ • · ... ~ ~ 
• 

52 -A + I 
I-----"+- '7 2 

form of Fig. 6, the situation in Fig. 8 is more complicated and 
requires an independent evaluation. 

We assume the same boundary and outgoing wave con
ditions as before and first derive the solution corresponding 
to a single transmitted wave. Backward propagation of the 
transmitted wave with k> 0 induces up to S4 the following 
waves: 

(81) 

54 I + !f). + ~ + I 
~ "20 47 2 

It is noted that both waves are subdominant on S3' encircling 
the complex branch point counterclockwise with 
1m (8k) > O. Proceeding to the region x < X o, only the first 
two diagrams in the last grouping induce further waves. 
Their continuation yields, 

10-
2 

D. I I - •• (I--q) 
2 2 

q- I ~ q 
( I - 2) + 2 ~). (I + '2 ), 

(82) 

with 

q= (83) 

and u = sgn( WJWj ). The second transmitted wave with 
k < 0 leads similarly to the two tunneling waves, 

(84) 
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and to the two propagating waves, 

~ ~ 
~J..r.(I-~) + 1 J. ~ ( I + g, ). 

2 2 

(85) 

Here we used an identity analogous to Eq. (77). We now 
multiply the second solution by the factor, 

(86) 

and add the product to the first solution. Then the tunneling 
waves cancel, 

~(I+~~)" 
; (I+./.':') y)" 

0, 

0, 

(87) 

and from the propagating waves we obtain the connection 
formula, 
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+ ~- 1---+ 
I+~ 

2 

+ 

The reflection and transmission coefficients now follow to 
be, 

R _ (1_q/2)2 
- (1 + q/2)2 ' 

(89) 

One can easily verify that the result (89) satisfies energy 
conservation, R + u( TI + T2 ) = 1. 

The tunneling structure with an interior complex 
branch point occurs for mode conversion between fast Alven 
waves and ion Bernstein waves in thermal plasmas at the 
two-ion hybrid resonance. 5, 7-9 The dielectric tensor near the 
resonance can be approximated by the form,23 

_ [0 + an
2 

Dij - b* (90) 

with 

U/' 
0=1-~ PJ 

L,. 2 2' 
j W - W cj 

2 

b _ . ~ W Cj Wpj 
--IL,.- 2 2' 

j W W - W cj 

a = ~ (W~j W~j) ~ ~ 
L,. 2 2 2 A _,2 2 2 ' 

j W - W cj W - 'ffiJcj W cj mjc 

ck 
n=-. 

W 

where c denotes the speed oflight, T the temperature, wp the 
plasma frequency, We the cyclotron frequency, m the mass, 
andj labels the particle species. In deriving Eq. (90), dissipa
tive processes at the cyclotron resonance frequencies have 
been ignored by assuming wave propagation perpendicular 
to the magnetic field. The singularities in Eq. (90) can be 
removed by a multiplication Dij = NDij with the common 
denominator N = IIj (w

2 
- W;j )(w2 

- 4w;j), which leaves 
the wave number branches n (:) unchanged. If wcj (z) and 
wpj(z) are assumed analytic, Dij(z,n) is then an analytic 
Hermitian form that can be treated by the present theory. 
From Eq. (90), the dispersion relation A = 0 is obtained as 

The branches for the wave numbers are given by, n2 = - A 

± ,fif, where 

A = (1/a - 1)(0/2), 

B = A 2 + (02 - Ib 12)/a, (92) 

There occurs a cutoff for 0 2 = 1 b 12 and further branch points 
at n

2 = - A for 0
2 = 4alb 12/(1 + a)2, The asymptotic 

branches are given by n2 = 0 (I - 1 b 12/02) for Alven waves, 
and by n2 = - 0/ a for the ion Bernstein waves. Assuming 
now that the parameter 0 varies from positive to negative 
values along the x axis, one obtains the general structure of 
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I + .9. 
2 

(88) 

Fig. 8. The contours Cff = 0 are also easily obtained from 
Cll = 0 - n2 and C22 = 0 + an2

• They describe asymptotes 
to the Alven wave branches (0) 0) and to the Bernstein 
wave branches (0 < 0) that intersect at 0 = O. The orienta
tion of the energy flow is therefore as illustrated in Fig. 2 (b). 
The imaginary parts of the wave numbers in the two sections 
of the tunneling region can be expressed as 

k = + ~ {~A - ,fif, B>O, (93) 
I - c ~A+(A2+IBI)IJ2/2, B<O. 

These determine the mode coupling coefficients according to 
Eqs. (83) and (89) for general profiles. 

VI. CONCLUSIONS 

Our analysis of wave tunneling has led to transmission 
coefficients that are expressed by loop integrals around the 
branch points of the tunneling structure, These integrals are 
entirely determined by the local dispersion relation and 
therefore will not depend on the specific operator represen
tation that has been used. This independence may explain 
the general agreement of various mode coupling models on 
the form of the transmission coefficients.7

-
14 

The direction of the energy flow depends similarly on 
the dispersion relation, but generally also on the cofactors of 
the dielectric tensor. These cofactors describe the vector 
structure of the wave amplitudes and allow for the correct 
propagation ordering on the branches separated by a tunnel
ing region. The vector representation in the present treat
ment is therefore appropriate for describing mode conver
sion with forward and backward waves without regard to 
specific models. 

Energy conservation in the WKB theory has been ob
tained by the use of a modified Furry rule and dissipation has 
been included perturbatively. Our technique applies to ex
tended tunneling regions where each branch point can be 
treated separately. When this approximation is justified, we 
can then describe coupling with coalescing branches both on 
the real and the imaginary k axis. For nonseparable branch 
points, different WKB techniques have been developed, 
which are, however, limited to specific second order-equa
tions. 18.24 

In summary, the present treatment of wave tunneling is 
based on the general dielectric tensor of the medium, con
serves the physical wave energy for dissipationless systems, 
and can be applied to arbitrary mode complexity by follow
ing simple graphical rules. 
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APPENDIX: DERIVATION OF MODIFIED FURRY RULE 

The contour integral representation (27), (28) yields 
for the components of the electric field, 

Ei (Z) = 1 dk ai (k)exp[ikz - is(k)]' 

with 

h (k) __ 1 ( Clf ) I 
a

i -..fi1ri Cff.JD:: z ~ z(k) , 

S(k) = S(kB ) + i: dk I z(k '). 

(Al) 

The reader is reminded that z(k) is determined from the 
local dispersion relation A(z,k) = 0 and that dzldk = 0 at 
the branch point kr- Assuming a sufficiently rapidly varying 
phase, we can approximately evaluate Eq. (AI) byexpand
ing z(k) about kr- With ZT =z(kT), zr =z"(kT), 
8k = k - kT' 8z = z - ZT> the two WKB wavelets that 
merge at k = kT can then be accurately described by the 
integral form, 

Ei(z) = exp[ikTz - S(kT)] 1 dk fliCk) 

[ 
z" ] X exp i8z8k - i ; 8k 3 + .,. . (A2) 

The k-space integral is basically an Airy integral if the sum is 
truncated after the cubic term and the amplitude ai (k) is 
slowly varying. 

For the Hermitian problems we are considering, ZT' k} 
and consequently also zr are real. For definiteness, let us 
assume zr > O. The stationary phase points are at 8k 

= ± ~28zlzr and the corresponding solutions are then 
propagating waves for 8z> 0 and evanescent waves for 
8z < O. The contours of the k-space integration are shown in 
Fig. 9. In this figure the shaded regions are where the inte
grand is divergent as 1 k - k T 1-- 00. For 8z> 0, the saddle 
points A (8k> 0) and B (8k <0) are shown in Fig. 9(a). 
The solid contour is the steepest descent path through point 
A and the dashed contour, the steepest descent path through 
point B. By choosing one of these contours a single propagat
ing wave with k(z) = kT + 8k is obtained. 

/ 
/ 

(0) (b) 

FIG. 9. Local k space contours in the vicinity of the branch point k = kr
The steepest descent contour when x - Xr > 0, shown in (a), goes through 
the saddle point A and leads to a WKB propagating wave. An equivalent 
contour when x - Xr < 0 has the steepest descent contour going through 
the saddle points A ' and B ' and leads to exponentially growing and exponen
tially decaying waves. 

2543 J. Math. Phys., Vol. 30, No. 11, November 1989 

Let us suppose that the solution of interest for 8z> 0 
corresponds to a single WKB wavelet with 8k> O. The con
tour of integration is then the solid contour in Fig. 9(a). For 
8z < O,the saddle points are on the imaginary k axis. Equiva
lent to the solid contour in Fig. 9(a) is the solid contour in 
Fig. 9(b). The new contour goes along the directions of 
steepest descent through the saddle point A', where 8k 

= i~218zllzr=8k), and the saddle point B', where 8k 

= - i~218zllzr=8k2' In approximating the contour inte
grals by the steepest descent method, we see that only one
half of the saddle point integral through B ' is needed. 

We now evaluate the contour integrals by the saddle 
point method. For 8z> 0, the contribution from the saddle 
point A is given by 

Ei (z) :::;ai(z,k(z) )exp[iS(z)] 

X 1 dp exp [ - ~ zr8kp2] , (A3) 

with 

S(z) =kTz-S(kT) +j8z8k 

=S(ZT) + r dz' k(z'), 
JZT 

and S(ZT) = zTkT - S(kT). Defining a = arg(i8k) and 
p = tei'P, the directions of steepest descent at the saddle point 
satisfy the condition cp = - al2 + nl'TT. In accordance with 
the orientation of the solid contour in Fig. 9(a) (cp = - 'TTl 
4) we choose n = 0 and find, 

Ei (z) = ai(z,k(z) )e'S(Z) --. (2'TT )1/2 
izr8k 

= ( Clf ) I eiS(z). 
iCff~ - D,k k ~ k(z) 

(A4) 

Here the phase of - D,k is determined by the relation, 
- D,k = D,z dzl dk = D,zzr8k. 

For 8z < 0, there are two saddle points that the contour 
of integration passes through. The contribution through the 
point A ' produces the dominant wavelet and the stationary 
phase contribution through the point B' one-half of the sub
dominant wavelet corresponding to a Stokes factor of!. Spe
cifically, the steepest descent evaluation yields, 

E ( ) _ h . . is, ( - i)J21i + 1 h. is, J21i 
i Z _ail _ e - ail . e - -;=::~;:::;-

k_k, ~lizr8k 1 2 k~k, ~lizr8k 1 

( Clf ) I 'S 
= iCff~ - D,k k~k, e' , 

+- e", 1 ( C'lf ) I ·s 

2 iC ff~ - D,k k ~ k, 

(AS) 

where arg(8k) = 'TT/2, arg(8k2 ) = - 'TT/2 and the sub
scripts 1,2 denote evaluation with 8k1•2 , respectively. The 
dominant wavelet 1 is the analytic continuation in the upper
half k plane of the original WKB wavelet. The subdominant 
wave 2 is the analytic continuation of the wavelet 1 around 
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the branch point in the opposite sense of propagation. This 
result is just the modified Furry rule given diagrammatically 
in Eq. (26). 
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Wave splitting and the reflection operator for the wave equation in JR3 
Vaughan H. Weston 
Department of Mathematics, Purdue University. West Lafayette, Indiana 47907 

(Received 1 December 1988; accepted for publication 14 June 1989) 

The problem of wave splitting in a nonhomogeneous medium in lR3 is considered. Previous 
results for wave splitting in a planar stratified medium can be generalized to a general 
nonhomogeneous medium (with sufficiently smooth velocity). The wave equation is factorized 
into an up- and down-going wave system using certain integral and integral-differential 
operators. The equation for the reflection operator (which relates the up-going wave to a 
down-going wave) is then obtained, and certain properties of the reflection operator are 
deduced. 

I. INTRODUCTION 

One of the techniques that has been used in the time
dependent direct and inverse scattering problems associated 
with the one-dimensional wave equation 

a2 1 a2 

---::2 u(z,t) = ---2 U(Z,t) , Z,tEJR, az- c2 (z) at 
for a nonhomogeneous medium, is based upon the method of 
wave splitting. 1,2 By wave splitting we mean the decomposi
tion of u(z,t) into up-going (in the positive Z direction) and 
down-going (in the negative Z direction) waves. The impor
tance of such splittings, in general, is that they lead to the use 
of invariant imbedding techniques. 3

-6 Given a slab ofinho
mogeneous medium and a splitting one can define an asso
ciated scattering matrix. Invariant imbedding techniques 
then allow one to write a complex system of differential 
equations for the operator entries of the scattering matrix 
whose differentiation is with respect to the location of one of 
the planes of the slab. One can then deduce the behavior of 
the reflection operators for small time which provides a con
nection between up- and down-going wave fields and the 
properties of the medium on the edge of the slab. 1,2 The re
flection operator can then be used in both direct and inverse 
scattering problems. 

Various approaches7
-

1O have been tried for extending 
the wave splitting to a planar stratified medium with 
c = c(z) and U = u(x,y,z,t). In particular, the approach tak
en by the author 10 was successful in giving rise to the form of 
the reflection operator and the explicit Ricatti-type integral
differential equation and initial condition that the kernel of 
the reflection operator must satisfy. This approach on wave 
splitting in a planar stratified medium was subsequently gen
eralized to apply to the dissipative wave equation II (tele
graph equation). Furthermore the concept of wave splitting 
for the wave equation was extended to the case of a non
planar stratified medium. 12 This led to an immediate appli
cation to the inverse scattering problem associated with cy
lindrical geometry. 13 

In this paper it is shown that the approach 10 used for 
wave splitting of the wave equation in a planar stratified 
medium can be generalized to a general smooth nonhomo
geneous medium in JR3. (Note, Ref. 8 addresses transversely 
inhomogeneous environments. ) 

The key to the procedure for wave splittinglO in a strati
fied medium is based upon the development of an up- and 

down-going wave condition across a planar surface based 
upon the use of the initial-value mixed problem (Dirichlet or 
Neumann boundary conditions) in a half-space. The key to 
extending the idea to a nonhomogeneous medium is to gen
eralize the imbedding concept where one takes a variable 
plane surface bounding the nonhomogeneous medium on 
one side and takes the medium in the external half-space to 
be independent of the perpendicular Cartesian variable and 
yet at the same time retain continuity of the properties of the 
medium across the surface (i.e., if the surface is given by 
X3 = x~, then the velocity c in the external medium would 
depend upon X I,X2 only). See Figs. 1 and 2. 

Section II will be devoted to the structure of the funda
mental solution of the wave equation in a nonhomogeneous 
medium. Detailed analysis on the ray coordinate system cor
responding to rays arising from a point source is given in 
Appendix A. This is used to develop the properties of the 
fundamental solution. 

A further refinement of the properties of the fundamen
tal solution for the case where the velocity c is independent of 
x, is given in Sec. III. 

Based upon the results of the previous sections, the up
and down-going wave condition is developed in Sec. IV for 
solutions in an auxiliary space where c = c(x l ,x2,a), with a 
being a parameter. 

x. 

c- C()( .. X,.X,l 

FIG. l. Scatterer geometry. The velocity C = Co of the medium external to 
the scattereris constant. The scatterer itself has variable velocity c = c(x). 
For the direct or inverse problems referred to in the text, the sources and 
receivers would be located in the half-space (x3 > constant) above the scat
terer. 
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x, 

c- C(X,)<.,\) 

FIG. 2. Invariant imbedding geometry. For the half-space X3 <x~ , the veloc
ity c is the same as for scatterer geometry in Fig. 1. For X3;;'X~, the velocity c 
depends upon the transverse variables XI> X 2 only and is explicitly given by 
c = C(X"X2'X~), 

Using the ideas of invariant imbedding, this splitting 
is extended to a full nonhomogeneous medium where 
C = C(XI,X2 ,X3) in Sec. V. The system of equations satisfied 
by the up- and down-going waves is given. 

The existence and form of the reflection operator relat
ing the up-going wave to the down-going wave is given in 
Sec. VI. The asymptotic behavior for t -+ 0 + , of the reflec
tion operator kernel, is also deduced there. Using the system 
of equations for the split system of up- and down-going 
waves that were developed in Sec. IV, the sought-for equa
tion for the kernel of the reflection operator is obtained in 
Sec. VII. Finally, the support of the kernel of the reflection 
operator and its behavior at the boundary of the support is 
examined in Sec. VIII. 

In the remainder of this paper x = (X I,X2,X3) and 
y = ( YI'Y2'Y3) will denote points in R\ and where necessary, 
subscripts x and yon the Laplacian operatorV2 or the gradi
ent operator V will be employed to indicate the variables that 
are being differentiated. 

II. FUNDAMENTAL SOLUTION 

The form of the fundamental solution ~ (x,y;t), x,YER\ 
associated with the wave equation, and some of its properties 
will be examined here. The generalized function ~ (x,y;t) is 
a weak solution of the system 

1 a2 

-2--2 ~ - V; ~ = 8(x - y)8(t) , (1) 
C (x) at 

~=O, t<O, (1') 

or as an alternative to systems ( 1), ( 1'), ~ is a weak solution 
of the initial value problem with initial conditions ~ = 0, 
~ t = c2( y)8(x - y) at t = O. 

When C is a constant, ~ (x,y;t) has the explicit form 

c£'( .t) _ 8(t - Ix - yl!c) 
(9 x,y, - , 

41Tlx - yl 

where 8 is the Dirac delta function. For the general case 
where c is a sufficiently smooth function of x, it can be shown 
that the fundamental solution takes the form 14 
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8(t - 7(X,y» 
~(x,y;t) = + A (x,y;t) , O<.t<T, (2) 

p(x,y) 

for a finite time interval. Here 7(X,y) satisfies the Eikonal 
equation 

IV71 2 = l/c2 (x) , (3) 

with asymptotic behavior as x -+ y 

7-+ [l/c(y)] Ix - yl . (4) 

Physically 7(X,y) = t represents "pseudospherical" wave 
fronts l5 diverging from the pointy at time t = O. Theorthog
onal trajectories ofthese wave fronts are the rays (bicharac
teristics). Their equations are given in Appendix A. 7(X,y) 
of course represents the time of arrival of a signal travelling 
along the ray from the point y to x. The time constant Tin 
the representation given by Eq. (2) for the fundamental so
lution is chosen, so that for the time interval O<t< T, the rays 
originating from the pointy do not intersect, i.e., there are no 
caustics. 

The amplitude term p(x,y) in expression (2) satisfies 
the equation 

(l/p)V~7+2V7'V(l/p) =0, (5) 

and its asymptotic behavior as x -+ y is given by 

p(x,y) -+41Tlx - yl . (6) 

The second term in expression (2) satisfies the system 

(_1_~ -V~\A=8(t-7)V~[~ I] 
c2 (x) at 2 r p 41Tlx - yl ' 

(7) 

(7') 

In Appendix A, it is shown that a ray-coordinate sys
tem l6 (7,0,f/J) centered atx = y, exists for a domain 0<7<7» 

0<0<1T, 0<f/J<21T and maps a region BeR3 containing the 
pointy into the ball 0<7<71, Since 71 depends upony, Tis 
chosen so that 

T= min 7 1( y) . 
yER' 

(8) 

The ray system is orthogonal with metric coefficients hr, he, 
h",. Employing the ray-coordinate system, Eq. (5) can be 
placed in the form 

~(~)=O, 
a7 p 

(9) 

where 

S = (heh",/hr) 1/2 . (10) 

Using the asymptotic behavior for 7-+0 derived from 
Eqs. (4) and (6) 

p~41TC( y)7 + O( r) 
and the corresponding asymptotic behavior for S derived 
from Eqs. (A2) and (A9), Eq. (9) can be integrated to yield 

p(x,y) = 41TCI /2( y)sin ° -1/2S . (11) 

As is pointed out in Appendix A, if c2 is bounded from zero 
and is Holder differentiable, i.e., C2EC(4.0, then the ray co
ordinates x = X( 7, 0, f/J ) are three-times differentiable with 
respect to 7,0,f/J and hencep(x,y) is twice differentiable with 
respect to X. To investigate the behavior of A (x,y;t) set 
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1 f' a(x,y;t) = -- A(x,y;s) ds. 
c(x) - 00 

(12) 

It then follows that system (7), (7') reduces to 

a2 

-2 a - V • (c2Va) - (cV2c)a = H(t - r(x,y»f(x,y) , 
at 

a(x,y;t) = 0, t<O, 

where 

f(x,y) = C(X)V~{_I- _ 1 }, 
p(x,y) 41Tlx - yl 

and H ( 7]) is the Hea viside step function. 

(13) 

( 13') 

(14) 

Let the ball 0..; r..; r l, 0..;0..; 1T, 0..;¢..;21T in the ray coor
dinate system centered at y be mapped into the region B in 
]R3. Let 0. be an open region containing B. We will then 
replace problem (13), (13') with the Dirichlet initial-value 
problem in the region nX (O..;t..; n, with a = 0 on on (the 
boundary of 0.). Since from Eq. (8) T is chosen so that 
T";r l ( y), the boundary on will not affect the solution. Not
ing that the spatial operator on the left-hand side ofEq. (13) 
is strongly elliptic, we can apply an existence theorem l7 on 
the mixed initial-value problem in the region n. With c suffi
ciently smooth so thatp(x,y)EC 2, and because of the asymp
totic behavior of p (x,y) given by Eq. (6), it follows that the 
right-hand side ofEq. (13) is bounded in nX [O,T]. It then 
follows from the existence theorem 17 (p. 452) that 
aEL2«0,n;W~ (0.» and aa/atEL2(nX (O,n) with the 
norm for the latter term being given by 

Since c is continuous it follows that for each fixed y, 

A (x,y;t)EL2(nX (O,T». (15) 

In addition, because the support of the function or the 
right-hand side of Eq. (13) is given by H(t - r(x,y», it fol
lows from the associated initial value problem (with zero 
initial condition) and energy integral,18 that the support of 
a(x,y;t) and hence A (x,y;t) , is contained in H(t - r(x,y». 
Hence we can set 

A (x,y;t) = H(t - r(x,y»A (x,y;t) . 

The symmetry properties 

~(x,y;t- t') = ~(y,x;t' - t) 

(16) 

(17) 

of the fundamental solution can be easily deduced, 14 and in 
particular it should be noted that ~ (x,y,t - t') satisfies the 
system 

1 a2~ 2eV" ", -----V 0 =u(x-y)u(t -t). (18) 
c2(y) at,2 y 

In addition it should be noted that r(x,y) is symmetric, 

r(x,y) = r( y,x) . (19) 

III. FUNDAMENTAL SOLUTION FOR THE AUXILIARY 
SPACE WHERE C=c(x,,x2,a) 

Before developing the wave splitting in the full nonho
mogeneous medium in ]R3, we need to consider in the invar
iant imbedding process the special subset of the nonhomo-
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geneous medium, where c is independent of x 3• In addition, 
besides being a function of XI' x 2 , c will be a differential 
function of a parameter a, c = c(x l,x2,a). 

It will be convenient to introduce the following notation 
appropriate for this auxiliary space by decomposing the 
points in ]R3 into the components perpendicular to the X3 axis 
and parallel to X3 axis. With X = (X I ,X2,X3), let 

X = (x,x3), where x = (xI>x2 ). 

The fundamental solution ~a(x,y,t - t') associated with 
the equation for this space will satisfy the system 

1 a2~a 
c2(x,a) iif2 -v;~a=8(x-Y)0(X3-Y3)0(t-t'), 

(20) 

~a = 0 , t - t' < 0 . (20') 

Since c is independent of X3 it can be shown that 
~ (x,y;t - t') has thefollowing properties: (i) translational 
invariance in the X3 variable 

~a(x,y;t - t') = ~a(X,y,x3 - Y3;t - t') , (21) 

(ii) even function of X3 - Y3' 

~a(x,y,x) - Y3;t - t') = ~a(X'Y'Y3 - x);t - t') , (22) 

(iii) 
a~a a~a 

(23) 

Define O~ as the transverse d' Alembertian with respect 
to the variables x,t, 

T 1 a 2 a 2 a 2 
o =-------- (24) 

x c2 (x) at 2 axi ax~ , 

with a similar definition for 0; 

T 1 a 2 a 2 a 2 

o =---- - - - - (24') 
Y c2 (y) at,2 aYi a~ 

Using the result [obtained from Eq. (23)] 

a2~a a2~a 
--=--, 
ax; ay; 

together with Eq. (20) and its symmetric counterpart to Eq. 
( 18), it can be shown that 

o~~a(X,y;X3 - Y3;t - t') = o;~a(X,y;X3 - Y3;t - t') . 

(25) 

When c is independent of x 3 , one can deduce some further 
properties of the wave fronts and in particular r(x,y) which 
is used in the representation for the fundamental solution. 
On differentiating the Eikonal equation [Eq. (3)] with re
spect to X3 and using ray coordinates (r,O,¢) centered at y 
(see Appendix A), one can obtain the following: 

Vr. V ~ = _1_~(~) = O. 
aX3 h; ar aX3 

This implies that ar/ax3 is constant along the ray. Using the 
asymptotic behavior for r as x .... y, given by Eq. (4) it can be 
seen that 

ar cos 0 -=--, 
aX3 c( y) 

(26) 
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where () is associated with the local ray coordinate system 
centered at x = y. It immediately follows that the rays para
meterized by () = 1T/2 lie in the X3 = Y3 plane as expected. 
Furthermore since ar / aX3 > 0 for X3 - Y3 > 0 and 
ar / aX3 < 0 for X3 - Y3 < 0 it is seen that the vertical cross 
section of the wave fronts are concave, and that in the verti
cal plane, r(x,Y) achieves a maximum when X3 = Y3' 

Taking the second derivative of the Eikonal equation 
(3) with respect to X 3, one obtains 

I v~12 +Vr·V a
2

r =0. 
aX3 ax~ 

Since ar/ax3 = 0 in the X3 = Y3 plane, it follows that 

h\ :7 (~~~) + (~~~ r = 0, X3 = Y3' (27) 

Since the metric coefficient h; = c2 (Appendix A), Eq. 
(27) can be integrated along a ray in the X3 - Y3 = 0 plane to 
obtain 

__ 7 = c2 dO" + const a2 (iT )-1 
ax~ 0 

Using the asymptotic behavior for 7(X,Y) as X-Y given by 
Eq. (4) it can be shown that the constant is zero. Thus we 
have the following result: 

a 2r (iT 2 ) - 1 --= c dO" , 
ax~ 0 

(28) 

where the integral is along the ray. This result will be used 
later on in the analysis. 

IV. UP- AND DOWN-GOING WAVE CONDITION IN THE 
AUXILIARY SPACE 

To get the up- and down-going wave condition on sur
faces X3 = const, in a medium where c is independent of X3, 
i.e., c = c(x,a), we need to consider the mixed problem in 
the appropriate half-space. 

Let u ( y,t) be the solution of the initial value, Neumann 
problem in the upper half space Y3 > x~, for O<t' < T, 

1 a2u 2 
-----V u=O Y3>xL O<t'<T, (29) c2 (y) at,2 y , 

u(y,O) =u,(Y,O) =0, Y3>X~, (29') 

au (') 0 0 ' T - = v y,t , Y3 = X3 , <t < , 
aY3 

(30) 

where v (y ,t ') is a bounded function of compact support on 
the surface Y3 = x~. Because of the support being compact 
and time domain being finite the problem is equivalent to the 
problem where the domain is a large hemisphere in the upper 
half space, with boundary condition au/an = 0 on the sur
face of the hemisphere. Since the domain here is compact, 
the solution 17 exists. 

Set 

+ /Fa(x,y,x3 - 2x~ + Y3;t - t') . (31) 

The fundamental solution ft' a satisfies the system in the half
spaceY3 >x~ 
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_2_1- a
2

2 
ft'a - v;ft'a = 8(x - y)8(x3 - Y3)8(t - t') , 

c (y) at' 

ft'a=o, t-t'<O 

and the boundary condition 

aft'a 0 
-- = 0, Y3 = X3 . 
aY3 

(32) 

(32') 

Applying Green's theorem in the half-space Y3 > x~, one 
obtains 

u(x,t) = roo J { {u aft'a - ft'a~} dy dt' 
Jo JR' aY3 aY3 y, = x~ 

= - 21"" J 1, /Fa(x,y'X3 - x~;t - t') 

Xv(y,t') dydt', (33) 

for X3 >x~. 

Now take the limit asx3 -x~. Since /Fa has a singularity 
in the form Ix - yl- l

, it tends to behave like a single-layer 
potential, and the integral given on the right-hand side ofEq. 
(33) is continuous across the surface X3 = x~. Thus we have 

u(x,x~;t) = - 1
00 J 1, k(x,y,a;t - t') 

Xv(y,t') dydt', (34) 

where 

k(x,y,a;t) = 2/Fa(x,y,0;t) . (35) 

Equation (34) is the sought-for up-going wave condi
tion relating the normal derivative of the field on the surface 
to itself. Because the kernel k(x,y,a;t) is independent of X3 
and Y3' this condition will hold on any surface X3 = const. 

Define the operator Ka as the integral operator with 
kernel k(x,y,a;t - t '). 

With Un = aU/aY3 (the normal derivative), Eq. (34) 
will be placed in the form 

(36) 

This is the form of the up-going wave condition that we 
want. 

By considering the mixed problem (Neumann and ini
tial value) for the lower half space, one can obtain the down
going wave condition in a similar manner 

(37) 

From Eqs. (2) and (35) it is seen thatk(x,y,a;t) has the 
general form 

[ 
8(t - 7) ] 

k(x,y,a;t) = 2 P + 2H(t - r)A (x,y;t) x, = y, ' 

where 7,p has the asymptotic behavior as y-x, 

7-lx - yl!c(x,a) , 

p-41Tlx - yl . 

(38) 

For small values of t it is seen using these asymptotic 
results that 

Kau-f{ u(y,t-r/c) H(t-:')dY +O(t3) , 
JR2 21Tr c 
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wherer= Ix - yl andc = c(x,a). Usinglocalpolarcoordi
nates this can be placed in the form 

Kau-- U x + rO,t - !.. drdO + 0(t3) , 1 i 21r i C

' ( ) 

21T 0 0 C 

where 0 is the vector with components (cos 0, sin 0). Hence 
if u(x,t) is a differentiable function of X1'X2' and t it can be 
shown that 

Kau-tc(x,a)u(x,O) + (t2/2)c(x,a)u,(x,O) + 0(t3) . 

(39) 

We will now derive an alternative form for the up- and 
down-going wave conditions which can lead to the existence 
and precise form of the inverse ofKa • (A prooffor the exis
tence of the inverse of Ka similar to one given in Ref. 12 
showing that the null space ofKa is empty, can be obtained, 
but will not be given here.) The alternative form of the up
and down-going conditions will be based upon the mixed 
initial-value Dirichlet half-space problem. 

For the up-going wave condition we will use the half
space X3 > x~, and employ the fundamental solution 

ia(x,y;t - t') = l&'a(x,y,x3 - Y3;t - t') 

- l&'a(x,y,x3 - 2x~ + Y3;t - t') , 

(40) 

which satisfies the system 

_2_1- a
2

2 ia_v;ia=8(x-y)8(X3-Y3)8(t-t') , 
c (y) at' 

(41) 

ia=o, t-t'<O (41') 

for X3 > x~ and Y3 > x~, and the boundary condition 
~ 0 oa=o, Y3=X3 , (42) 

The solution of the mixed initial-value problem 

_1_ a 2U _ V
y
2 U = 0, Y3> 0 , 

c2 (y) at,2 

u=u,,=O, t'=O, Y3>X~, 

u=v(y,t'), Y3=X~, t'>O, 

O,t' < T, 

(43) 

where v(y,t') is a twice differentiable function with respect 
tOYl'Y2' and t and has compact support in H2, can be placed 
in the integral form 

u(x,t) = (00 I (, {ai
a 

V(y,t')} a dy dt' 
Jo JIR- aY3 y, ~ X3 

using Green's formula, Using the result 

aial 2 a cPa( 0') 
-- 0=- - 0 x,y,x3 -X3;t- t 
aY3 y, ~ X3 aX3 

(44) 

this reduces to 

u(x,t) = - 2 --(X,y'X3 - x~;t - t') i
oo Ii al&'a 

o R' aX3 

Xv(y,t') dy dt' . (45) 

Using the identity valid when X3 > x~, Y3 = x~ , 

a
2

1&'a = DTl&'a 
a 2 x' 

X3 

2549 J. Math. Phys., Vol. 30, No. 11, November 1989 

it follows that on using relation (25) 

~u(x,t) = - 2 (00 I ( D,!'l&'av(y,t') dy dt' , 
aX3 Jo JR' 

= - 2 100 I1, D;l&'av(y,t') dy dt'. 

On integrating by parts one obtains for X3 > x~ 

~ u(x,t) = - 2 (00 I ( l&'a(x,y,x3 - x~;t - t') 
aX3 Jo JR' 

XD;v(y,t') dy dt' 

- 2 ----------Ii v(y,O) al&'a(x,y'X3 - x~ ;t) dy 

R' c2 (y) at 

- 2 I r v, (y,0)-2-
1

-JR' C (y) 

Xl&'a(X,y,X3-x~;t)dy. (46) 

Since the singularity in I&'a is Ix - yl- 1
, the integrals are 

continuous in X3. Taking the limit as X3 ...... x~ + , we obtain 
[ using the notation auf aX3 = Un at X3 = x~, and replacing 
v(y,O) by u(y,O)] 

Un (x,x~,t) = - KaDTu 

-2I ( {U(Y'X~;O)al&'a(x,y,O,t) 
JR' at 

+ U,(y,X~;O)l&'a(X,y,O;t)} 2
dy 

C (y) 
(47) 

for X3 = x~ . An alternative form can be given by integrating 
the parts (treating I&'a as a distribution) 

Un (x,x~,t) = - 2D~ 100 Ii l&'a(x,y,O;t - t') 

X u(y,t') dy dt' 

(48) 

Expressions (47), (48) represent alternative forms of the 
up-going wave condition on the plane X3 = x~, These will be 
rewritten for the general plane X3 = constant, as follows 

Un + DTKau = 0, 

a 
Un + KaDTu +-Pu + PUt = 0, 

at 

where 

(49) 

(50) 

Pu = I ( k(x,y,a;t)u(y,X3;0)-2-
1
- dy. (51) 

JR' c (y) 

From Eqs. (36) and (49) one can deduce the existence 
and form of the inverse of Ka. It is given by 

(52) 

The range space of Ka (domain of K; 1) will not be com
pletely delineated here (this needs further investigation). 
However, it should be noted that Ka maps L 00 (R2 X [0, T] ) 
with compact support in R2, into Loo (R2x [O,T]) 
n [ulu(x,O) = 0]. K; 1 is a differential operator. This is 
seen for the special case where c is constant where in Ref. 10 
an alternative form for the inverse operator is given and in 
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the one-dimensional case where K; 1 is given explicitly by 
K; 1 = (l/c)(a lat). 

When Un (x,t)eCZ(lRZX [O,T]), Eqs. (36) and (49) 
yield the relation 

un-OTK~un=O. 

This relation 

OK~=I, (53) 

where I is the identity operator, has been shown to be valid 19 

in the space of generalized functions of slow growth in Rn
, 

where c is a constant. 
Ifwe take the set of functions u(x,t)eCz(lRzx [O,T]) 

such that u(x,O) = ut(x,O) = 0, then Eqs. (36) and (50) 
yield the relation 

u - K~OTU = O. (53') 

From the conditions for up- and down-going waves we 
can now split the solution of the wave equation into two 
components as indicated by the following theorem. 

Theorem: If U (x,t) is a solution of 

azu Z ---v u=O, xED, 
cZat Z 

u = Ut = 0, for t<O,xED, (54) 

where c = c(x,a) in an open region D containing the plane 
X3 = const, then U can be decomposed into an up-going wave 
u+ and a down-going wave u- as follows: 

u = u+ + u- , 

where 

(55) 

u±=Hu+Kaun], (56) 

and Un = aulax3• 

Proof' We need to show that u+ and u- satisfy Eqs. 
(36) and (37), respectively. From Eq. (56) we have 

± K au± _ 1 [ -K au] u + ---- u+ -
- a aX3 2 a aX3 

± -.!..[Ka !!!... + Ka ~ Ka !!!...] . 
2 aX3 aX3 aX3 

Noting that a lax3 commutes with Ka, and using Eq. (53') 
one obtains 

u ± + K au ± = -.!.. [u _ KZ a Zu ] -aa 2 aa z X3 X3 

1 
= T[u - K~OTU] 

1 = - [u - Iu] = 0 . 
2 

Hence the result is shown. 

V. WAVE SPLITTING IN NONHOMOGENEOUS 
MEDIUM INR3 

We will extend the wave-splitting concept of up-going 
and down-going waves across the surface X3 = const, to the 
more general medium with c = c (x 1 ,XZ,x3 ). The appropriate 
wave splitting will be based upon the generalization of the 
invariant imbedding ideas developed for the one-dimension-
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al problem.6 We imbed the medium c(X1,xZ'X3 ) into the aux
iliary space c = c(x,a), where a = x~. The up-going and 
down-going wave splitting developed in the previous section 
for the auxiliary space c(x1,xz,a) will be employed on the 
surface X3 = x~, with a = x~. We will then let x~ vary, and 
dropping the superscript zero, we have a one-parameter fam
ily of operators Kala ~ x,' For future analysis we will define 

K = Kala~x, . (57) 

The operator K will retain the properties of the operator Ka. 
The kernel ofK is given by k(x,y,x3;t) and the inverse opera
tor is given by 

K- 1 =OTK, 

where 

T 1 a z a 2 a 2 

o =--- - -- - --, 
c2 (x) at 2 axfax~ 

and in particular the commutivity results 

OTK=KOT 

(58) 

(59) 

(60) 

will hold for functions u(x,t)eC 2 (R2 x [O,T]) such that 
u(x,O) = ut(x,O) = O. 

For additional analysis, we will need the derivative of 
the operator K with respect to the parameter x 3• If 
u = u(y,t) then we define 

(~K ) =K'u, 
aa a a~x, 

(61) 

where 

K'u = roo Ii ak(x,y,a;t - t') u(y,t') dy dt'la~x, . 
Jo R' aa 

(61') 

We can now apply the splitting developed in the pre
vious section for the auxiliary space to the full space by set
ting 

± 1( -Kau) u =- u+ -, 
2 aX3 

(62) 

where u+,u- represent the up- and down-going wave com
ponents, respectively. It is convenient to express relation 
(62) in matrix form as follows 

T=~[I 
2 I 

(63) 

Note that the inverse of T -I exists and is given by 

T- 1 = [I I ] 
-K- 1 K- 1 • 

(64) 

We can now derive the system of equations that must be 
satisfied by u + and u - using the same procedure as in Refs. 1 
and 2. . 

Let D. be an open region in JR3. We shall assume that u 
satisfies the wave equation expressed in the form 

azu = OTU, 0 xeu, 
ax~ 

(65) 

where OT is given by Eq. (59) and u(x,t) is such that 

u = Ut = 0 , t<O, xeD.. (65') 

Combining Eq. (65) with the identity 
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au au 
aX3 aX3 

we obtain the system of equations for u, auf aX3 expressed in 
matrix form 

a~3 [au;axJ = [~T ~][au;axJ· (66) 

This expression can be transferred into one involving u + and 
u- by using the transformation 

[ u ] = r-I[u+] . 
aU/aX3 u-

Inserting this into expression (66) and premultiplying the 
resultant system by r, the following is obtained: 

~ [u:] = w[u:] , 
aX3 u u 

where 

w=r[ 0 OT 
l]r-1 _ r ar -

I 
• 

o aX3 
Noting that 

r ar - 1 
_ ar r- 1 

- aX3 - aX3 ' 

and 

:: = ~ [~ - ~] K' , 

use relation (58) for the inverse of K- I to obtain 

System (67) can now be put in the explicit form 

~[u:] = [ - K-
1 

~I] [u:] 
aX3 u 0 K u 

(67) 

(68) 

(68') 

+ ~ [_ ~ - ~]K'K-I[::] . (69) 

The explicit form for the operator K'K- I is given in Appen
dix B. 

VI. EXISTENCE AND FORM OF THE REFLECTION 
OPERATOR 

Here we will show that the up-going wave u+ is linearly 
related to the down-going wave u- on a surface X3 = x~ 
(assuming of course, that there are no sources located in the 
lower region X3 <x~ ). The relation takes the form 
u + = Ru -, where R is the reflection operator. 

Let ft (x,y;t - t ') be the fundamental solution satisfying 
the system 

(_1_ £.. _ '\12
) ft = 8(x - y)8(t - t'), Y3 <x~ , 

c2 (y) at'Z Y 

ft=O, t-t'<O, 

and 

aft __ 0 " 0 on surlace Y3 = X3 . 
aY3 
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(70) 

(70') 

(70") 

Then it can be shown in a manner similar to that used in Sec. 
IV, that if u(x,t) is a solution of the wave equation with 
c = c(x) in region X3 < x~, satisfying the initial conditions 
u = u, = 0 at t = 0, and Neumann boundary condition 
au/ax3 = Un on X3 = x~, then the field quantity u on the 
surface X3 = x~ is related to un in the following manner: 

u(x,X~,t) = GUn' 

where 

x w(y,t') dydt'. 

(71) 

(72) 

Recall that in Sec. V a solution u of the wave equation with 
c = c(x) was split into up- and down-going waves across a 
surface X3 = x~, as follows: 

u±=~(u+Kun)' X3=X~, 

where K = Ka with a = x~. Using relation (71) it then fol
lows that 

u±=~(G+K)un' (73) 

and if we define the operator A 

A = ~(G - K)K- I 
, 

then we see that 

(74) 

(75) 

(76) 

In order to use Eqs. (75) and (76) to show the existence of 
the reflection operator R we need to deduce the existence of 
(I+A)-I. 

From the lemma in Appendix C, we see that the solution 
v(x,t)EC(R2 X (O,T»n{v\v(x,Q) = O} ofthe equation 

(G + K)v = 0 (77) 

is v = O. But Eq. (77) is equivalent to the equation 

(I+A)Kv=O. (78) 

Setting p = K v, it is seen that solution of the equation 

(I + A)p = 0 

is given by v = 0, or p = O. Thus the null space of (I + A) is 
empty. Hence (I + A) -I exists. 

From Eq. (76) we now can take 

KU n = (I + A)-I U -

and combining this with Eq. (75), obtain 

u+ = A(I + A)-IU - . (79) 

Thus we see that the reflection operator R exists and is given 
by 

(80) 

where R = A(I + A)-I. An alternative equation for R 
which is needed for later analysis will be derived. From Eqs. 
(75), (76) it is seen that 

(I + A)u+ = (I + A)AKun = A(I + A)Kun 

=Au- . 

Thus from Eq. (80) we have the following equation for the 
reflection operator: 
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(I + A)Ru- = Au- , (81) 

where u- is an arbitrary function belonging to 
CZ(]RzX [O,T]) such that u- = u,- = 0 at t = O. 

The next step is to get the explicit form of the operator 
A. From Eqs. (70), (70'), (70") and the equation corre
sponding to Eq. (32) for the lower half-space Y3 < x~, it can 
be shown that the difference of the fundamental solutions 

~ (x,y;t - t') - ~a(x,y;t - t ') , 

where a = x~, satisfies the system for Y3 < x~ , 

( 1 .~_vz)(~_~a) 
cZ(y,a) at'Z Y 

az~ 
=ac(y)--z' t-t'>O, 

at' 

~ - ~a=O,fort-t'<O, 

and the boundary condition 

~(~ - ~a) = 0, Y3 = x~ , 
aY3 

with 

ac(y) = c-z(y,a) - c-z(y) . (82) 

Hence if u(y,t ') satisfies the wave equation with velocity 
c = c(y,a), a = x~ and zero initial values u = u" = 0 in the 
lower half-space Y3 < x~ , then application of Green's 
theorem yields the result for X3 < x~ , 

fO J i,{( ~(x,y;t - t') 

- ~a(x,y;t - t '») au (y,t) }. 0 dy dt' 
aY3 y,=x, 

= I"'JJI ac(y)aZ!(X,y;t_t') 
Jo JR' at 
Xu(y,t') dydt'. (83) 

Using the equivalent of Eq. (33) for the lower half-space 
X3 < x~, given by 

1"'Jl a~a 0, u(X,t) =2 --(x,y,X3-x3 ;t-t) 
o R' aX3 

xu(y,x~;t') dydt', (84) 

one can replace u (y,t) in the right-hand side of Eq. (83) by 
values of u on the surface Y3 = x~. Insert expression (84) 
into the right-hand side of Eq. (83), interchange order of 
integration, and rename variables of integration. Thus the 
right-hand side ofEq. (83) becomes 

2 a
z

z I"'JI T(x,y,x~;t-t')u(y,x~,t')dydt', (85) 
at Jo JR' 

where 

T(x,y,x~ ;t) = 1'" J J 1,_ ac(z) ~ (x,z;t - s) 

a~a 
X--(z,y,z3-x~;s)dzds. (86) 

aZ3 

Now let X3 -+x~ in Eq. (83). The left-hand side of Eq. (83) 
becomes 

(G - K)u n , 
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where Un = aU/aY3 at Y3 = x~. Using the down-going wave 
condition Un = K-1u associated with the lower-half space, 
Eq. (83) becomes when X3 = x~, 

1 aZi"'Jl -(G - K)K-1u = -Z T(x,y,x~;t - t') 
2 at 0 ~ 

xu(y,x~;t') dydt'. (87) 

The operator on the left-hand side of Eq. (87) is just A. 
Define the following operation: 

Tou = So'" J i,T(x,y'X~;t- t')u(y,x~;t') dydt', (88) 

then Eq. (87) takes the form 

(89) 

This gives us the precise form of the operator A. 
Because of the form of the operator given by Eq. (89), it 

is seen from Eq. (81) that the reflection operator can be 
represented in the form 

az 
Ru- =-(Rou-) 

at Z ' 
(90) 

where 

Rou- = i'" J i,R(X,y'X~;t - s)u-(y,x~;s) dy ds. 

(90') 

We will make the additional assumption on the kernel 
R, that 

Rou- = .!..(ROu-) = 0 at t = 0 . 
at 

Thus Eq. (81) takes the form 

(91) 

(92) 

Using the asymptotic behavior of T for t -+ 0 given in Appen
dix D, it can be easily shown that 

Tou- = .!..(TOu-) = 0 at t = o. 
at 

Equation (92) can be integrated twice with respect to t to 
give 

Rou- + TO~(Rou-) = Tou- . 
at Z 

(93) 

Using the result that the reflection operator R maps u- in 
u+ = 0 at t = 0, we must have in addition to Eq. (91) 

(94) 

Using this result and the fact that u - is an arbitrary function 
belonging to CZ[]RzX (O,T» such that u = u, = Oatt = 0, it 
follows from Eq. (93) that the reflection kernel R (x,y,x~ ,t) 
satisfies the equation 

R(x,y,x~;t) + a
z

z I"'J I T(x,z,x~;t - s) 
at Jo Jft' 

XR(z,y,x~;s) dz ds = T(x,y,x~,t) . 
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Equation (95) is of more theoretical value than practi
cal value. To solve for the reflection operator kernel R one 
needs the precise form of the fundamental solutions so as to 
completely specify the function T. This implies that the 
equation is more applicable to the direct scattering problem. 
In the next section an alternative equation for the reflection 
operator kernel will be presented which will be useful in the 
inverse problem. 

However, Eq. (95) is useful in determining various 
properties of the reflection operator kernel. For instance, the 
asymptotic behavior of R as t-+O can be obtained from Eq. 
(95) using the asymptotic form of T given by Eq. (D6) in 
Appendix D, 

T= yH(t -Ix - yllc(x», 

where 

y(x) = 

Because of the nature of the support of Tas t -+ 0, one can 
deduce from Eq. (95) that R vanishes for t < 0, that R has 
the same support [given by H(t - Ix - ylle]. In addition 
for non vanishing values of R, the points x and y must be 
close together; thus it follows from small values of t, that R is 
determined by the local properties. Hence in obtaining the 
asymptotic behavior as t-+O + , we may treat yand c as a 
constant in Eq. (95). Also due to symmetry it follows that 
the dependence of R on x and y is of the form Ix - yl. Thus 
at t-+O, Eq. (95) takes the form 

R(lx-yl,x~;t) +y a:Jf f'H(t-s-lx-zl/c) at JR' Jo 
XR( Iz - YI,x~;s) ds dz = yH(t - Ix - yl/c) (95') 

where yand c may be taken as constants. Since this equation 
is in the form of a convolution it may then be solved using the 
Laplace transform, 

!L'/= L'" e-P'/(t) dt 

and Fourier transform 

Y/= f 1, eik'x/(x) dx. 

Setting 

R(k,p) =!L' YR, 

and using the fact 

!L' YH(t - Ixlle) = 21TC2(p2 + Ik1 2c2) -3/2, 

Eq. (95') takes the form 

[1 + 21TC2yp2(p2 + Ik12c2) -3/2]R 

= 21TC2y(p2 + Ik12c2) -3/2 , 

yielding 

R = 21TC2y(p2 + IkI 2c2
)-3/2 - R" 

where 
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[21TC2yp2 + (p2 + IkI2c2)3/2] 

21TC2y + -::----,---~~= (p2 + Ik12c2)3/2 . 
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Since the inverse Fourier transform of R, is bounded as 
follows: 

21TIY-'R,I< IL" Jo(lkllxl)R,(lkl,p) Ikld Ikll 

<L'" R, (Ik,p) Ikld Ikl , 

giving 

1!L'{R(lxl,x~;t) - yH(t-lxlle)}I<Clp2, 

where 

C= 2(1TCy)2 fO ['T/ + 21TC2Y'TJ3/2lp]-' d'TJ, 

one can deduce the asymptotic behavior of R for t -+ 0 from 
the Tauberian theorem (applied to the inverse Laplace 
transform).20 However, because of the discontinuity in 
R - yH, one needs to smooth or regularize it. If ¢(x) is 
some test function in C ~ (H2), one can then deduce from the 
Tauberian theorem that 

fl)R(IX-YI,x~;t) -yH(t-!x-ylle)] 

X¢(Y) dy -+ O(t) . 
1-0 

Thus the asymptotic behavior of R for t-+O interpreted in 
this sense, is given by 

R(x,y;x~,t) -y(x)H(t - Ix - ylle) + O(t) (96) 

where 

y(x) = 
ac 

-8--rr,-:c2:-(-x-) aX
3 

• 

In addition, estimates on the support of R can be easily 
obtained. This is seen as follows. Let c(x) <cM (the maxi
mum velocity in H3

), then the support of the fundamental 
solutions employed in expression (86) have the property 

Supp ir(x,z;t - s) C{zl Iz - xl<cM(t - s)}, 

Supp ~a(Z,y,z3 - x~;s) C{zl Iz - yl<cMs}. 

From this it follows that 

T(x,y,x~;t) =0 if cMt < Ix - yl . 

From Eq. (95) it can then be deduced that 

R(x,y,x~;t)=O if cMf< Ix - yl. 

A precise statement on the support of R will be given in Sec. 
VIII. 

VII. EQUATION FOR THE KERNEL OF THE REFLECTION 
OPERATOR 

In this section we will derive the equation for the reflec
tion operator from the up- and down-going wave system. 
Setting 

u+ =Ru- =~(ROu-) 
at 2 

into system (69), we obtain the pair of equations 
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(97) 

(98) 

Before combining Eqs. (97) and (98) we want to inter
change the order of the operators in Eq. (97) so as to be able 
to integrate twice with respect to the variable t. 

In what follows we will assume that v(x,t) is a twice 
differentiable function ofx and t. Note from Eq. (35) that if 
v(x,t) has the property v(x,O) = 0, then 

a 100 Ii a~a -Kav = 2 --(x,y,O;t - s)v(y,s) dy ds 
at 0 R' at 

= - 2 --(x,y,O;t - s)v(y,s) dy ds 100 Ii a~a 
o R' as 

=K av. 
a at 

Setting a = x~ and using the definition for K, we see that 

~Kv = K av, if v(x,O) = ° , 
at at 

(99) 

a 2Kv a 2v. 
--2- = K --2 ' If v(x,O) = v, (x,O) = ° . 

at at 
( 100) 

One can deduce in a similar manner that 

~ K'v = K' av if v(x,O) = 0, (101) 
at at 

a 22 K'v = K' av: if v(x,O) = v, (x,O) = ° . (102) 
at at 

It follows that ifv(x,O) = 0, 

~ K-1v = ~OTKv = OT ~ Kv = K- 1 av , (103) 
at at at at 

and if v(x,O) = v, (x,O) = 0, then 

(104) 

Using the asymptotic behavior for Kv for small t given by Eq. 
(39) and a = x~, it is seen that since c(x,a) = c(x) (after 
dropping the superscript ° on x 3 ) 

K-1v = OTKv = c-1v, (x,O) when t = 0. (105) 

It then follows from Eq. (103) and (105) that ifv(x,O) = 0, 

~K-IVI =c-1vtl(x,0). (106) 
at ,~O 

If v, (x,O) = ° = v(x,O) then it can be shown using Eq. 
(105) that 

a K'K-1 _ K' a K-1 _ K'K- 1 av - v- - v- -
at at :.Jt 

( 107) 

and ifin addition Vtl (x,O) = ° then 

~K'K-lv=K'K-1 a
2

v . 
at 2 at 2 

(108) 
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Since 

R - a R - a
2 

R - ° Ou = - Ou = - 0u = 
at at 2 

at t = 0, we can apply these results to Eq. (97) to inter
change the order of the operators to obtain the following: 

~{~(ROU-) + (K- 1
- ~K'K-I)(ROU-)} 

at 2 ax3 2 

_ 1 K'K- 1 -- - - u. 
2 

Since it can be shown from Eqs. (39) and (61) that 

K'u-t~ u(x,O) + 0(t2) , 
aX3 

it follows from Eq. (105) that 

and 

K'K-IV_~~tvl(x,D) + 0(12) 
C aX3 

K'K- 1 (Rou-) = %t K'K-1Rou- = ° at t = 0, 

(109) 

thus Eq. (109) may be integrated twice with respect to t to 
give 

Equation (98) may now be used to eliminate au - / aX3 from 
Eq. (110) to yield 

(;~)ou- + (K-1-+K'K- 1) (Rou-) 

+Ro(K-1u- + ~ K'K-1u-) 

- ~ RoK'K- 1 ~ (Rou-) 
2 at 2 

= _~ f' f' K'K- 1u-(dt)2. 
2 Jo Jo 

(111 ) 

Using the fact that u- is an arbitrary twice-differentiable 
function such that u = u I = ° at t = 0, the equation for the 
reflection operator kernel (treated as a generalized func
tion) can be obtained from Eq. (111). To achieve this, it 
should be noted that the operators Ku, K'K-1u have the 
sameformasRou since from Eqs. (34), (35),and (B6) it is 
seen that the operations can be expressed in the form 

a2m 
Ku = kou, K'K-1u = --2 ou. 

at 

The kernels R, k, and m, besides having compact support in 
X,y variables, vanish for t < 0; hence the operators take the 
form of a convolution in the time variable, 

Rou = L+ I i, R(x,y;x3;t - s)u(y,s)dy ds. 

However, it is convenient in the analysis to keep the upper 
limit at 00, yet retain the idea that the kernels vanish for 
t < 0. The reason for this is that the integration by parts can 
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be used to reduce expressions like Roa 2ulat 2, RoOTU to the 
forma 2R lat 20u, and (OTR)ou, where u = u, = Oat t = O. 
Contributions from the upper limit in the time varaible will 
not appear explicitly, but implicitly in generalized derivative 
a 2 R I at 2. A similar result holds for the operations involving 
the kernel k. 

With the above points in mind and making use of the 
fact the kernels of the operator K and K' are symmetric in the 
variables x and y, we can show the following (details left 
out): 

K-l(Rou-) = OTK(Rou-) = (K-lR)ou-, 

Ro(K-lu-) = Ro(KOTu-) = (OTKR)oU-

= (K-lR)ou-, 

Ro(K'K-lu-) = (K-lK'R)ou- , 

K'K-l(Rou-) = (K'K-lR)ou-, 

Ro (K'K- l ~ (ROU-») = (K-lK'RO ~R) oU-, 
at 2 at 2 

and finally 

L L K'K- l u-(dt)2 

= LX> f i, m(x,y,x3;t-s)u-(y,s)dyds. 

Applying these results to Eq. (III) and using the fact that 
u- is arbitrary, we obtain the equation for the reflection 
kernel (treated as a generalized function), with x~ replaced 
by x3' 

aR(x,y,x3;t) +K-lR(' .. ) +K-lR( ... ) ,y,x3, X, ,x3, 
aX3 

- 1..- K'K-lR( ·,y,x3;·) + 1..- K-lK'R(x, ·,x3;·) 2 2 

- 1..- (K-lK'R (x,' ,X3;')0 a 22 R (. ,y,X3;'») 
2 at 

I 
= - - m(x,y,x3;t). 

2 
(112) 

Equation (112) is the sought-for "Ricatti" type equa
tion for the kernel of the reflection operator. 

As a check of its validity we will show that it reduces to 
the known equation for the one-dimensional case. This will 
be done in two steps. For the first step we will consider the 
special case of a stratified medium where the velocity c is 
independent of the transverse variables X I'X2• 

When c = c(x3 ), it follows from translational invar
iance (in a direction perpendicular to the X3 axis) and rota
tional invariance (about an axis parallel to the X3 axis) that 
the reflection kernel R depends upon the transverse variables 
in a manner given by the following form: 

R = R( Ix - yl,x3;t). 

The operator Ku reduces to the form 

Ku = f ( u(y,t - ric) H(t - rlc)dy, 
JR' 21Tr 

where r = Ix - yl. (Note that the corresponding operator 
defined in Ref. 10 differs from this by a minus sign.) From 
Ref. 10 and Eq. (BI2), it follows that when c = c(x3 ), 
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K'K- l = K-lK' = C'(X3) ~ K2, 
C3(X3) at 2 

and from Eq. (B6) and Eq. (A6) of Ref. 10, that 

c' HCt- ric) 
m(x,y,x3;t) = --2 ' 

21TC ~c2t 2 _ ? 
where r = Ix - YI. 

Using these results Eq' (112) can be simplified in the 
case where c = c(x3 ). First note that the second and third 
terms ofEq. (112) become identical, and the fourth and fifth 
terms cancel out. Thus Eq. (112) reduces to 

~R( Ixl,x3;t) + 2K- lR( 1'I,x3;') 
aX3 

c' H(t - lxI/c) 

41TC2 ~c2t2 _ Ix l2 

(112') 

The one-dimensional case can now be obtained by integrat
ing with respect to the transverse variables over H2. Set 

R(x3;t) = f i, R(l x l,x3;t)dx 

and use the result 

f i, KR dx = c L R(X3;S)ds, 

f ( K-lRdx=~R(X3;t). JR' cat 

Thus Eq. (112') reduces to the one-dimensional equation 

a 2 a C'i' -R(x3;t) +--R(X3;t) -- R(X3;t-S) 
aX3 c at 2c 0 

C' 
XRI/ (x3;s)ds = - - tHCt). 

2c 

The initial conditions for R(x3;t) can be deduced from Eq. 
(96), yielding 

R(x3;0) = R,(x3;0) = 0, 

RI/ (x3,0) = - c'/4. 

However, the reflection operator for the one-dimensional 
case is commonly given in the form 

Ru = L R(x3;t - s)u(x3,s)ds, 

where R = R/I" To get the equation for R, differentiate the 
equation for R twice with respect to t, but note that RI/ has a 
jump discontinuity at t = 0 (RI/ = - c'/4 for t = 0 +, and 
RI/ = 0 for t = 0 - ), and the generalized derivative of this 
jump discontinuity cancels out the derivative of the nonho
mogeneous term. Thus we end up with the standard one
dimensional equation and initial condition 

aR 2 aR c' i' - --+---- R(x3;t-s)R(x3,s)ds=0, t>O 
aX3 c at 2c 0 

(112" ) 

and R(x3;0) = - ic', 
As a result we see that the general equation for the re

flection kernel [Eq. (112)] yields the standard one-dimen
sional equation, 
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VIII. THE SUPPORT OF R(X,y,x3;t) 

It was pointed out in Sec. VI that for finite values of t, 
O<.t<T, R(x,Y,x3;t) = 0 for values of x,y such that 
Ix - yl > cMt, where CM = max c(x), thus indicating then 
that the reflection kernel has compact suport in R2XR2. 
Here the precise boundary of the support region will be es
tablished, and the asymptotic behavior of R in the leading 
edge or neighborhood of the support boundary will be inves
tigated. This will be achieved using the behavior of the non
homogeneous term m(x,y,x3 ;t) in Eq. (112) for R. 

To obtain the boundary of the support region and the 
behavior of m in the neighborhood of the support boundary, 
we need to take only the leading term for the fundamental 
solution ~a in expression (B7) for m(x,y,x~;t). Thus we 
have 

o aI 
m(x,y,x3 ,t) --, 

at 
(113) 

where 

1= 4 f f i p(z) o(t - r(x,z) - r(z,y» ar(y,z) dz, 
R'+ p(x,z)p(y,z) aZ3 

(114) 

wherex3 = Y3 = x~ and R3+ is the half-spacez3 > x~. r andp 
are the wave fronts (time of arrival) and amplitUde coeffi
cients for the auxiliary space where C = c(x,x~). The points 
x,y will be such that r(x,y) < T. This implies that there is a 
single ray path which lies in the Z3 = x~ plane going from the 
point x to y and vice versa. Let Ctf 0 represent the curve of this 
ray path. Since it represents the path of minimum time we 
have 

r(x,z) + r(z,y) > r(x,y), zE£Ctf o' 

It immediately follows that for t < r(x,y) then I = O. This is 
true for the complete expression for m and not just the lead
ing term as indicated by Eq. (113), thus we have 

m(x,y,x~;t) =0 for t<r(x,y). (115) 

For t> r(x,y) let Y be the surface given by 

r(x,z) + r(z,y) = t, Z3>X~, (116) 

And .s;1 its projection on the Z3 = x~ plane with the simple 
closed curve Ctf I being the boundary of .s;1 (Fig. 3). In the 
limit as t ..... r(x,y) + , the surface Y approaches Ctf o' Let t be 
slightly greater than r(x,y), then the integral [Eq. (114) can 
be expressed on integrating with respect to the Z3 variable] 

1= f f [ q(X,y,Z)] dZ
I 

dz2, Jo1 p(x,z)p(z,y) z, = zt 
where Z3 = z! satisfies Eq. (116), and where 

q(x,y,z) = 4p(z) ar(y,z) [~[ r(x,z) 
aZ3 aZ3 

+ r(z,y)] ] - I. 

For t> r(x,y), set 

t - r(x,y) = E. 

(117) 

(118) 

(119) 

We want the behavior of (117) as E ..... 0 + . The surface Y 
will approach the curve Ctf 0' and z! ..... x~. Since ad aZ3 = 0 
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FIG. 3. Geometry for Lemma 2. The 
region sff as employed in the proof of 
Lemma 2 is bounded by the curve 
"{f I lying in the plane z, = ~, and is 
decomposed into the three portions 
sff "sff 2'sff 3' The curve "(f 0 is the ray 
path joining the two points x and y. 

when Z3 = x~ we will need to use L'Hospital's rule in the 
limiting expression for q(x,y,z). Hence taking the second 
derivative with respect to Z3 and using relation (28) we ob
tain 

lim q(x,y,z) = Q(x,y,z), (120) 
ZEy ..... ZE'C o 

where 

Q(x,y,z) = 4p(z)h(x,z) [h(x,z) + h(z,y) ]-1 (121) 

with 
fT(X,Z) 

h(x,z) = Jo c2 
duo ( 121') 

To complete the analysis we can use Lemma 2 in Appendix E 
with v = O. Note that the integrand has a singularity at z = y 
of order Iz - yl-I, due to the termp(y,z). Applying the re
sult of the lemma, we obtain the following: 

I - 2(t - r(x,y» 1/2H(t - r(x,y»mo(x,y), 
€-o 

where 

( ) 
- 1'121 Q(x,y,z(s»Iif!(x,y,z(s»I-1/2 d 

mo x,y --v'" S. 
'co p(x,z(s»p(z(s),y) 

(122) 

Since m(x,y,x~;t) behaves like allat, we have dropping the 
superscript 0 on x~ , 

m(x,y,x3;t) -(t - r(x,y»-1/2H(t - r(x,y»mo(x,y). 
(123) 

Because of this singular term on the boundary of the support 
region, R must have the same support and its asymptotic 
behavior as t ..... r(x,y) + must be such as to balance the sin
gular terms inEq. (112). It follows then that R (x,y,x3;t) has 
the behavior 

R(x,y,x3;t) -H(t - r(x,y»{~t - r(x,y) ro(x,y) + ... }, 
(124) 

so that 

aR _ -.!.H(t- r(x,y) { ro(x,y) r'(x,y) + ... }, 
aX3 2 ~t - r(x,y) 

(125) 

where r' = (arlaa) (x,y) la = x,. Based upon the assumption 
that ro(x,y) has at most a singularity of order less than 

I I-I t . x - y a x = y, I.e., 

Ix - yllro(x,y)1 <M, 
then as will be shown, other terms in Eq. (112) will yield 
singularities ofthe order (t - r(x,y) )-1/2 or less. 
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Using the behavior of m given by Eq. ( 123) and R given 
by (124) and Eq. (B6) it is seen that 

K'K-1R( ·,y,x3;·) - a: f ( mo(x,z)ro(z,y) 
at JR' 
XI(x,y,z)dz l dz2, (126) 

where X3 = Y3 = Z3 and where 

1= (00 (t _ s _ r(x,z»-1/2(s _ r(z,y) )1/2 
JT(Z,y) 

XH(t - s - r(x,z»ds (127) 

11' = - (t - r(x,z) - r(x,y» 
2 

XH(t - r(x,z) - r(z,y». (127') 

Using the results of the lemma in Appendix E, it can be 
shown that the integral in expression (126) has support 
H(t - r(x,y» and asymptotic behavior 

(t - r(x,y»3/2H(t - r(x,y»jno(x,y), 

where 

( ) 
- 11' i mo(x,z(s»ro(z(s),y) d 

no x,y - - 1/2 S, 
{i 'C n 1 tP(x,y,z(s» 1 

(128) 

where ~ 0 is the ray in the plane X3 = Y3 from the point x to y, 
and z(s) is a point on the ray, with s arc length. It then 
follows that 

K'K-1R( ·,Y,x3;·) -(t - r(x,y»-1/2H(t - r(x,y»no(x,y). 
(129) 

In a similar manner it can be shown that 

K- 1K'R(x,',x3;') 

-(t - r(x,y) )- I12H(t - r(x,y»no+ (y,x), (130) 

where 

+ ( ) - 11' i mo(z(s),y)ro(x,z(s» d no y,x -- 1/2 S. 
{i 'Cn 1 tP(x,y,z(s» 1 

The asymptotic behavior and support of the quadratic term 
in Eq. (112) may now be obtained 

K-1K'R(x,' ,X3' )oR (. ,y,x3,·) 

-f .L no(z,x)ro(z,y)I dZ I dz2, (131) 

where I is given by Eqs. (127), (127'). Hence using the 
lemma in Appendix E it can be shown that expression ( 131 ) 
reduces to 

W - r(x,y»3/2H(t - r(x,y»ho(x,y) , 

where 

h ( ) =~i no(z(s),x)ro(z(s),y)ds (132) 
o x,y 1 )11/2 {i 'Cn tP(x,y,z(s) 

where C(f 0 is the same curve as given in expression (128). 
Finally, we obtain 

a
2

2 K-1K'RoR-(t - r(x,y»-1/2H(t - r(x,y»ho(x,y). 
at 

(133) 

The remaining terms in Eq' (112) involvingK-IR have 
a higher order singularity. This is seen as follows. Since 
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KR(',y,x3;')-2 f L,H(t-r(x,z) -r(z,y» 

X(t - r(x z) - r(zy»1/2 ro(z,y) dz dz 
, • () 1 2' 

P x,z 

use of the lemma in Appendix E yields 

KR( ·,y,x3;·) -(t - r(x,y»H(t - r(x,y»ko(x,y) 

where 

ko(x,y) = {i 11' ( ro(z(s),y) 1/2 ds. (134) 
JecnP(x,z(s»1 t/I(x,y,z) 1 

Then using the fact that r(x,y) satisfies the Eikonal equation 

K-1R( ·,Y,x3;·) _OTKR 

-H(t - r(x,y»[ koV;r(x,y) 

(135) 

Thus the terms in Eq. (112) which are singular on the 
boundary of the support region are given by expressions 
(125), (129), (130), and (133). Equating these terms in Eq. 
(112) we have 

- ro (x,y) 7' (x,y) - no(x,y) + no+ (y,x) 

- ho(x,y) + mo(x,y) = 0 ( 136) 

IX. SUMMARY 

The solution of the wave equation in a smooth non
homogeneous medium was split up into up- and down-going 
wave components u + and u - , with the decomposition given 
by Eqs. (62). Here the definition of an up- and down-going 
wave was based upon the solution in the mixed initial-value 
Dirichlet (or Neumann) boundary value problem for the 
wave equation [with velocity c = C(XI,X2'X~) ], in the ap
propriate half-space X3 > x~ or X3 < x~. The resulting system 
of equations that must be satisfied by u+ and u- is given by 
Eq. (69). 

The existence and form of the reflection operator R re
lating the up-going wave to the down-going wave was shown 
in Sec. VI. The reflection operator has the concrete form 

R - a2 
R -u =-2 °u , at 

where 

Rou- = 100 f L, R(x,y,x~;t-s)u-(y,x~;s)dsdy. 
In Sec. VIII it was shown that the kernel R of the reflec

tion operator had support H(t - r(x,y», where r(x,y) is the 
time of arrival of a ray travelling from the point y to the point 
x in the plane X3 = Y3 = x~ with velocity c = c(x 1,x2,x~ ). 
The asymptotic behavior of R as t -+ 0 was deduced in Sec. VI 
and is given by Eq. (96). From this it is seen that 

. a2R 1 ac 
lIm --= ---8(x-y). 

1-0+ at 2 4 aX3 
Finally the important (Ricatti) partial differential integral 
equation for R was developed. It is given by Eq' (112). 
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The analysis used to obtain these results is valid for a 
finite time period T (defined in Sec. II). Some of the results 
may, however, be valid for a longer time. 

There still remains a considerable amount of follow-up 
work to be done. Among the important questions that 
should be investigated are the following. 

(i) Can the Ricatti equation (112) or an alternative 
form of it, and initial condition Eq. (96) for R the kernel of 
the reflection operator be successively used in the inverse 
problem as is the case for the one-dimensional problem? It 
will be shown in a subsequent paper that the operations Ku, 
K-!u, etc., can be numerically implemented. The funda
mental solution (ray-tracing) representation is not used 
here. Instead these operations are computed using their defi
nitions in the solution of the initial-boundary-value half
space problem as given by Eqs. (36) and (49). This is in 
contrast to the methods employed by Fishman21 for the fre
quency domain calculations. 

The main difficulty in the numerical implementation of 
Eq. (112) in inverse scattering lies in the taking into account 
of the singularity (on the support boundary) of the reflec
tion kernel. 

(ii) What scattering measurements are needed to deter
mine R, the kernel of the reflection operator in a plane 
X3 = constant? This will be answered in a subsequent paper, 
where it will be shown that in an ideal situation (of source 
and receiver locations) that R can be obtained from mea
surements of the scattered field on a plane. For the nonideal 
case one would need a generalization of the deconvolution 
process that is used in the one-dimensional problem. 
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APPENDIX A: THE RAY COORDINATE SYSTEM 

The rays [orthogonal trajectories to the characteristic 
surfaces r(x,y) - t = 0] can be represented in terms of a 
two-parameter family of smooth curves 

Xi = Xi (r,e,ifJ) , O<,e<'1T, 0<,ifJ<,21T, O<,r<,ro, (AI) 

where the angles (e,ifJ) are identified with a local spherical 
polar coordinate system centered at y, and where r = 0 cor
responds to point X = y. The rays are tangent to the local 
radial vector at y, 

X( r,(J,ifJ) = y + vc(y)r + O( r), 

where v is the unit vector 

(A2) 

v = (sin e cos ifJ,sin (J sin ifJ,cos e). (A3 ) 

The rays satisfy the following differential equations l6: 

~(~ax)_cv~ (A4) 
ar c2 ar - c· 

Using the initial condition given byEq. (A2), Eq. (A4) may 
be transformed into the following system of integral equa
tions: 
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X(r,e,ifJ) =y+c(y)rv+c(y)v IT(4--_I)dS Jo c (y) 

- ~ iT c2 (f :2 Vc2 dS) dt (AS) 

where of course, y is fixed. 
Since v is a function of e and ifJ, and X appears in the 

right-hand side ofEq. (AS) in the term involving c2
, system 

(AS) has the general form 

X( r,e,ifJ) = F(X( r,(J,ifJ», (A6) 

where F is a vector valued function (with three compo
nents). If c2 (x) is a Holder differentiable function belonging 
to class C (I, I) and is bounded from zero, c2 (x) ;;'ko > 0, then it 
can be shown (details left out) that there exist positive con
stants A and B such that 

I\F(X) _F(X')IL", <,(Ar + Br)IIX -X'IL." 

where 

IIXII"" = Max sup IXi(r,e,ifJ) I, 
i= 1,2,3 e 

(A7) 

where e to the domain O<,r< 00, 0<,(J<'1T, 0<,ifJ<,21T. If r' is 
the positive root of the equation Ar + Br = !, we then have 
forO<,r<,r', 

IIF(X) - F(X') II "" <'!IIX - X'II"", 

implying that Fis a contraction operator. Hence the method 
of successive approximations22 

Xn+ I =F(Xn) 

applied to Eq. (AS) starting from 

Xo = y + c(y)rv 

will converge to a unique solution in the ballllX - Xoll "" <"0 
where,o = 211Xo - F(Xo) II "" . If r l is defined as the radius of 
the ball in space (r,(J,ifJ) for which a unique solution to Eq. 
( AS) exists, then we see that r' yields a lower bound estimate 
forrl' 

From Eq. (A4) we have 

~ ax =~_~ IT ~Vc2ds' (A8) 
2 ar c(y) 2 Jo c2 ' 

hence from (A4) and (A8) it can be immediately deduced 
that the solution X to system (AS) has the property that 
ax lar, a 2x lar are continuous in the domain O<,r<,r l , 

0<,e<'1T,0<,ifJ<,21T. 
In order for X to be twice differentiable with respect to 

the variables e and ifJ one needs stronger conditions on c (x) . 
Differentiating Eq. (AS) twice with respect to (J and ifJ, it is 
seen that C2(X)EC(4,1) in order for X to be three-times differ
entiable with respect to e and ifJ. 

Since it can be deduced 16 that the Jacobian of the map
ping x = X( r,(J,ifJ) for O<,r<,r l , O,,;;;(J<'1T, O<,ifJ<,21T is greater 
than zero for r> 0, vanishing at r = 0, a ray coordinate sys
tem (r,e,ifJ) may be introduced mapping the region B in ]R3 

containing the point y into the ball of radius r = r l • Also 
since it is seen from Eq. (A2) that the ray coordinate system 
is locally orthogonal at r = 0, it may be deduced 16 that the 
ray coordinate system is orthogonal for O<,r<,r l , O<,e<'1T, 
0<,ifJ<,21T. Hence the metric coefficients hT , ho, h", can be 
introduced 
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(A9) 

APPENDIX B: EVALUATION OF «(}Ka/(}a)K;1 

Recall that Ka is the integral operator with kernel 
k(x,y,a;t - t') where a is a parameter, and (a /aa)Ka is the 
operator with kernel ak faa. 

From Eq. (32) it is seen that the derivative of the funda
mental solution fta [defined by Eq. (31)] satisfies the sys
tem 

X3>0, Y3>0, 

afta 
--=0 t-t'<O, 
aa ' 

and the boundary condition 

a (aft
a

) - -- =0, at Y3=0 
aY3 aa 

where 

( ) 
_ 2 ac(y,a) 

p y -- . 
c3 aa 

(Bl) 

(B1') 

(B2) 

(B3) 

Combining this with the solution of system (29), (29'), 
one obtains on applying Green's theorem, the following 
equation [corresponding to Eq. (33)]: 

L
"" II r p(y) a2~a u(y,t')dydt' 

o JR'+ at 

= -2L"" I r a?&,a(x,y,x3;t-t') un(y,t')dydt' 
o JR' aa 

(B4) 

valid for X3 > 0. Let X3 -+ 0. Then in the left-hand side of Eq. 
(B4) use the relation [obtained from Eq. (31)] 

fta(x,y;t - t ') = 2?&,a(X,y'Y3;t - t '), when X3 = ° 
and in the right-hand side of Eq. (B4) use the relation [ob
tained from Eq. (35)] 

2 ~ ?&,a(x,y,O;t - t ') = ~ k(x,y,a;t - t '). 
aa aa 

X p(y)u(y,t')dydt. (B5) 

We want to express both sides of Eq. (B5) in terms of the 
value of u on the surface Y3 = 0. For the left-hand side ofEq. 
(B5) use relations (48) and (52) and for the right-hand side 
use relation (45). Thus we have 
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aKa _\ 
--K u 

aa a 

= -4L""II r a
2
?&,a(X,y'Y3;t-t') ( ) 

o JR'+ at ,2 p y 

X L"" Ii a?&,a(y,Z'Y3;t' - s) 
o R' aY3 

X u(z,s)dz ds dy dt '. 

Changing the order of integration and renaming the dummy 
variables of integration, this becomes 

( aKa)K;\U= a22L""I r m(x,y,a;t-t') 
aa at 0 JR' 

Xu(y,t')dydt', (B6) 

where 

m(x,y,a;t) = - 4 L"" I I 1, ?&,a(X,Z'Z3;t - s) 
+ 

a?&,a(z y,z 's) 
Xp(z) '3, dz ds. 

aZ3 

(B7) 

This can be decomposed into a symmetric component 

ms (x,y,a;t) = Hm(x,y,a;t) + m(y,x,a;t)] (B8) 

and antisymmetric component 

ma (x,y,a;t) = Hm(x,y,a;t) - m(y,x,a;t)]. (B9) 

The symmetric component can be simplified by replacing 
the variable of integration s by s' in the expressions for 
m(x,y,a;t) and by t - s' and in the expressions for 
m(y,x,a;t) inEq. (B8). Then integrate by parts with respect 
to the Z3 variable. One then obtains 

ms (x,y,a;t) = J... L"" I r k(x,z,a;t - s') 
2 0 JR' 
Xp(z)k(z,y;a;s')dz ds'. (B1O) 

This indicates that 

1"" I i, ms (x,y,a;t - s)u(y,s)dY'ds 

1 = - Kap(Ka u ). 
2 

(Bll) 

It can be shown that when c is independent of the spatial 
variables depending only on the parameter a, then the anti
symmetric portion vanishes, and with p being a function of a 
only, the right-hand side ofEq. (B11) reduces to !P(Ka )2U. 
Thus when c = c(a), we have 

aK 1 a 2 
__ a K-\ = __ (K )2 

aa a 2 P at2 a 
(B12) 

a result that agrees with the calculations in Ref. 10. 

APPENDIX C: LEMMA 1 

Here we prove the Lemma. 
Lemma 1.' The solution V(X,t)EC(lR2 X (O,n) 

n{vlv(x,O) = O} of the equation (G + K)v = ° is v=o. 
Consider a medium where c = C(X\,X2'X~) for X3 > x~, 

otherwise c = c(x\,x2,x3) for X3 <x~. Apart from the dis-
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continuity in the normal derivative of c across the surface 
X3 = x~ , c will be a smooth differentiable function. 

Let v(x,t)EC(R2 X (O,n) such that v(x,O) = O. Then 

u(x,t) = ("" ( §>(x,y,x~;t - t')v(y,t') dy dt', Jo JR2 
(Cl) 

represents the solution of the wave equation with zero initial 
conditions u = U I = 0 in the half-space X3 < x~, and satisfy
ing the Neumann boundary condition aU/aX3 = von the 
surface X3 = x~. Let X3 ..... x~ - , then [from Eq. (72)] 

u(x,x~ - ,t) = Gv. (C2) 

In addition it can be shown [from Eq. (33)] that 

u(x,t) = - 2 L"" J i2~a(x'Y'X3 -x~,t- t') 

Xv(y,t') dydt',X3>X~, (C3) 

represents the solution of the wave equation with zero initial 
conditions in the half-space X3 > x~ and Neumann boundary 
condition auf aX3 = von the surface X3 = x~ . Let X3 ..... x~ + , 
then 

u(x,Xo +;t) = - Kv. (C4) 

Combining Eqs. (C2) and (C4) it is seen that condition 
(G + K)v = 0 implies that u(x,x~ - ;t) = u(x,x~ + ;t), 
i.e., u(x,t) is continuous across the surface X3 = x~. 
Since v(x,O) = 0, it follows from Eq. (39) that 
u(x,O) = u, (x,O) = 0 on the surface X3 = x~. Since the 
boundary condition auf aX3 = v on both sides implies that 
the normal derivative is continuous across x = x~, we can 
apply the energy integral18 to the system 

1 a2u 
--- - V2u = 0 t>O xER3 , 
c2 at 2 " 

u=u,=O, t=O, xER3. (C5) 

Multiply Eq. (C5) by 2u, to obtain the equation 

~{~ u; + IVU I2} - 2V· (u , Vu) = O. (C6) 
at c 

We will take a bounded domain ~ I" t ' < Twhich is ho
meomorphic to the cylinder Kl X (O,t') = {(x,t): Ixl<l, 
tE (O,t ')} and possesses the following properties: its lower 
and upper bases lie in the plane t = 0 and t = t '; its lateral 
surface S" is oriented at all points in a space-characteristic 
way and the normals n = (n l ,n2,n3,n4 ) to the lateral surface 
directed outside of ~ I' form acute angles with the t axis, and 
satisfy the conditions 

3 

n~ - c2 L n7>0, n4 > 0 . (C7) 
;=1 

Take the integral of expression (C6) over the domain 
~,'. Then integrate by parts (taking into account that u, 
auf aX3 are continuous across X3 = x~) to obtain 

3 au] -2ut L n;- ds=O 
;=1 ax; 

(C8) 
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using the initial conditions u = u, = 0 at t = O. Here fit is 
the intersection of the domain ~ t' with the plane t = 1 t '. 

Using conditions (C7) it can be shown that the integrand in 
the surface integral satisfies the inequality 

thus we have 

( (~u; + IVU I2) dx = 0, 
JU" c 

This implies then that u, = Vu = 0 for all values of t', 
O<t'<T, 

Now since u===O, aU/aX3 = 0 on X3 = x~ it follows that 
v=O. 0 

APPENDIX D: ASYMPTOTIC BEHAVIOR OF T(x,y~;t) 
FORt-O 

Upon examining the support of the fundamental solu
tions in expression (86), it is seen that non vanishing values 
of T(x,y,x~;t) for t ..... O are obtained when x-y, and the 
main contribution to the integral in expression (86) comes 
from values of z in the neighborhood of x. Hence the 
fundamental solution §> (x,z;t) may be approximated by 
2~a(x,z;t) where a = x~. Thus taking the leading term for 
the fundamental solutions, using the asymptotic expressions 
given by Eqs. (4), (6) with c(x) -c(Y), we have 

<P( .t ) 28(t-s-lx- z llc(x» 
(!) x,z, -s - , 

41Tlx -zl 

a~a(Z,y,z3 - x~;s) __ {8'(s - Iy - zl/c(x» 

aZ3 41Tly - ZI2C(X) 

+ 8(s - Iy - ZIIc(X»} (z _xo) 
41Tly _ Zl3 3 3' 

ilc(z) -p(x) (Z3 -x~), 

where 

p(z) = _2_ ac(z) . 
c3 (z) aZ3 

Insert these expressions into Eq. (86) to obtain 

T O) p(x) {I all f} (x,y,x3;t - - ~ --+ 2 , 
811 c at 

where 

with c = c(x), and j = 1,2. 

(Dl) 

(D2) 

(D3) 

This integral may be evaluated using a prolate spheroi
dal coordinate system2\s, 7],t,b) oriented so that the axis of 
revolution passes through the points x and y and centered at 
the midpoint (x + y)/2. The half-space R3_ is given by 
1 <5, - 1 <7]< 1, 1T<t,b<21T. The volume element dz be
comes 
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dz = (;)3 (S2 - 7]2) ds d7] drP 

where 

and 

r= Ix-yI!2= Ix-yI/2, 

Ix - zl = (r/2)(s + 7]) , 

Iy - zl = (r/2)(s - 17> , 
(Z3 - x~) = (r/2)[ (S2 - 1) (1 - 7]2] 1/2 sin rP. 

Thus the integral in Eq. (D3) becomes 

Jj = 121T

fl roo (~)3-j(S2_l)(1-,7]2) 
1T -1)1 2 (s-7])' 

X8(t- ~s )sin2rPdsd7]drP, (D4) 

which reduces to 

f = 1TC(~)2-jfl [(ctlr)2-1](1-7]2) 
, 4 2 -I «ctlr)-7])j 

Xd7] H(t - Ix - yl/c) . 

It can then be shown that 

~ alI + h = 1TC H(t - Ix - yl/c) . 
c at 2 

(D5) 

Thus it follows from (Dl), (D2), and (D5) that as t ..... O + , 
1 ac 

T(x,y,x~;t) - - 8 2 a. H(t - Ix - ylle) . (D6) 
1TC (x) X3 

APPENDIX E: PROOF OF LEMMA 2 

Here the auxiliary space will be considered where the 
velocity is given by c = (x,a) with a = x~. Throughout this 
section the points x = (x,x~), y = (y,x~), and z = (z,x~) 
with all lie on the same plane. Restrictions will be placed on 
the time t, and points x andy (being not too far apart) by the 
condition 

O<;;;r(x,y)<;;;T, O<;;;t<;;;T. (El) 

This implies then for the time interval under consideration 
that there is only one ray path from the point x to y and vice 
versa. Thus r(x,y) is the time of arrival of a single ray (lying 
in the x~ plane) going from y to x. 

Define: CC ° is the path ofthe ray from point y to x. Set 

rP(x,y,z) = r(x,z) + r(z,y) . (E2) 

It then follows that if zEC(f 0' 

rP(x,z,y) = r(x,y) 

and if z~C(f 0' 

rP(x,y,z) > r(x,y) , 

since C(f ° is the path of minimum travel time. 

(E3) 

(E3') 

For the lemma that follows it will be convenient to de
fine n as the unit normal to the ray-path C(f ° at the point 
ZECC ° (note that n lies in the plane Z3 = x~). Then for fixed 
x,y define 

t/J(x,y,z) = (n o V z )2[r(x,z) +r(z,y)] , zEC(fo. (E4) 

Because of the symmetry of r it follows that 
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t/J(x,y,z) = t/J(y,x,z) . (E4') 

Setting 

€ = t - r(x,y) (E5) 

we will now prove the following lemma. 
Lemma 2: Let x and y be fixed points such that x i= y and 

condition (E1) is satisfied. Letg(x,y,z) satisfy the bounded
ness conditions 

Ix - zl Ig(x,y,z) I < M I , Iy - zl Ig(x,y,z) I < M2 , 

then the integral 

f i, H(t - rP(x,y,z»(t - rP(x,y,z)Yg(x,y,z) dZ I dz2 , (E6) 

where O<;;;v<;;;l, vanishes if t<r(x,y), otherwise it has the 
asymptotic behavior as t ..... r(x,y) + given by 

€v+ 112K f g(x,y,z(s» d (E7) 
v 1,1.1 1112 s, 

'C" ,/,\x,y,z(s» 

where 

Kv = 2.j2 f (1 - u2 )V du (E8) 

and s is the arc length along the ray path C(f 0. 

Proof For time t < r(x,y) it follows from Eq. (E3') that 
t - rP(x,y,z) < 0, hence the integral (E5) vanishes. 

For time r;;.r(x,y), let d be the region in the Z3 = x~ 
plane given by 

rP(x,y,z) < t 
and denote its boundary by C(f I. The region d contains the 
curve CC ° and as t ..... r(x,y), it shrinks to the curve CC 0. 

Now break up the region d into three regions 
d I,d 2,d 3 (see Fig. 3) with d I and d 3 being the end 
regions each containing a length I€ of the arc of the curve C(f ° 
and the points x and y, respectively. 

If z is a point on the portion of the boundary C(f I that 
bounds d 2 such that z is perpendicular to a point ~ on the 
curve C(f ° in d 2' then z satisfies the relation 

r(x,z) + r(z,y) = rP(x,y,z) = t, 

r(x,zo) + r(zO,y) + [(z - zO)2/2] t/J (x,y,z 0) 

+ ... ""r(x,y) + €. 

Using the relation (E3) for the point ZOECC 0' we have for a 
point z on the boundary 

Iz - zOI-(2€/1t/J(x,y,~) 1)1/2. (E9) 

For a point ZEd 2' we have 

(t - cfo(x,y,z»V -(E - [(z - zO)2/2]t/J(x,y,~»v. 

Thus we obtain the following: 

f f<>"1 (t - rP(x,y,zWg(x,y,z) dZ I dZ2 

_€V+ 112K I g(x,y,z(s» d 
v 1'/'/ )1 112 S <6" ,/,\x,y,z(s) 

(E1O) 

on replacing Zo by z(s). ~ ° is the portion of the arc C(f ° 
contained in d 2. 

Since the ray path CC ° in the vicinity of the end-point x 
will be directed radially away from x, it can be shown using 
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the asymptotic behavior of r(x,z) as z(s) ~x [given by Eq. 
(4)] that 

(n- Vz )2r(x,z) - lI[c(x) Ix - zl] as z(s) ~x . 

The other term (n'V)2r (z,y) in Eq. (E4) remains finite as 
z(s) ~x. Thus we have the asymptotic behavior 

Itft(x,y,z) 1- 1/2 -O( Ix - Z11/2) as z(s) ~x . 

Using the boundedness condition on g(x,y,z) it follows 

( g(x,y,z(s» dS-O(EI/2) , 
J~o ltP<x,y,z(s»1 1I2 (Ell) 

where C(J b is the portion of the ray path of C(J 0 of length IE 
contained in the region d I' and with the end-point x. A 
similar result can be obtained for the similar integral over the 
ray-path C(J;, the portion of C(J 0 of length IE in region d 3 

with end point at z = y. Thus combining these results with 
Eq. (ElO) we obtain 

I1", (t - ¢(x,y,zWg(x,y,z) dZI dZ2 

_EV+ 112K 1 g(x,y,z(s» ds 
v I'U (»11/2 . 'C n o/\X'y,z S 

(EI2) 

To complete the analysis we need to show that the integrals 
over d I and d 3 are higher order and can be neglected. We 
will show this for the integral over d I only, since the other 
one can be treated in a similar manner. 

For a point z on the curve C(J I bounding d I we have 

t = r(x,z) + r(z,y) 

-Ix - zl!c(x) + r(x,y) - (z - x) 's!c(x) , 

where s is the unit tangent vector to the curve C(J 0 (directed 
away from x). Thus we have 

c(x)E-lx-zl[l- (z-x)'s/(Iz-xl)], (EI3) 

which indicates that the region d I can be approximated by a 
parabolic cap as indicated by Eq. (E13). We will use local 
polar coordinates (r,f) centered at z = x, with Iz - xl = r, 
and oriented so that f) = 0 corresponds to the direction s. 
Thus the integral d I has the asymptotic form 

\ I1", (t - ¢(x,y,zWg(x,y,z) dZ I dz2\ 

<MI II [E - ~(1 - cos f)]V drdf) , 
,(/'. C 

(EI4) 

where d I is given asymptotically as E~O by 

O<r<IE sec f) , - f)o<f)<f)o , 

O<r<Ec(x)/( 1 - cos f), otherwise 
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with f)o defined by 

sec f)o( I - cos f)o) = c(x)/I . 

It follows that the integral (E 14) is O( EV + I) and hence can 
be neglected in comparison to the integral over d 2' 
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Consider an unstable quantum system that has been found undecayed at an instant sand 
denote by R(t,s) the rate of its regeneration into an original (undecayed) state at a later 
instant t + s. It is proved that the reduced evolution is a semigroup, i.e., there is no 
regeneration at all, provided R (t,s) 1/2 can be estimated by a sufficiently regular function that is 
nondecreasing in s and has zero derivative with respect to tat t = ° for every s. This generalizes 
the theorem of Misra and Sinha [Helv. Phys. Acta'45, 619 (1972)] in a different direction 
than in a recent paper by Nishioka [J. Math. Phys. 29, 1860 (1988)]. 

I. INTRODUCTION 

The semigroup property of reduced evolution repre
sents a useful tool in the quantum theory of unstable sys
tems. I It is well known that it cannot hold exactly, because 
otherwise the corresponding total Hamiltonian H should 
contain the whole real axis in its spectrum. 1-4 Hence various 
estimates of its violation become important. 

It is further known that validity of the semigroup condi
tion is equivalent to the absence of the decayed-state regen
eration: the reduced evolution operator V,: = Eu U,Eu ful
fills 

(1.1 ) 

for any t,s;;;'O, where Eu and Ed are the projections to the 
state subspace of the unstable system and its orthogonal 
complement, respectively, and U, = e - ;H, is the total evolu
tion operator (we employ the notation used in Ref. 1). The 
regeneration rate as a function of t and s is subjected to var
ious restrictions. For example, Sinha has demonstrated4 that 
regeneration cannot cease after a finite time: if there is a non
negative Tr such that 

( 1.2) 

for all t;;;.O and s;;;' T r , then u(H) = R. 
Another restriction concerns the regeneration rate at 

short times, which must not be too slow unless the reduced 
evolution is an exact semigroup. Misra and Sinha have 
proved5 the following assertion: suppose that for every ¢ of 
some dense set D in the subspace JY u == Eu JY of the unstable 
system6 there is a non-negative C'" such that 

(1.3 ) 

with some a> 1, holds for all t,s;;;'O, then {V,: t;;;.O} is a 
strongly continuous contractive semigroup, V, V, = V, + s 

for all t,s;;;,O. 
This result has been recently generalized by Nishioka,7 

who has shown that the conclusion is preserved if one re
places the bound (1.3) by 

II(V,Vs - V'+s)¢II<C",tasa(t + s)f3, (1.4) 

for some a> 1, 2a + f3> 0, and a + f3 + 1 =1=0. The aim of 
the present paper is to derive another extension of the Misra
Sinha theorem. 

II. THE MAIN RESULT 

Weare going to prove the following assertion. 
Theorem: Let {F(t): t;;;.O} be a weakly continuous con

tractive family with F(O) = I on a Hilbert space JY. Sup
pose there is a dense set D in JY and a function g: {(t,s): 
O<t<s}-+R+ with the following properties: (i) g(O,s) = 0; 
(ii) there is a positive to such that g(t,sl) <g(t,S2) , for a fixed 
t<to and all Sl <S2; (iii) there is a function GELloc (R+) such 
that It -lg(t,s)I<G(s) holds for all sufficiently small t; and 
(iv) the one-sided derivative h(s): = ag(t,s)lat 1,=0+ ex
ists and equals zero for all s> 0; such that 

(2.1 ) 

holds for every t/JED and all s;;;.t;;;.O. Then {F(t): t;;;.O} is a 
strongly continuous contractive semigroup on JY. 

Proof The proof follows the same line as in Refs. 5 and 
7. We take a sequence fr)7= I of positive numbers. Using 
the condition (2.1) repeatedly in combination with the tri
angle inequality and contractivity of the family {F( t): t;;;.O}, 
we get the estimate 

IIFCtI 7;)¢-F(7I )"'F(7n )¢11 

<c",i g(7j _ l , i. 7;). 
J=2 I=J 

Substituting 7; = t In, we obtain 

For a given t, we choose n so largethatt In <to; using then the 
assumption (ii), we can estimate the rhs as follows: 

Next we employ the assumptions (i) and (iii); the last one 
allows us to use the dominated convergence theorem, which 
yields 

lim I' .!!.... g(~, S)dS 
n-oo lin t n 

1· i' g(t In, s) - g(O,s) ( )d 
= 1m XI'/n.' ISS 

n- 00 0 tin 

= L h(s)ds. 
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In view of (iv), we get finally 

lim F(t /n)NI/1 = F(t)I/1, (2.2) 

for all !/JED, and, since the family {F(t): t;;;.O} is uniformly 
bounded, this conclusion extends to all t/JE%. The relation 
(2.2) easily yields the semigroup property··8 and the weak 
continuity implies the strong one.9 

For the regeneration rate R", (t,s): = II ( VI Vs 
- V, + s) 1/1112, which means the probability that the unstable 

system starting at t = ° in the state 1/1 and found decayed at s 
will be found undecayed again at a later instant t + s, we get 
the following. 

Corollary: Ifthere is a dense set DC~u and a functiong 
with the properties listed in the theorem such that 

(2.3 ) 

holds for every !/JED and all s;;;.t;;;.O, then the reduced evolu
tion {V,: t;;;.O} on ~u is a strongly continuous semigroup. 

III. CONCLUDING REMARKS 

Let us notice first that physically it is difficult to observe 
the regeneration, in particular, at short times. The reason is 
the same as in the case of short-time violations of the decay
law exponentiality .,10: the dynamics of the known decay pro
cesses is such that the interesting time region is inaccessible 
experimentally. Nevertheless, one cannot exclude discovery 
of other unstable systems (particles, nuclei, etc.) for which 
the semigroup approximation will not work as well, and, 
furthermore, the Misra-Sinha theorem and its generaliza
tions represent interesting mathematical results. 

Let us turn now to discussion of our hypotheses. First of 
all, the regeneration rate need not be estimated symmetrical
ly in t,s; in fact, one has to know the function g in an octant of 
the (t,s) plane only, The assumption (i) is a weak one; it 
should be fulfilled for every reasonable estimate. As for (ii), 
we shall comment on it a little later, while (iii) represents a 
not very strong regularity requirement. The assumption (iv) 
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is essential; it shows that regeneration is excluded if only it 
starts at every instant s slowly enough. 

Our theorem generalizes the Misra-Sinha theorem; one 
can check easily that the bound ( 1.3) fulfills the hypotheses. 
Let us compare it further to Nishioka's result. The function 
g: g(t,s) = t asa(t + s)/3 with the above indicated values of 
a, /3 fulfills the assumptions (i), (ii), and (iv), while (ii) is 
valid for a + /3;;;.0 only. Let us concentrate on the interesting 
case /3 < 0. It was shown in Ref. 7 that the original Misra
Sinha theorem combined with the Schwarz inequality en
sures the semigroup property for 2a + /3 > 2. Our theorem 
yields a stronger result for /3;;;. - 2. This case is covered by 
the Nishioka theorem as well as the region a > 1, 
- /3/2 < a </3 (with exception of the half-line 

a + /3 + 1 = 0). In the last named case, however, the ob
tained sufficient condition represents a much weaker asser
tion: while for a + /3> ° the estimate (1.4) is a restriction 
actually for short times only due to the contractivity; in the 
other case one must check it for all times, which is consider
ably more difficult. Needless to say, the sufficient condition 
(2.1) covers a broader class of estimates than those of Refs. 5 
and 7. 

I A detailed exposition of the quantum theory of decay can be found in P. 
Exner, Open Quantum Systems and Feynman Integrals (Reidel, Dor
drecht, 1985), Chaps. 1-4. 

'D. N. Williams, Commun. Math. Phys. 21, 314 ( 1971). 
'L. P. Horwitz, J.-P. Marchand, and J. LaVita, J. Math. Phys. 12, 2537 
(1971 ). 

4K. Sinha, Helv. Phys. Acta 45, 619 (1972). 
58. Misra and K. Sinha, Helv. Phys. Acta 50, 99 ( 1977). 
bOne can demand, of course, the condition (1.3) to be valid for a dense set 
in the total Hilbert space cW' as in Ref. 7. It is clear, however, that the 
bound in ,W-;, is trivial, and, moreover, that {V,: t)O} is a semigroup (ful
filling s-lim,_n + V, = I,,) on the subspaceWu only, 

7M, Nishioka, J. Math, Phys. 29, 1860 (1988). 
"P. Chernoff, Product Formulas, Nonlinear Semi groups and Addition of 
Unbounded Operators, Memoirs of the American Mathematical Society, 
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States in classical mechanics are probability measures, and their Fourier transforms are 
continuous functions of positive type. States in the phase-space formulation of quantum 
mechanics are Wigner distribution functions, and their (symplectic) Fourier transforms have 
been characterized by Kastler [Commun. Math. Phys. 1, 14 (1965)] and Loupias and 
Miracle-Sole [Commun. Math. Phys. 2, 31 (1966); Ann. Inst. H. Poincare 6, 39 (1967)] as 
being continuous functions of"~-positive type." In this paper, (Schwartz) distributions of~
positive type, are defined and studied. It is shown that if such distributions are bounded on a 
certain sequence of test functions, then they are symplectic Fourier transforms of Wigner 
distribution functions. These results, are applied to a variety of problems ranging from ones 
involving the quantum Liouville equation to a problem in signal analysis. 

I. INTRODUCTION 

Some time ago, Kastler, Loupias, and Miracle-Sole 1-3 

characterized the symplectic Fourier transforms of those 
phase-space functions that are Wigner distribution functions 
(WDFs)-i.e., that represent states in the Wigner-Weyl 
formulation of quantum mechanics.4 Their characterization 
employs a class offunctions similar to Bochner's functions of 
positive type. Indeed, Kastler termed this class the class of 
functions of "~-positive type." 

To describe such functions and to explain what the three 
workers did, we need to introduce some notation and a few 
definitions. For a quantum system with n spinless degrees of 
freedom, the phase space is RnXRn::::;R2n; we will denote 
this space by r, and we will denote a point in r by 
z = (ql' q2,···,qn;PI, P2, ... ,Pn)· The units of both the P's and 

q's are to be those of ~. We will take the usual symplectic 
form on phase space to be 

(1.1 ) 

Here, In and On are the n X n identity and zero matrices, 
respectively. When matrix notation is used, z is to be thought 
of as a column vector. Finally, the superscript Tindicates the 
transpose of a matrix or vector. 

If/is in .Y, Schwartz space, then the symplectic Fourier 
transform of/is 

def r n 

I(a) = Jr/(z)eiU(a.z) dz, where dz = XII dqj dpj. 

( 1.2) 

Here a = (U I,U2, ... ,un ;V I,V2""'Vn ) is a point in r', the dual of 
phase space. The measure dz is the standard Liouville mea
sure on r. We will also denote the Liouville measure on r' by 

da. The units of the components of a are those of 1/~. The 
symplectic Fourier transform of/is directly related to the 
ordinary Fourier transform of /vial(a) = Y(Ja). Using 
this relationship, one can invert (1.2) to get 

/(z) = (21T) -2n r l(a)eiU(z.a) da. 
Jr' 

(1.3 ) 

The Weyl correspondence is the famous link between do
ing quantum mechanics on phase space (or on its dual) and 
doing quantum mechanics in the usual way, with wave func
tions and operators on a complex Hilbert space. One may 
find in Ref. 5 a brief review of the Weyl correspondence, 
along with more references. In Secs. IV and V, we have a few 
more words to say about it. For present purposes, it suffices 
to point out that under the Weyl correspondence the opera
tor product goes over to the twisted convolution on the dual 
of phase space, and to the twisted product on phase space. 

Let Sand Tbe defined, continuous, and compactly sup
ported in r'. The twisted convolution I of Swith Tis defined 
by 

def i SxT(a) = (21T)-2n S(b)T(a-b) 
r' 

Xei(fi/2)u(b.a) db. (1.4 ) 

Of course, one may define the twisted convolution of func
tions, or even distributions (see Sec. II). Here, we merely 
wish to point out that when Sand T are in L 2, or be a 
Schwartz functions, or are Coo with compact support, then 
S X Twill be L 2, or be a Schwartz function, or be Coo with 
compact support. Also, when ~ = 0, twisted convolution re
duces to ordinary convolution. 

If[ and g belong to .Y, then the twisted product is given 
by 

( 1.4') 

Like the twisted convolution, the twisted product of func
tions in .Y or L 2 is still in.Y or L 2. The twisted product of 
functions in ~ is not, however, a function in ~. One may 
define the twisted product of tempered distributions, too. 

States in the usual formulation of quantum mechanics 
are density matrices, i.e., trace-class operators that are non
negative and have unit trace. Such operators are well known 
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to be of the form) = gtg, where g is a Hilbert-Schmidt oper
ator. Since Hilbert-Schmidt operators correspond to 
square-integrable functions on r, density matrices corre
spond to phase-space functions of the form! = gog(z), with 
gEL 2(r). These are, apart from normalization, the WDFs. 
Either by directly dealing with the Weyl correspondence, 
which also associates Hilbert-Schmidt operators with func
tions in L 2 (r'), or by taking symplectic Fourier transforms, 
one sees that, again apart from normalization, a function 
F = J on r' corresponds to a state if and only if, for some 
G = gEL 2(r'), 

( 1.5) 

where, for functions on r', Gt(a) =G( - a). (Upper case 
letters will be used to denote functions on r', and lower case 
ones for functions on r. For a function like G that is the 
symplectic Fourier transform of a phase-space function g, 
we also use g for G when it is convenient.) 

What Kastler, Loupias, and Miracle-Sole did was to 
prove that a function Fis of the form (1.5) if and only if it is a 
continuous function defined on r' such that for every finite 
set of points {al,oo.,am}C r', and for every set ofm complex 
numbers {A1,oo.,A m}, 

~ F( ) i(fi/2)a(ak.a}l"";· 1 ...... 0 
~ aj - ak e A-jA-k P . 

j.k= 1 

( 1.6) 

A continuous function satisfying (1. 6) is said to be of Ii
positive type (see Ref. 1, p.26). Since it is well known (see 
Sec. II) that functions of the form (1.5) are not only contin
uous, but are in L 2 and vanish at infinity, this result serves as 
a kind of "regularity theorem." 

It also serves to clarify the connection between states in 
classical mechanics and states in quantum mechanics. When 
Ii = 0 in (1.6), the inequality there reduces to the condition 
for a function to be of (Bochner) positive type. Such func
tions are, by the celebrated Bochner theorem, Fourier trans
forms of non-negative, finite measures on phase space. Since 
Fourier transforms and symplectic Fourier transforms differ 
in a way that is immaterial to Bochner's theorem, one can 
also say that positive-type functions are symplectic Fourier 
transforms of such measures. Since non-negative, finite mea
sures on phase space are (unnormalized) classical states, the 
effect ofletting Ii ~ 0 in ( 1.6) is to go from a characterization 
of quantum mechanical states to a characterization of classi
cal states. 

The purpose of this paper is to extend the result of 
Kastler, Loupias, and Miracle-Sole 1-3 to distributions. To 
do this, we first note that the condition in (1.6) is equivalent 
to 

f f F(a2 - al)ei(fi/2)a(a,.a,)A(a2)A(al)dal da2>-0 (1.7) 
Jr.Jr' 
holding for every A(a) that is continuous and compactly 
supported on r'. In (1.7), set a = a2 - al and b = a2, then 
use (1.4) to put (1. 7) in the form 

fr, F(a) A tXA (a)da>-O. (1.8) 

The advantage of using (1.8) rather than (1.5) is that it 
allows one to define distributions of Ii-positive type, in addi-
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tion to continuous functions of Ii-positive type. Let ~ be the 
set of all compactly supported, C '" functions defined on 
R n X R n, and let ~ denote the corresponding set of distribu
tions. If FE~', then we will say that F is of Ii-positive type if 
( 1.8) holds for every possible AElP. When this happens, we 
will write hfiO. Of course, if F happens to be a tempered 
distribution (i.e., FEY') that is of Ii-positive type when 
viewed as a distribution, then it is easy to see that ( 1. 8) will 
actually hold for all AEY. Under the Weyl correspondence, 
distributions of Ii-positive type correspond to nonnegative 
operators (see Sec. IV). We remark that every continuous 
function of Ii-positive type is also a distribution of Ii-positive 
type. 

Although it is not obvious, the key factor in forcing the 
Ii-positive-type function F to have the form (1. 5) is not so 
much F's continuity as the fact that Fis bounded near the 
origin. Indeed, the main result (Theorem 4.1) of this paper 
is that every Ii-positive-type distribution F that is "finite at 
the origin," in the sense that there is a "8-function" sequence 
{Dk } (see Sec. III) of compactly supported Coo functions 
for which 

limsuPk~'" f F(a) D1XDk(a)da<oo, (1.9) Jr, 
will be of the form (1.5). It even turns out that Fbeing finite 
at the origin is a condition that can be replaced by F being 
represented by a function in L I':::c near the origin (Proposi
tion 4.3), verifying the importance of boundedness versus 
continuity. 

We originally obtained our main result to help solve a 
moment problem 4,5 that arises in connection with phase 
space formulation of quantum mechanics. In the solution of 
that problem, it plays a role that is analogous to the one 
played by the Riesz representation theorem in the solution of 
the classical moment problem. (For the readers of Ref. 5, the 
theorems from a preprint version of this paper are here la
beled 3.3 and 4.1 instead of 3.1 and 5.2.) 

Another application of our results is to getting a "regu
larity theorem" for distribution solutions to the quantum 
Liouville equation. We briefly sketch out such a theorem in 
Sec. VI. This section, the last in the paper, also includes a 
discussion of a few potential applications to other problems 
involving the quantum Liouville equation and to problems 
in areas other than quantum mechanics; indeed, it concludes 
with an application to signal analysis. 

The middle sections of the paper are organized this way. 
In Sec. II, we briefly discuss propositions related to the twist
ed convolution and to the twisted convolution of distribu
tions. In Sec. III, we prove a sequence of results showing that 
an Ii-positive-type distribution that is finite at the origin is in 
L 2nL "'. In Sec. IV, we use the results of Sec. III and the 
Schrodinger representation to prove our main result, from 
which we draw off the corollary about boundedness men
tioned earlier. 

In Sec. V, we carryover our results to the twisted prod
uct formalism. In doing so, we define an Ii-positive tempered 
distribution as the symplectic Fourier transform of an Ii
positive type tempered distribution. (The relationship 
between the two kinds of tempered distributions is complete-

Francis J. Narcowich 2566 



                                                                                                                                    

ly analogous to that between positive functions and functions 
of positive type.) This section also contains a few more words 
on the Weyl correspondence. 

In closing our introductory section, we want to discuss 
notation that is used throughout the paper. We have already 
introduced the spaces Y, Y', fI)), and fI))'. To avoid intro
ducing numerous factors of (21T)n , we define the norm and 
inner product on L 2(r') with respect to the measure 
(21T) ~ 2n da instead of da, and we will denote them by 11'lb 
and (".), respectively. Indeed, norms on all of the spaces 
LP(r') will be taken with respect to (21T)~2nda; again, 
these norms will be denoted by II' lip· To avoid introducing 
extra notation, we will denote the action of a distribution T 
on a function S in fI)) by (T};). A similar convention will 
apply for TEY' and SEY. Finally, we let Co( r') denote the 
set of all functions that are continuous on r' and that vanish 
at 00. Of course, the analogous conventions will be applied to 
objects defined on phase space, r. 

II. THE TWISTED CONVOLUTION 

The twisted convolution plays an important role in our 
discussion. In this section, we want to collect those proper
ties that we will use later on, beginning with the ones involv
ing L 2 and ending with ones involving distributions. Our 
first proposition contains a very important norm estimate 
that is the essential reason L 2 ( r') is a Hilbert algebra under 
twisted convolution. 

Proposition 2.1: If S and Tare in L 2 (r'), then the twist
ed convolution S X Tis continuous on r', vanishes at infin
ity,andisinL 2(r');thatis,S X TECo(r) nL 2(r).Inaddi
tion, one has this norm estimate: 

(2.1 ) 

Proof Getting S X T to be in Co ( r') is a routine exercise 
in techniques that are standard in harmonic analysis, and so 
we omit the proof of this well-known fact. Showing that 
S X T is in L 2 and that it satisfies (2.1) is somewhat more 
difficult. See Refs. 2 and 6 for proof. • 

The following proposition is a collection of several well
known, useful formulas; it is an immediate consequence of 
the previous proposition. 

Proposition 2.2: If S, T, and U are in L 2 (r'), then we 
have these: 

(SXnXU=SX(TXU), (2.2) 

(S X nt = TtXS t, (2.3) 

S X Tt(O) = (S,T), (2.4) 

stXS(O) = S XSt(O) = liS II~ = Ilstll~, (2.5) 

SXTXU(O) = UxSXT(O) = TXUXS(0).(2.6) 

In addition to the elementary L 2 theory outlined above, 
we will also need to deal with the twisted convolution of L I 

functions. 
Proposition 2.3: If Sand T are in L I (r'), then S X Tis 

also in L I (r'). Moreover, we have 

liS X TIII<IIS 11111 Till' (2.7) 

Finally, if Sand T are as above, and if U is in L I (r), then 
(2.2) and (2.3) again hold. 
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Proof The proof is identical to that used in connection 
with the ordinary convolution product. See Refs. I and 7. • 

From time to time, we will need to work with the twisted 
convolution of a distribution and a function in fI)). If SEfI))' 
and TEfl)), then, following Maillard, 8 we define S X Tby 

S X T(a) == (S(b),Tt(b - a)e- (m12)a(b.a», (2.8) 

and TXSby 

T xS(a) == (T(b),St(b - ale + (ili/2)a(b.a». (2.9) 

As in the case of the ordinary convolution (cf. Ref. 7, Chap. 
27),S X Tand T XSareactually C '" functions. We summa
rize their properties below. We omit the proofs, as they are 
quite standard. 

Proposition 2.4: If one of S, T is in fI))' and the other is in 
fI)), then S X Tis a C '" function. Moreover, (2.3) and (2.4) 
still hold. 

Proposition 2.5: If one of S, T, and U is in fI))' and the 
other two are in fI)) , then (2.2) and (2.6) still hold. 

For results concerning twisted convolutions (and twist
ed products) of tempered distributions, we refer the reader 
to recent work of Gracia-Bondia and Varilly.9 

III. REDUCTION TO THE L2 nL 00 CASE 

In this section, we wish to show that every ~-positive
type distribution that is finite at the origin is in L 2 n L "'. We 
will begin by setting down a few basic facts about ~-positive
type distributions, and by giving a precise definition for be
ing "finite at the origin." 

Recall that FEfI))' is of ~-positive type if, for every AEfI)) , 

(F,AtXA»O, (3.1) 

and that, when this happens, we write 1>,,0. In addition, we 
say that F is finite at the origin if there exists a sequence 
{Dd, Dk E fI)), for which these are true: 

k_ 00 

(i) S XDk ..... S in fI)) for all SEfI)); 

k- 00 

(ii) IIDkll1 ..... 1; (3.2) 

(iii) limsuPk_oo (F,D!XDk)==F o < 00. 

Two remarks: First, such a sequence exists. In Sec. IV, 
we explicitly construct one in the course of proving Proposi
tion 4.3. Second, it will tum out that Fis in L 00, and that F O 

in (3.2) isjusttheL '" norm ofF (cf. Theorem 3.3); henceFo 

is independent of the particular sequence chosen. 
Our first proposition is a list of simple, important prop

erties involving distributions of ~-positive type. In particu
lar, it contains a useful version of the Cauchy-Schwarz in
equality. 

Proposition 3.1: LetFEfI))', and letS,Tbe in fI)). If 1>,,0, 
then the following are true: 

(i) I(F,StX TW«F,StxS )(F,TtX T). 

(ii) If Fis in L 2, then (i) holds with S,TEL 2. 

(iii) F= Ft. 

(iv) S XF xSt>"O. 

Proof To get (i), letA = as + f3Tin (3.1); here, a and 
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{3 are arbitrary complex numbers. The non-negativity of the 
quadratic form then gives the desired result. Part (ii) is ob
vious. Part (iii) also follows from the non-negativity of the 
quadratic form mentioned above, for its being non-negative 
implies that 

(F,Stx T) = (F,TtXS). 

Choosing T to beDk' where{Dd satisfies (3.2), we see that 
StXDk __ st in pj), and so 

(F,St) = (F,S) 

for all Sepj). This is, by definition, (iii) in "integral" form. 
To get (iv), note that, by Propositions 2.4 and 2.5, we 

have 

(SXFXSt,A XA t) =SXFXStX(A XA t)t(O) 

= F X (StXA t) X (A XS)(O) 

= (F,(A XS) X (A XS)t»O. 

This last term is non-negative because F >110. Hence 
S XF xst satisfies (3.1) and so is of Ii-positive type. • 

Our immediate goal is to show that Ii-positive-type dis
tributions that are finite at the origin are actually in L 00. 
Once we have accomplished this, we will go on to show that 
suchdistributionsareinL 2. To getto our immediate goal, we 
need the inequalities below. 

Lemma 3.2: Let Fepj)'. Suppose that F> II ° and that F is 
finite at the origin. If Sepj), then 

I(F,S)1 2<FO(F,S xst) , (3.3) 

where FO is defined in (3.2) (iii). In addition, 

(F,S XSt)<FoIiSlli . (3.4) 

Finally, 

I (F,S) I <FOilS II, . (3.5) 

Proof Let {Dk} be a sequence in pj) satisfying (3.2). 
From Proposition 3.1, part (i), we have 

I(F,SXDk )1 2«F,S xst) (F,Dk XD1) . 

Letting k -- 00 gives 

I (F,S) 12< (F,S XSt)lim SUPk_oo (F,Dk XD 1) , 
which immediately implies (3.3). 

To get the second inequality, in (3.3) replace S by 
S X S t, then rewrite the right side using Propositions 2.4 and 
2.5. The result is 

(F,S xSt)2<FO(StXF XS,S xst) . (3.6) 

The distribution S t X F X S is of Ii-positive type by Proposi
tion 3.1, part (iv). By Proposition 2.4, it is also a Coo func
tion. It is very easy to show that a Coo Ii-positive-type distri
bution is bounded. Indeed, this is true even if the distribution 
is merely continuous. One need only apply (1.6) with 
m = 2, a, = a, and a2 = ° to see that this is the case. Clearly, 
such a function is bounded by its value at the origin; hence, in 
our case, we have 

(3.7) 

By applying Propositions 2.4 and 2.5, we may transform the 
right side of (3.7) so that (3.7) becomes the new inequality 
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IStxF xS(a) I < (F,S xst) . (3.8) 

Combining (3.6) and (3.8) yields 

(F,S XS t )2<FO(F,S XS t )IiS t xSIi,. 

Since, by Proposition 2.3, IiS t xS II, < liS IIi, the last inequal
ity implies 

(F,S XSt)2<FO(F,S xst) liS Iii. 

When (F,S xst) = 0, (3.4) is trivially true. When 
(F,S xst) #0, canceling the common factor above yields 
(3.4). Thus (3.4) is true, in general. 

To obtain (3.5), use (3.4) to replace the right side of 
( 3.3), and then take the square root of both sides. • 

If Fepj)' is of Ii-positive type and finite at the origin as 
well, then (3.5) allows us to extend (F,S t) to a bounded 
linear functional on L' (r'). Since L 00 (r') is dual to 
L '( r'), we have that FeL 00 (r'). In addition, it is obvious 
from (3.5) that 

11F1100 <Fo. (3.9) 

Let us now drop the assumption that F is finite at the 
origin, and replace it with the assumption that F is in L 00. 
Let {Dk} be a sequence in pj) satisfying (3.2) (i) and (3.2) 
(ii). From F being L "" (r') and from Proposition 2.3, we 
have that 

(F,Dt XDk)<IIFII"" IIDklli· 

Letting k-- 00 in this inequality and using (3.2) (ii), we get 

FO=lim SUPk_ 00 (F,D! XDk ) < IIFII 00 , (3.10) 

so (3.2) (iii) is satisfied and Fis finite at the origin. Combin
ing (3.9) and (3.10) and examining the remarks above, we 
see that we have proved the following. 

Theorem 3.3: Let Fepj)' and suppose that F> II 0. Then, F 
is finite at the origin if and only if FeL "" (r'). In addition, 

FO = IIFII 00' (3.11) 

Finally, FO is the same for all sequences satisfying (3.2) (i) 
and (3.2) (ii). 

The last theorem is our first "regularity" result. For 
later use, we will need the corollary below. 

Corollary 3.4: If F is a continuous function that is of Ii
positive type, then Fis finite at the origin and 

FO=F(O) = 11F1100' (3.12) 

Moreover, if GeL 2 (r'), then 

GtXG>IIOand (GtXG)o= IIGII~· (3.13 ) 

Proof In the proof of Lemma 3.2, we pointed out that 
such an F must be bounded, and that 
IF(a) I <F(O) = IIF II ",,' Thus, Theorem 3.3 applies, and 
(3.12) follows from (3.11). 

Consider G t X G. One can use Proposition 2.2 to show 
that 

(GtXG,stxS) = I/G xstll~· 
Thus G t X G> II 0. (Of course, we could have also obtained 
this result by invoking the result of Kastler, Loupias and 
Miracle-Sole'-3 mentioned in the Introduction.) From 
Proposition 2.1, we have that GtXG is continuous, and, 
since Ii-positive-type distributions which are continuous are 
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also continuous functions of Ii-positive type, that G t X G is 
an Ii-positive-type continuous function. Thus (3.12) applies. 
To get (3.13), we need only compute GtXG(O). Invoking 
Proposition 2.2 again, we have that G tx G(O) = IIG IlL 
which yields (3.13). • 

Having shown that every Ii-positive-type distribution 
that is finite at the origin is in L "", we now wish to show that 
such a distribution is also in L 2. To carry this out, we need 
the two lemmas below. 

Lemma 3.5: Let FE.!iJ', f'>/iO, and F be finite at the 
origin. If ¢;(a) is a continuous function of (Bochner) posi
tive type, then the distribution ¢;Fis of Ii-positive type, and is 
finite at the origin. 

Proof By Theorem 3.3, FEL "". Since, as is well-known, 
continuous functions of positive type are bounded, ¢; is in 
L "", too. Thus the product ¢;F is in L "", and so, again by 
Theorem 3.3, ¢;Fwill be finite at the origin, provided it is of 
Ii-positive type. Therefore, to prove the lemma, we need only 
show that ¢;F is of Ii-positive type. 

Recall that Bochner's theorem gives us that ¢; is the 
Fourier transform of finite, non-negative measure on R2n. 
Because of the connection between symplectic Fourier trans
forms and ordinary ones (cf. Sec. I), we may also represent ¢; 
as the symplectic Fourier transform of a finite, non-negative 
measure on r. If we denote this measure by v"" then we have 

¢;(a) = L eiC7(a.z) dv", (z). (3.14) 

If SE.!iJ, then, from (3.14) and an interchange of integrals, 
we obtain 

(3.15 ) 

By writing out the expression for S t X S and manipulat
ing it, we can show that 

eiC7(Z.a)St x S(a) = S; XSz (a), 

where Sz (a) = eiC7(z.a)S(a). (3.16) 

Substituting (3.15) into (3.16) yields 

(¢;F,StXS) = L (F,SI XSz )dv", (z) , (3.17 ) 

which is non-negative because Fbeing of Ii-positive type im
plies the integrand on the left in (3.17) is non-negative. Thus 
we see that ¢;f'>/i0, and so our proof is complete. • 

We remark that this result is known for continuous 
functions of Ii-positive type 4,10. With more work, one can 
show that, if ¢; is C"" and f'>/i0 (but not necessarily finite at 
the origin), then ¢;Fwill also be of Ii-positive type, although 
not necessarily finite at the origin. 

The next lemma relates FO and IIF liz for an Ii-positive
type distribution that is finite at the origin. 

Lemma 3. 6: Let Fbe an Ii-positive-type distribution that 
is finite at the origin. If F is in L 2 (r'), then 

11F112«2trli) -n/2FO. (3.18) 

Proof From (3.3), (2.1) and the Cauchy-Schwarz in
equality for L 2, we have, for every SE.!iJ, that 

I(F,SW«2trli)-n/2FoIIFIIzIISII~. (3.19) 
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Since.!iJ is dense in L 2(r'), a standard argument implies 
that (3.19) holds for all SEL 2(r'). If 11F1I2#0, then choose 
S=F in (3.19) and divide by 11F112 to get (3.18). If 
11F112 = 0, then (3.18) is trivially true. • 

We can now prove the main result of this section. 
Theorem 3.7: If Fis an Ii-positive-type distribution that 

is finite at the origin, then FEL 2 nL "". 
Proof By Theorem 3.3, FEL "". We want to show that 

FEL 2. For m = 1,2, ... , the Gaussian ¢;m (a) =e-1al'lm is a 
continuous function of (Bochner) positive type, because it is 
the Fourier transform of another (positive) Gaussian. By 
Lemma 3.5, Fm (a) =¢;m (a)F(a) is of Ii-positive type and is 
finite at the origin. Obviously, we also have that 
FmEL 2nL "". Thus, from Lemma 3.6, Theorem 3.3, and the 
form of F m' we obtain the following norm ~stimate: 

IIF m 112< (2trli) - n12F~ = (2trli) - n1211F mil"" 

< (2trli) -n/211F1I"". (3.20) 

We can view the norm estimate in (3.20) as being a 
uniform bound on the L '( r') norms of IF m 12. Since the se
quence {lFm (a) 12} is also increasing and converges 
pointwise almost everywhere to IF(a) 12, the Lebesgue domi
nated convergence theorem applies; hence, we have that 
IF 12EL '(r') or, equivalently, that GEL 2(r'). • 

We close by remarking that it should be possible to 
prove Theorem 3.7 by using a harmonic oscillator basis and 
taking an approach similar to the one used in Ref. 9, Sec. V. 

IV. THE MAIN RESULT 

In the last section, we showed that every Ii-positive-type 
distribution that is finite at the origin is in L 2 nL "". We will 
now prove the main result ofthis paper. 

Theorem 4.1: If F is an Ii-positive-type distribution that 
is finite at the origin, then there exists some GEL 2 for which 

F= GtXG (4.1) 

holds almost everywhere in r'. Here G may be chosen to be 
self-adjoint (i.e. G t = G), or even of Ii-positive type. Con
versely, ifFisoftheform (4.1) for some GEL 2, thenFisan Ii
positive-type distribution that is finite at the origin. 

Proof With twisted convolution being the product, 
L 2 (r') forms a Hilbert algebra that can be faithfully repre
sented by means of what is called the Schr6dinger represen
tation (cf. Refs. 1-3), 1T w' The underlying Hilbert space used 
in connection with this representation is the one that is the 
state space for a spinless quantum mechanical system having 
n degrees offreedom. In this representation, functions in L 2 
correspond to Hilbert-Schmidt operators. If F, and F2 are 
two square-integrable functions on r', then 

(F"F2) = (2trli) n Tr [ 1T w (F,)1T '" (F2) t]. (4.2) 

Using the trace formula above and noting that the Ii
positive-type distribution Fis in L 2, one can easily show that 
the operator corresponding to F, F = 1T '" (F), is non-nega
tive and Hilbert-Schmidt. Now, suppose that we also have 
that F is trace class. If we let iT be the positive square root of 
F, then iT is Hilbert-Schmidt and the operator equation 
F = iT 2 translates into the twisted convolution product 
F = G X G. Since the Schr6dinger representation is faithful, 
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the G for which G = 1T w (G) is in L 2 (r') and satisfies 
G t = G. Moreover, from (4.2) and the non-negativity of G, 
one sees that 

(G,stxS) = Tr[ G1Tw (S)t1Tw (S)] ;>0, 

and so G is an Ii-positive-type distribution. The existence of 
such a G is precisely what our theorem asserts. Thus, to 
prove the theorem, we need only prove that F is trace class. 

The first step in showing this is to derive an inequality 
involving the trace of the product of F with certain trace
class operators. Let H = ! ~j= 1 (PJ + qJ) be the usual har
monic oscillator Hamiltonian, and for (3 > ° set 

Op = exp( - (3H). (4.3) 

In Ref. 5 [cf. Eq. (2.18) 1, we showed that the Wigner trans
form of this operator has the form 

wp (ql,· .. ,qn ,PI,···,Pn) 

(
.¥.f.1) { (.¥.f.1)(~n_ 1 (p2 + q2»)} 

= sechn T exp -tanh T J- ~ J • 

(4.4) 

Taking the symplectic Fourier transform of the function in 
(4.4) gives us 

wp (a) ==Op (a) 

== [~CSCh(;) r exp{ - [: coth(;) ]aTa} . 

(4.5 ) 

(Here, aT is the transpose of a, which is now regarded as a 
column vector.) With our conventions, 0{3 is precisely 
1T:; 1(0{3)' and so the trace formula (4.2) yields 

(F,0{3) = (2~)nTr[FOp] . (4.6) 

Using (4.5), (4.6), the definition of ( . , . ), and the fact that 
FE!. "", we get the following: 

Tr[Fn ],,)~sechn(fI{J)<~. (4.7) 
{3 lin 2 fln 

The second step is to compute the trace in (4.7) by using 
an orthonormal basis of harmonic-oscillator states, 
I/lO,I/lI,1/l2"" . Making the computation and using (4.7), we 
find 

~ ~ "" -AfJ ~ IIFII", 
Tr[ FOp] = I e j (Fl/lj,l/lj) <--n -, (4.8) 

j=O fl 

where (',.) is the inner product on the Hilbert space under
lyillg the Schr6dinger representatiop and Aj is the eigenvalue 
of H corresponding to I/lj. Because Fis a non-negative opera
tor, all of the terms in the series from (4.8) are non-negative. 
If we take the limit f1 to, then standard arguments show the 
resulting series is convergent and satisfies 

(4.9) 

The last step is to observe that for a non-negative, 
bounded operator to be trass class, it is necessary and suffi
cient that it have a trace relative to some orthonormal basis 
for the underlying Hilbert space. (See Ref. 11, p. 96.) Of 
course, (4.9) shows that F has a finite trace relative to the 
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orthonormal basis of harmonic oscillator states. Hence F is 
trace class. 

The converse follows from Corollary 3.4. • 
Let us now draw off a few simple, useful corollaries. Our 

first corollary concerns a simple observation about the regu
larity of fl-positive-type distributions that are finite at the 
origin. 

Corollary 4.2: If Fis an Ii-positive-type distribution that 
is finite at the origin, then FECo(r') nL 2(r'). 

Proof This is an immediate consequence of Proposition 
2.1 and Theorem 4.1. • 

The next result gives a useful condition that is equiva
lent to an Ii-positive-type distribution being finite at the ori
gin; its proof contains an example of the "o-function se
quence" described in Sec. III. 

Proposition 4.3: Let Fbe an Ii-positive-type distribution. 
Then, F is in L ~ on some neighborhood ff of the origin if 
and only if F is finite at the origin. 

Proof Suppose that F is in L I~c on some neighborhood 
ff of the origin. For k= 1,2,3, ... , let Gk(a) = (4k1T)n 

Xexp( - kaTa) and, for r> 0, let rPr(x) be any 
C ""-function such that O<rPr (x) < 1 and that 

,J. _ {I, if Ixl <r/2; 
'f'r(x) - ° 'f I I ,IX ;>r. 

We now fix rto be so small that {aEr': lal<2r}Cff, and we 
define 

def 

Dk (a) = rPr (Ial )Gk (a). 

Clearly, the D k 's form a sequence of C "" functions supported 
on I a 1< r. It is easy to check that this sequence also satisfies 
the conditions (3.2)(i) and (3.2)(ii). To show that F is 
finite at the origin, we need to show that (3.2) (iii) holds as 
well. To do this, observe that the support of the twisted con
volution D! XDk is contained in the ballial <2r; this is a set 
on which F is in L "", since it is a compact subset of ff. If 
IIF II "",r is the L "" norm for F on this ball, then by Proposi
tion 2.3 and standard estimates 

(F,Dt XDk ) <11F1I"".rIlDl XDk 1I1<11F11"",rIiDk II~ . 
( 4.10) 

Taking the limit superior of both sides in (4,10) and using 
(3,2) (ii), we find 

lim SUPk_"" (F,Dt XDk)<llFlloo,r < 00 , 

and so F is finite at the origin. The converse follows from 
Theorem 3.3. • 

As a help in checking whether an fl-positive-type distri
bution has the form (4.1), both of the equivalent conditions, 
being finite at the origin and being in L I~ of the origin, are 
useful. Finiteness at the origin is appropriate for problems in 
which the fl-positive-type distribution appears in integral 
form, and bounded ness for problems in which it appears as a 
function. 

Combining Proposition 4.3 with Corollary 4,2 yields an
other "regularity" result that is analogous to the one in Cor
ollary 4,2, but with finiteness at the origin replaced by local 
boundedness near the origin. 

Corollary 4.4: If F is an Ii-positive-type distribution that 
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is in L I:: on some neighborhood .AI of the origin, then 
FECo(r') nL 2(r'). 

It is important to note that this corollary states that an 
Ii-positive-type distribution that is locally bounded near the 
origin must be continuous on r' and fall to 0 as lal- 00. It is 
easy to check that there are Ii-positive-type distributions that 
are not locally bounded near a = 0, e.g., the Dirac delta func
tion located at a = O. This raises an important question: Can 
distributions of Ii-positive type be classified according to 
growth at the origin? Indeed, from growth estimates near the 
origin can one tell whether such distributions correspond to 
operators belonging to various classes-compact, bounded, 
Hilbert-Schmidt, and so on? 

V. THE CONNECTION WITH WIGNER FUNCTIONS 

As we mentioned earlier, the functions defined on r', 
the dual of phase space, are related to functions defined on r, 
phase space, by the former being symplectic Fourier trans
forms of the latter. If f(z) and f( a) are symplectic trans
forms of each other, and if) = 1Tw (j), then we may think of) 
as being the operator associated withfvia the Weyl corre
spondence, andf the phase space function that is the pseudo
differential operator symbol of). (See Ref. 12.) Thus the 
Weyl correspondence gives us the following associations 
among the operator product, twisted convolution, and twist
ed product2.12-14: 

(5.1 ) 

In Sec. I, we pointed out that the twisted product of two 
functions in g; does not necessarily remain in g;. However, 
like the twisted convolution, the twisted product of two 
functions in Schwartz space, Y, is still in Y. For that rea
son, and also because both Y and Y' behave nicely with 
regard to Fourier transforms, we will confine our discussion 
of distributions on phase space to the tempered ones-i.e., to 
those in Y'. 

We will say that a tempered distribution fEY' (r) is Ii
positive if, for every gEY, f satisfies 

L f(z)gog(z)dz>O. ( 5.2) 

In addition, we will say that an Ii-positive tempered distribu
tionfisfinite on unity if its symplectic Fourier transform}; 
which is obviously of Ii-positive type, is finite at the origin. 
This is equivalent to requiring that there be a sequence of 
Schwartz functions {Sk (z)} such that 

k- 00 

(ii) Iiskill - 1; (5.3) 

(iii) limsuPk_oo f;SkOSk dz< 00. 

The conditions listed above are precisely the Fourier-trans
formed version of the corresponding ones given in Sec. III; 
we have left the symplectic Fourier transform in place in 
condition (ii) to avoid introducing an additional function 
space. We chose the name "finite on unity" because the se
quence {Sk (z)} tends weakly to 1 as k - 00. Thus, if the limit 
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superior in (5.3)(iii) exists, we can assign a meaning to 
if, 1). Concerning Ii-positive tempered distributions that are 
finite at unity, we have the following analog of Theorem 4.1. 

Theorem 5.1: If/is an Ii-positive tempered distribution 
that is finite on unity, then there exists some gEL 2 for which 

f = gog (5.4) 

holds almost everywhere in r. This g may be chosen to be 
real, or even Ii-positive. Conversely, iff has the form (5.4) 
for some gEL 2, thenfis an Ii-positive tempered distribution 
that is finite on unity. 

Proof The theorem is simply the Fourier-transformed 
version of Theorem 4.1. • 

We now list corollaries similar to the ones following 
Theorem 4.1. The first of these is again a "regularity" result. 

Corollary 5.2: If/is an Ii-positive tempered distribution 
that is finite on unity, then fECo (r) n L 2 ( r). 

Proof This is an immediate consequence of Theorem 5.1 
and the well-known result that phase-space functions of the 
form (5.4) are in the space Co(r)nL 2 (r). (See Ref. 10, 
Theorem 3.5.4.) • 

Our second corollary is one that is pertinent to problems 
in which the Ii-positive tempered distribution is given as a 
function that has known integrability properties. 

Corollary 5.3: Iffis in L 1 (r) and is Ii-positive, thenfis 
fini te on unity; it, therefore, has the form (5.4) and is in 
Co(r)nL 2 (r). 

Proof The symplectic Fourier transform off,}; is obvi
ously of Ii-positive type. Also, since fEL 1 (r), a standard 
theorem from harmonic analysis implies that fEL 00. By 
Theorem 3.3,jis finite at the origin, and, by Theorem 4.1, it 
has the form 

(5.5) 

That f is of the form (5.4) follows on taking the inverse 
symplectic Fourier transform of both sides (5.5). The rest of 
the corollary follows directly from Theorem 5.1 and Corol
lary 5.2. • 

There is no counterpart to Proposition 4.3 in Sec. IV. 
The conditions given in Corollary 5.3 do not constitute a set 
of conditions equivalent to those under which an Ii-positive 
tempered distribution will be finite on unity. Indeed, there 
are certainly Ii-positive tempered distributions that are func
tions which are not in L I(r), but which are of the form 
(5.4). (See Ref. 15, Eq. (2.57) and Ref. 16.) Of course, they 
must still be square-integrable. 13 

For a number of corollaries along the lines of our last 
one, we refer the interested reader to similar results we have 
derived in a recent paper (Ref. 5, Theorem 3.2). In that 
paper, these results were applied to solving a quantum me
chanical moment problem. 

VI. APPLICATIONS 

At the end of the last section, we mentioned that our 
results have already been applied to solve a quantum me
chanical moment problem. There are several other potential 
applications. 

Using our results, it is possible to conclude that tem
pered-distribution solutions to the quantum Liouville equa-
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tion are actually quantum mechanical states, provided only 
that the initial condition was such a state. To give a sketch of 
how this can be done, let us assume that the quantum Liou
ville equation 

a ' i~ = p'oH - Hop' at (6.1 ) 

generates a flow that maps Y and Y' into themselves. It is 
known 14 that, under fairly mild assumptions on the Hamil
tonian H, the quantum Liouville equation will preserve the 
twisted product in the sense that, for J,gEY, if, under the 
flow,J-P andg-->g', thenfog-pog'. Pick a sequence {Sk} 
satisfying (5.3) and use the quantum Liouville equation to 
evolve it backwards in time to the sequence {Sk- '}. It is easy 
to show that if the initial condition po is a quantum mechani
cal state, then this inequality holds: 

(6.2) 

Evolving the initial state and the sequence {s; '} for a time t 
turns (6.2) into 

D";(P',SkoSk)..;Cllskll~. (6.3) 

Because the first member of the sequence can be an arbitrary 
function in Y, the inequality (6.3) implies that p' is Ii-posi
tive. In addition, 

IISk II~ = s1 XSk (D)..; IISk IIi - 1, 

so from (6.3), we also have that 

lim SUPk_oO (P',SkoSk)";C < 00. 

Hence, p' is also finite on unity. By Theorem 5.1, it has the 
form (5.4) and is, therefore, a (possibly unnormalized) 
quantum mechanical state. With a bit more work, one can 
also show that the state is in fact properly normalized. (See 
Ref. 14) 

Several questions arise in connection with this example. 
These involve the quantum Liouville equation, but in a finite 
domain with boundary conditions of one sort or another ap
plied. What we have in mind is what one does if one wants to 
numerically solve the quantum Liouville equation. Such nu
merical solutions have recently become of interest in model
ing quantum devices. 17.18 Of course, this has to be done on a 
bounded domain, and so boundary conditions that do not 
create artificial reflections must be applied (cf. Refs. 19 and 
2D). Is it possible to find boundary conditions that will allow 
the restriction of a Wigner function to a finite domain to 
evolve, via the quantum Liouville equation subject to bound
ary conditions, into the restriction of a Wigner function? In 
particular, do the boundary conditions derived by Ringhofer 
et al. 19 allow for this? More generally, is there a way of 
determining whether or not a function that is defined on 
some bounded domain in phase space is the restriction of a 
Wigner function? 

Although our principal interest is in applications to 
quantum physics, this is not the only possible area in which 
our results may be applied. It should certainly be possible to 
use our results to determine when a time-frequency function 
is the Wigner distribution for an acoustical signal,21 for ex
ample. Other possible applications are to answering similar 
questions about Wigner functions arising in connection with 
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the SchrOdinger-like wave equations that are used in the 
"parabolic" approximation to the Helmholtz equation. 22 

A specifically nonquantum mechanical application 
arises in signal theory. (See Chap. 8 of Schempp's book 23 for 
a brief introduction.) The Wigner function corresponding to 
a signalJ, with f R If(t) 12 dt = 1, is defined 23 as 

def r ( t\r( t) 
P(f;z) = J

R 
f q + 2' y q - 2' e2iTTP

' dt . (6.4 ) 

This is the analog of the Wigner function for a quantum 
mechanical state described by a wave function J, provided 
one takes Ii = l/rr. One then defines the ambiguity function 
H(f; .) as P(f; '). A straightforward calculation then im
plies that 

H(f;a) = If(q+ 4:)r(q- 4:)e iQV dq. (6.5) 

Schempp (Ref. 23, Theorem 8.8) uses group-theoretical 
methods to solve the radar synthesis problem: Find the image 
of the mapfi-H(f; .), whenfis allowed to vary over all of 
Y (R). What he shows is that the image of this map consists 
precisely of all functions F(a)EY (r'), which are ofli-posi
tive type and which are extremals in the convex set of all Ii
positive type functions that are 1 at a = D. [Here, of course, 
we take Ii = lIrr. Also, it should be noted that our ambiguity 
function differs from Schempp'S; the two are related by a 
scaling of the argument a = (u,v).] 

It is natural to ask what happens to the ambiguity func
tion if nonsmooth fare allowed. Instead of approaching this 
question by specifying a class to whichfbelongs (i.e., speci
fying the domain of H), we simply start by looking at candi
dates for the image of H. If F( a) is a distribution correspond
ing to some f via F( a) = H (f;a), then it is reasonable to 
assume that Fbe of Ii-positive type. If, in addition, Fis finite 
at the origin, then Theorem 4. I implies that F = G t X G for 
some GEL 2(r'). 

Which of these F are ambiguity functions for some f? 
SinceFis continuous (Corollary 4.2), any F that is an ambi
guity function must satisfy 

F(D) = H(f;D) = l lf(q) 12 dq = 1. (6.6) 

Thus the correspondingfmust be square integrable. Using 
the SchrOdinger representation, we can uniquely associate 
the non-negative trace-class operator F = rr w (F) with F. 
From (6.6), (4.2), and the fact that 1. the identity 0l2erator, 
corresponds to 2rro(a), one can easily show that Tr[F] = rr. 
Set p = F /rr, so that Tr [p] = I, making p a "density ma
trix." We now appeal to the well-known connections among 
Wigner functions, density matrices, pure states, and wave 
functions to conclude that F( . ) = H (f; .) if and only if the 
operator p is a rank 1 orthogonal projection. 

Such a non-negative trace-class operator is easily char
acterized as having unit trace and satisfying the identity 
p = p2. This, in turn, translates intoF = (1!rr)F XF for the 
Ii-positive-type distribution F. 

It is interesting to note that we can characterize all func
tions Fsuch that F( .) = H(f; .) via three simple conditions: 
(i) F(D) = 1; (ii) Ft = F; and (iii) F = (1!rr)F XF. The 
second and third conditions force F to be of Ii-positive type, 
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and the first and third force the corresponding density ma
trix p to be a pure state-which guarantees that Fbe of the 
required form, with lEI, 2. If F is in .Y, then, because the 
twisted product of two functions in .Y is still in .Y, we get 
back Schempp's result (Ref. 23, Theorem 8.8). 
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Bound states in curved quantum waveguides 
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A free quantum particle living on a curved planar strip n of a fixed width d with Dirichlet 
boundary conditions is studied. It can serve as a model for electrons in thin films on a cylinder
type substrate, or in a curved quantum wire. Assuming that the boundary of n is infinitely 
smooth and its curvature decays fast enough at infinity, it is proved that a bound state with 
energy below the first transversal mode exists for all sufficiently small d. A lower bound on the 
critical width is obtained using the Birman-Schwinger technique. 

I. INTRODUCTION 

During the early days of quantum mechanics, descrip
tions of a particle motion confined to a fixed subset of config
uration space were the most useful textbook illustrations. 
The situation has changed substantially with the advance of 
thin-film physics and microelectronics. Today there are 
many possibilities of how to construct metallic or semicon
ductor structures, in which the electron motion is essentially 
two-dimensional as in the thin films, or one-dimensional as 
in the so-called quantum wires, I and free or quasifree. 2 

From this point of view, studies of a quantum particle 
motion in a layer or a tube with some boundary conditions 
(and more complicated sets: branching tubes, sandwiched 
layers, etc.) are of a great physical interest. Recall that anal
ogous problems have been studied extensively in other fields, 
particularly in radar physics and acoustics. Some results 
concerning stationary scattering problems are easily trans
lated from here to the situations, when one is interested in 
the Schrodinger equation instead of the wave equation. On 
the other hand, there are effects which have no counterpart 
in classical waveguides. In the present paper, we are going to 
study one of them. 

We shall be interested in a free quantum motion on a 
curved planar strip with a Dirichlet boundary.3 Such a sys
tem can be viewed as a model of two physical situations: a 
thin film on a substrate of an open-cylinder form (so the 
third dimension may be separated) or a curved quantum 
wire on a planar substrate (where the "vertical" dimension 
is separated). The method employed in this paper extends 
easily to more general cases of an arbitrary curved layer or 
tube4 in JR3; we are going to discuss it in a separate publica
tion. 

There is one more motivation for our study. The motion 
on a thin strip can be modeled by motion on a curve. In this 
case one must ask, of course, how this one-dimensional dy
namics will be influenced by the curvature of the prescribed 
"path." Several authorsS

-
s found independently that the 

problem was formally equivalent to the motion on a straight 
line under the influence of a potential which is nonpositive 

a) On leave of absence fro~ Nuclear Physics Institute, Czechoslovak Acad
emy of Sciences, 25068 Rez near Prague, Czechoslovakia. 

b) On leave of absence from Nuclear Centre, Charles University, V. Holdo
vickach 2, 18000 Prague, Czechoslovakia. 

and proportional to the squared curvature; this implied that 
bound states may exist on such a curve.9 The method was the 
same in all cases, starting with a strip of a finite width and 
limiting the latter to zero. The trouble is that the procedure 
was performed on a purely formal level, with subtraction of 
infinite quantities representing the transversal-mode ener
gies in the limit. Moreover, it is not clear, what happens with 
the bound states for a small but finite width of the strip. 

Our aim here is to discuss this problem on a rigorous 
level. We assume that the strip has an infinitely smooth 
boundary and its curvature decays rapidly enough at infin
ity, roughly speaking as Isl- 3/2 - E, where s is the natural 
longitudinal coordinate on the strip. Both these assumptions 
may be weakened, but not too much. It can be seen easily 
that the present method works for a C 4 boundary. On the 
other hand, we will give examples suggesting that the results 
might not be valid for the "bookcover" strip whose bound
ary is C I only. 

As for the decay restriction imposed on the curvature, 
our main result (Theorem 4.1) is derived under a weaker 
assumption, roughly speaking the Isl- I - E decay. The 
above-mentioned hypothesis is needed for proof of the finer 
estimate presented in Sec. V, but it might be weakened with 
some additional effort. On the other hand, the character of 
spectrum could be completely different if we relax the decay 
restriction at all. A particularly interesting case is represent
ed by a periodic strip which we comment on briefly in the 
conclusions. 

Let us finally review the contents of this paper. In the 
next section, we describe the problem. Motivated by the 
above physical considerations, we use the term quantum 
waveguide to describe free motion of a Schrodinger particle 
on a strip. We collect there also some assumptions which will 
be used further on. In Sec. III, we reformulate our problem 
using the natural curvilinear coordinates to investigate a uni
tarily equivalent operator of a more complicated structure 
which acts, however, on a straight strip. Estimating this op
erator and using the minimax principle, we find that for a 
sufficiently small width of the strip there is at least one 
bound state below the first transversal-mode energy. We ob
tain also an estimate of the critical width, but a relatively 
poor one. In Sec. V, we improve it using the Birman
Schwinger technique. Some examples are presented; in con
clusion we mention the physical relevance of the results. 
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II. QUANTUM WAVEGUIDES 

In order to describe a quantum particle whose motion is 
confined to a region 0 of the configuration space, one has to 
specify its interaction with the boundary. Here we assume 
infinitely hard walls, i.e., we choose the Hamiltonian to be 

Hn = (fr12m)a o , (2.1) 

where m is the (effective) mass and aD is Dirichlet Lapla
cian on L 2(0), i.e., the Friedrichs extension of the map 
I/Jt--+aif! defined on CO' (0).10 

As we have said, 0 is assumed to be a curved planar strip 
of a width d (Fig. 1). Its points are described by the curvilin
ear coordinates s,u as follows: 

x=a(s) -ub'(s), 

y = b(s) + ua'(s), 
(2.2) 

where a,b are smooth functions that characterize the refer
ence curve r = {(a(s),b(s»): sEJR}. We assume 

a'(s)2 + b '(S)2 = 1, (2.3) 

so s is the arc length of r, while u means the distance of the 
point (x,y) from r. It is useful to introduce the signed curva
ture y(s) of r, 

y(s) =b'(s)a"(s) -a'(s)b"(s), (2.4) 

named so because Iy(s) I represents curvature of the refer
ence curve at s. It is easy to see that 
Iy(s) I = (a" (S)2 + b" (S»)I12. More generally, 

c(s,u) = Iy(s) I (2.5) 
11 + uy(s) I 

is the curvature of the fixed u curve at the point (s,u), so the 
strip width d must be restricted by the requirement 

dyes) > - 1. (2.6) 

In fact, it is sufficient to know the function y only, since 
a,b can be reconstructed from the relations 

a(s) = a(so) + E cos (E' Y(S2)dS2)dS1, 

b(s) = b(so) + f sin (f' y(S2)dS2)dS1; 

~) So 

(2.7) 

the correspondence is unique up to Euclidean transforma
tions of the plane. In what follows, we shall therefore charac
terize 0 by the function yand the width d. 

For obvious reasons, 0 will be called quantum wave
guide, or briefly Q-guide. Let us collect the hypotheses that 
will be used in the following considerations. 

y 

x 

FIG. J. A curved quantum waveguide. 
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Assumption 2.1: (a) 0 has an infinitely smooth bound
ary, i.e., yEC"'(R); (b) the functions y, y', and y" are 
bounded; (c) as a strengthening of (2.6), we assume exis
tence of y _E( - d -1,0] such that y(s) >y _ for all SElR. In 
the present paper, we restrict out attention to the Q-guides 
which are curved substantially only within a bounded re
gion. The requirements on the decay of y at infinity may be 
formulated, e.g., as follows: (d) the functions f and y" be
long toL (JR, (1 + s)ds); (e) the functions yand y' belong to 
L 2(JR, (1 + s2)ds); (0 yEL(JR). As an additional assump
tion, we shall be concerned only with the nontrivial case of 
curved Q-guides, i.e., such that y(s) is nonzero for some s. 

A Q-guide is called simply bent if y does not change sign 
in JR. Without loss of generality, we may consider y(s) >0 for 
all sEJR, the case of a non positive y being reduced to the 
present one by taking the other boundary as the reference 
curve. If y is sign-changing, we say 0 is multiply bent. It is 
clear that f~: y(s)ds is the angle between the tangent vectors 
to r at the points s I and S2' Hence the assumption (0 gives us 
the possibility to define the overall bending 

P(y) = iY(S)dS (2.8) 

of O. Notice that P( y) may exist even if r has no asymp
totes. If it has, we say that 0 is asymptotically straight; it is 
true, e.g., if y(s) = D( Isl- 2 - E) as lsi- 00. 

The curvilinear coordinatess,u are locally orthogonal so 
the metrics in 0 are expressed with respect to them through 
a diagonal metric tensor, dx2 + dy2 = gss ds2 + guu du2. 
One finds easily 

gss=g=g(s,u) = (I + uy(S»)2, 

guu = 1. 

We shall also need the Jacobian 

a(x,y) = I + uy(s) = g1/2, 
a(s,u) 

(2.9a) 

(2.9b) 

(2.10) 

which shows that the transition to the curvilinear coordi
nates represents an isometric map of L 2 (0) to 
L 2(JRX [0,d],gI/2 ds du). 

III. THE HAMILTONIAN 

Let us return now to the operator (2.1 ). Our aim in this 
section is to prove the following assertion: 

Theorem 3.1: Assume (a). ThenHn is unitarily equiva
lent to Friedrichs extension H of the operator Ho defined on 
L2(JRX [O,d]) by 

li2 a _ I aif! a 2if! 
Hoif! = - 2m as g & + au2 + V(s,u)if!, (3.la) 

with the domain D(Ho) = CO' (JR X [O,d ]), where 

V(s,u) =.!£..(~g-3/2 a2Ji _.2.-g_2(a.jg)2 
2m 2 a~ 4 as 

(3.lb) 

The Friedrichs extension contains the set 
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D = {t/!: t/! is Coo, t/!(s,o) = t/!(s,d) = ° 
for all sER, Ht/JEL 2} (3.2) 

in its domain and acts on ¢ED according to (3.1). 
Proof Translating the action of H n on CO' (0) into cur

vilinear coordinates, one should replace Laplacian by the 
Laplace-Beltrami operator relative to the given metric ten
sor (gij)' 

H .1, fl2 -1/2 a 112 ijat/! 
n'f'= --g -.g g -" 

2m as' as} 

where Sl = S, S2 = u, and furthermore, g = det(gij) 
= 1 + uy(s), which justifies the notation (2.9a). Since 
(gij) = diag(g-I,O), we have 

fl2 ( _ 1/2 a _ 1/2 at/! 
--g -g -

2m as as 

+ -1/2 a 1/2 at/!) g Tug Tu' (3.3 ) 

where t/! belongs to the subset CO' (R X [O,d]) of 
L 2(RX [O,d],gI/2 dsdu). Alternately, the relation (3.3) 
can be checked by a straightforward differentiation. In order 
to get an operator on L 2 (R X [O,d] ), one has to pass from t/! 
to g-1/4t/!. The sought unitary operator U: 
L 2(0) -L 2(R X [O,d] ) is therefore given by 

(Ut/!)(s,u) = gI/4t/!(X,y), (3.4 ) 

where the points (x,y) and (s,u) are related by (2.2); 
it is important that U maps CO' (0) onto CO' (R X [O,d ]). 

Let us show that H = UHn U -I. First we define the 
quadraticform qoon CO' (R X [O,d]) xC 0' (RX [O,d]) by 

qo(rp,t/!) = ~ f (g-I arp at/! 
2mJRxIO,dJ as as 

+ aarp at/! + V(S,U)'iPt/!)dSdU. (3.5) 
u au 

It is not difficult to see that the form qo is associated with the 
operator H o, i.e., that 

qo(rp,t/!) = (rp,Hot/!) = (rp,UHn U-It/!) (3.6) 

holds for all rp,t/lEC 0' (RX [O,d]). Using (3.5), we get a re
lation between the form qo and the closed symmetric form qn 
associated with Hn , namely, 

(3.7) 

for all rp,t/lEC 0' (RX [O,d]), where qn is the standard Dir
ichlet form 10 on 0. In order to get Friedrichs extension of the 
operator H o, we have to close the form qo; then H is the self

adjoint operator associated with qo by the first representa
tion theorem. II It follows immediately from (3.7) that 
D( qo) = U-ID(qn) and 

qo(rp,t/!) =qn(U-lrp,U-It/!) (3.8) 

for rp,¢ED( qo)' The relation H = UHn U -I is then a sim
ple consequence of (3.8) and the first representation 
theorem. It remains to prove the relation DCD(H), which 
follows from the established unitary equivalence together 
with the inclusion 

2576 J. Math. Phys., Vol. 30, No. 11 , November 1989 

Dn =(fEL 2(0): fEC 00 (0) and f = ° on aO}CD(H), 

which can be checked using an argument similar to Ref. 10, 
Proposition 1. • 

We notice also the scaling property of the Hamiltonian. 
Consider the rescaled strip O€ of width Ed and the reference 
curve corresponding to the signed curvature y€: 
y€(s) =E-ly(sIE), and denote by H€ the corresponding 
Hamiltonian. Then a simple calculation yields the following 
proposition. 

Proposition 3.2: H€ is unitarily equivalent to E- 2H. 
Before proceeding further, let us express the potential (3.1 b) 
in terms of the signed curvature. Substituting from (2. 9a), 
we get 

V(s,u) = ~{_ r + uy" 
2m 4(1 + uy)2 2(1 + uy)3 

5 U
2
y'2 } 

4 (1 + uy)4 . 
(3.9) 

IV. EXISTENCE OF BOUND STATES 

It may not be easy to find the bound states of H directly 
by solving the partial differential equation Ht/! = Et/!. How
ever, H is bounded from below so one may employ the mini
max principle. 12 It is sufficient to find a suitable self-adjoint 
operator H + such that H <,H + in the form sense on a com
mon core; then the relation Ek <,E i +) holds between the 
eigenvalues of Hand H + arranged in the growing order with 
respect to multiplicity, and Eoo <,E~+) between the lower 
edges of the essential spectrum. In particular, if E 00 = E ~ + ) 

and H + has an eigenvalue below E 00 , the same is true for H. 
Theorem 4.1: Let 0 be a curved Q-guide fulfilling the 

assumptions (a)-(d). Then 
(i) O'ess (H) = [Eoo' 00), whereE = fl2~/2md 2 anddis 

the width of the strip; 
(ii) there is a positive do such that for each d < do, H has 

at least one bound state in [O,E 00 ). 

Proof Consider the operators 

( 4.1a) 

with 

D(H s±) = {f:fEC 00 (R), H s± fEL 2}, ( 4.1b) 

where y + = sup y(s) and y _ = inf y(s) [both are finite 

according to (b) and (c) ] and V ± (;) are suitable upper and 
lower bounds to the potential (3.9), and furthermore 

H= u (4.2a) 

with 

D(Hu) =Du = {g: gEC 00 [O,d], g(O) = g(d) = o}. (4.2b) 

In view of (b), the potentials V + can be chosen to be bound-
ed so H s± are e.s.a. on -

(4.1c) 
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Then the operators 

H ± =Hs± ®I +I®Hu (4.3a) 

are e.s.a. on Ds ®Du' Since this domain is easily seen to be 
contained in D, it represents a common form core for Hand 
H±, and 

(4.3b) 

holds for all t/JEDs ® Du according to construction. Hence 
the minimax principle may be applied. 

Let us now specify the potentials V ± . We choose 

V + (s) = !f.....{ _ y(S)2 
2m 4(1+dy+)2 

+ dy',+- (s) } 
2(1 + dy _)3 ' 

( 4.4a) 

fz2{ y(S)2 dly"(s)1 V (s) = - - - _...l..!---'-''-'--
- 2m 4(l+dy_)2 2(l+dy_)3 

_ ~ d 2y'(S)2 } 
4 (1 + dy_)4 ' 

(4.4b) 

where y',+- is the positive part of y" and y + have been de
fined above. According to (d), the function~ rand y',+- are 
integrable, and since they are bounded due to (b), they be
long to L 2. Furthermore, the integrability of y" implies 
y' (s) ..... O ass ..... ± 00. Since yand y" are square-integrable, a 
simple integration by parts shows that y' is again square
integrable. It means that the functions V ± belong to L 2, and 
consequently,13 the essential spectrum of the operators H s± 
equals [0,00). On the other hand, the spectrum of H u is 
purely discrete and equal to {fz21f2k 2/2md 2: k = 1,2, ... }. 

The spectrum of the operators (4.3a) is then 14 none oth
er than the "sum" of the spectra of H s± and Hu' In particu
lar, the essential spectrum of both the operators H ± has its 
bottom at E = fz21f2 /2md 2, and the same is, of course, true 
for (Tess (H). This proves the assertion (i). Moreover, it is 
clear that H + has an eigenvalue below E 00 iff the operator 
H.+ has a negative eigenvalue. Since V + fulfills the decay 
condition 

iV+(S)(l + IsJ)ds< 00 

according to (d), such an eigenvalue exists iff15 

iV+(S)dS<O. (4.5a) 

Obviously, this is true for small enough d. • 
The proof not only establishes existence of the critical 

width do, but allows us also to estimate it from below. For 
simplicity, we restrict ourselves to the case of a simply bent 
Q-guide. Then y _ = 0 so the condition (4.5a) yields 

~'y',+-(s)ds< 1 'y(s)2ds. (4.5b) 
2 JR 4(1 + dy +)2 JR 

Solving the resulting cubic equation for d, we arrive at the 
following proposition. 

Proposition 4.2: For a simply bent Q-guide fulfilling 
(a)-(d), the critical width do obeys 

do;;.d+=(2/3y+){chHln(z+J?"=T»)-l}, (4.6a) 
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where 

Z= 1 + 2; y+(iy ''+- dS)-li fdS. (4.6b) 

As an illustration we evaluate d + for a few cases listed 
below. To obtain comparable results, we choose all of them 
in such a way that the maximal curvature is y + = a/ p and 
the overall bending /3 = 1Ta. 

Example 4.3: (i) y(s) = ap/(p2 + ~), which is 
not asymptotically straight; (ii) Gaussian curvature, 
y( s) = (a/ p ) exp ( - ~ / 1Tp2 ); (iii) a generalization of 
the previous case, y(s) = (a/p)exp( - f-L~n) with 
f-L = (r( l/2n)/1Tpn)2n. 

The ratio ad +/ p of the estimated critical width to the 
minimal curvature radius is plotted on Fig. 2. In case (iii), 
the estimate is getting worse with growing n. Recall that our 
method requires the boundary of n to be smooth enough, 
otherwise problems with the domains will appear when us
ing the unitary transformation (3A). The curves (iii) ap
proach with growing n the "bookcover" cases 

{
a/ p' . 'Isl ~!1Tp, 

y(s) = 
O' . 'Isl > !1Tp, 

(4.7) 

where the boundary is only C I. Hence the behavior of the 
estimate is interesting; it may suggest that the lack of 
smoothness is more than a mathematical nuisance here. For 
a nonsmooth y, the potential (3.9) contains contact-interac
tion terms supported by the discontinuity points of g, and 
this contact interaction might prevent existence of a bound 
state. 

Remark 4.4: In the first two cases we have plotted the 
ratio ad+/p also for the overall bending /3> 1T which is, 
strictly speaking, not possible under our assumptions. As 
mentioned in the Introduction, coiled quantum wires should 
be modeled by a curved tube in the three-dimensional space. 
If the coil is nearly planar, however, one may describe it 
approximately in the present formalism, with R2 replaced by 
a multisheeted Riemannian surface. The above consider
ations translate to this situation immediately and the results 
then make sense for an arbitrary /3. 
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FIG. 2. The estimate (4.6). 
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V. ANOTHER BOUND ON THE CRITICAL WIDTH 

From the viewpoint of existence, Theorem 4.1 solves the 
problem posed in the Introduction. The bound (4.6) is rela
tively poor, however, since we have obtained it estimating H 
roughly by the operator (4.3a). In the present section, we 
are going to derive a better bound under slightly stronger 
assumptions about the decay of r at infinity. We employ the 
Birman-Schwinger technique, which has yielded already 
the condition (4.Sa). First we derive a useful technical result 
concerning the operator 

(S.1 ) 

on L 2(R) ®L 2(O,d), where LlD is the Dirichlet Laplacian. 
Lemma 5.1: Suppose that V: RX [O,d] -R is bounded 

and measurable, and such that 

( (1 +x2)V(x,y)dxdy< 00. 

JlRX [O,d ) 

Then H). with A> 0 has at least one bound state E(A) below 
the bottom of essential spectrum, E(A) < (1Tld)2, iff 

Lid V(X,y)Sin2(:;)dxdy <O. ( S,2a) 

Moreover, 

E(A) = ; - ~: (L i d 

V(X,y)Sin
2
(:; )dX dy r 

+ O(A 3) (S.2b) 

holds for small A. 
Proof According to the Birman-Schwinger princi

ple, 15, 16 E(A) is a bound state of H). iff the operator AKa has 
the eigenvalue - 1 for a 2 = E(A), Here Ka is the integral 
operator with the kernel 

Ka (x,y;x',y') 

= 1 V(x,y) 11/2Ro(a;x,y;x',y') V(x',y') 1/2, 

where Ro(a;',',) is the kernel of Ro(a) = ( - LlD - a 2)-1 
and VIi2: = 1 VI I/2 sgn V. To express the resolvent Ro(a), 
we employ the orthogonal decomposition 

L2(R) ®L 2(O,d) = Ell L 2 (R) ®{Xn} 
n=1 

with 

Xn(y) =$-sin(:n y). 

One can check easily that - LlD is e.s.a. on 

D = {if: ¢,(x,y) 

N 

= Iin (x)Xn (y), InECo(R)} 
n=l 

and that 
N 

-LlD ¢'= I (-/~+x;Jn)Xn 
n=1 

holds for all ¢ED, where 

Xn = 1Tnld 

( S,3a) 

(S.3b) 

(S.4a) 

and x~ is the nth transversal mode energy, Hence 
- LlD I D is reduced by the projections P" to the subs paces 
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L 2 (R) ® {X n}' and the same is true for its closure. We come 
to the following conclusion: the operator - LlD is expressed 
as the orthogonal sum 

- LlD = ; Pn [( - d: + x~) ®I ]Pn (S.4b) 
n~ I dx 

00 

= {if: ¢,(x,y) = I In (x)Xn (y), in EAC2 (R), 
n~1 

00 

X I IlfnI12
<00}. ( S.4c) 

n=1 

The resolvent is then also reduced, PnRo(a) = Ro(a)Pn, 
and its kernel is given by 

00 

Ro(a;x,y;x',y') = I Xn (y)r" (a;x,x')x" (y'), (S,Sa) 
n=l 

where r" (a;', . ) is the kernel of ( - d 21 dx2 + X~ _ a 2) - I. 

We are interested in the energies EE [O,x~ ), i.e" in the case 
when aE [o,x I ), The operators r" (a) are then bounded for 
n = 1,2, ... since x~ >x~ > a 2

, and their kernels are well 
known. It yields 

Ro(a;x,y;x',y') 

_ ~ exp [ - k" (a) I x - x'i ] , 
- n~IXn(Y) 2k,,(a) X,,(y), (S.Sb) 

where 

k" (a) = ~x~ - a 2
• (S.Sc) 

Next we divide the kernel (S,Sb) into two parts, one of them 
being regular as a approaches XI' and the other singular. 
Returning to the original operator X a , we can write it as 

Ka =Ma +La' ( S.6a) 

where the two operators are given by the kernels 

Ma (x,y;x',y') 

1 1

1/2 ~ exp[ -k,,(a)lx-x'l] 
= V(x,y) L Xn (y) --"...--2-k--'-----'--"-

n~2 n(a) 

and 

XXn (y') V(x',y') 1/2 + I V(X,y) I Ii2XI (y) 

Xexp-1[ -kl(a)lx-x'l] 

2kl (a) 

XXI(y') V(x',y') 1/2 

La (x,y;x',y') = [1!2k l (a)] lV(x,y) 11/2 

XXI (y)XI (y') V(x',y') 1/2. 

(S.6b) 

(S.6c) 

The first part of the operator Ma can be written as 
1V11/2AaV1/2. The operators 1VI I/2 and V I/2 arebounded 
by assumption, and furthermore, Aa is the orthogonal sum 
ofthe operators whose norms are (x~ - a 2

) -I. Hence 

IIAa IIsup{lx~ - a 21- 1
': n = 2,3, ... } 

= (x~ - a 2
)-1 <d 2/3r, 

and the norm is bounded uniformly with respect to a. Let us 
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denote the remaining part of Ma for a moment as Ba. We 
have 

I(BatP)(x,Y)I'~IV(x,Y)11/2 r Ix-x'llV(x',y')11/2 
2 JRX(O.d) 

X ItP(x',y') Idx' dy' 

'~IV(x,y) 11/211tPll( r Ix - x'1 2 
2 URX(O.d) 

X I V(x',y') Idx' dy}/2 

so 

IIBatPI12'~lltPI12 r dx dylV(x,y) I 
4 JRX(O,d) 

X r Ix - x'1 2 1V(x',y') Idx' dy'. 
JRX(O.d) 

Using the inequality Ix - x'1 2, (1 + x 2) (1 + X,2), we find 

IIBatPlI'~lltPll r (1+x2 )IV(x,y)ldx,dy, 
2 JIRX(O.d) 

where the integral is finite by assumption. It means that 
liMa II may be estimated by a constant independent of a. 
Furthermore, La is a well-defined rank-one operator, be
cause V is integrable due to the assumption, and therefore 
the functions I V II/ZX I and V IIZX I belong to L Z (R X [O,d] ). 

For a fixed aE [O,x I) and each sufficiently small A> 0, 
we have llAMa II < 1 so 

(1 +AKa)-1 = [1 +..1(1 +AMa)-ILa]-1 

x(1 +AMa)-1 

and AKa has the eigenvalue - 1 iff the same is true for 
..1(1 + AMa) -ILa. This operator, however, is of rank one, 
so it has just one nonzero eigenvalue which we denote 
as t(A); the corresponding eigenvector is 
rp: = (1 + AMa )-11V1 1IZXI' Using the explicit form of La' 
we find easily 

teA) = A r V(x,y) 1IZXI (y) 
2k l (a) JRX(O,d) 

X[(1 +AMa )-11V1 1/2xd(x,y)dxdy. (5.7) 

We are interested in the behavior of t(A) forsmallA. It holds 
(1 + AMa ) -I = 1 - AM a (1 + AMa ) - 1 and 

If V 11 2X lAMa (1 + AMa) -IIVI IIZxl dx dyl 

,A II V1IZxI I1 2 11M a (1 +AMa)-111 

so 

teA) = [A 12kl (a)][A + 0(..1)], 

where 

A = r VX~ dx dy. 
JRX(O.d] 

( 5.8a) 

(5.8b) 

As mentioned above, a bound state corresponds to 
teA) = - 1, i.e., kl (a) = - ytA + 0(..1 z); it exists for 
small enough A iff kl (a) > 0, i.e., A < 0. The corresponding 
energy is E(A) = x~ - kl(af; substituting for kl(a), we 
arrive at the formula (5.2b). • 
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Now we are ready to prove the following theorem. 
Theorem 5.2: Let fl be a curved Q-guide fulfilling the 

assumptions (a)-(e). Then a bound state EE[O,Eoo) exists 
if 

1 [ y(s)z UZY'(S)2] 
- 2 + 4 

Rx[O,d] (1 + uy(s») (1 + uy(s») 

XSin2
(;) ds du <0, (5.9) 

Proof As in Theorem 4.1, we estimate H from above, 
now by the e.s.a. operator 

fz2( 1 d Z d Z) H+ = -- +- + V(s,u) 
2m (1 + dy _ ) 2 dsZ duz (5.10) 

defined on Ds ® D u' The potential V fulfills the required as
sumptions under (a)-(e), so Lemma 5.1 may be applied. 
Furthermore, y(s) ---> ° as Isl---> 00, so the part containing the 
second derivative may be integrated by parts in s; it yields the 
condition (5.9). • 

As an illustration, let us return to the particular case 
treated in Proposition 4.2. 

Corollary 5.3: For a simply bent Q-guide fulfilling (a)
(e), the critical width obeys 

do>d+:= (1/2y +)(~ 1 + 4y +~ - 1), 

where 

z = (L y2 dS) - 1 L f ds. 

( 5.lla) 

(5.llb) 

Proof Denoting the integral of the square bracket in 
(5.9) over s as leu), we can write the condition as 

i d 

leu) sin
2 
(; )dU <0. 

Since 1(') is a smooth function, 1(0) = - SIR f ds < 0, it is 
sufficient to find d + such that l( u) ,0 for UE [O,d + ]. For a 
simply bent fl, we have 

l(u), - 1 Z r fds+ u2 r y,2ds; 
(1 + uy +) JIR JR 

it yields an equation for d + which is solved by (5.11). • 
Example 5.4: (i)-(iii) The same as in Examples 4.3, 

(iv) y(s) = 16ap3(s2 + 4pZ) -2. More generally, the curves: 
y(s) = (alp) (/lp)2n(s2 + f.lzpz) - n approach the Gaussian 
curve as n ---> 00; we plot the results for n = 1,2 only. 

The critical ratio ad+lp in dependence on the overall 
bending is shown on Fig. 3. As in the previous section, we 
observe how the estimate spoils when y changes steeply in 
some region. 

VI. CONCLUSIONS 

The most important question is whether the results are 
actually physically interesting. In order to observe bound 
states of this type, one must be able to fabricate sufficiently 
small curved Q-guides, because 

(i) the size of the curved part must be small enough so 
that the free-particle model is applicable, 

(ii) according to our results, the Q-guide thickness must 
be smaller than some critical value, 
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05 

FIG. 3. The estimate (5.11). 

(iii) except for that, the device must be sufficiently 
small to make the energy gap between the bound state and 
the bottom of the essential spectrum measurable (cf. Propo
sition 3.2). 

The first requirement means2 that the size must be 
:S 103 A, which is achievable with today's technologies. The 
characteristic thickness of thin films or quantum wires is of 
the order of 102 A, and therefore our examples suggest that 
such bound states may exist. The requirement (iii) will also 
be fulfilled if the gap is not substantially smaller than the first 
transversal-mode energy itself; recall that the transversal
mode energy intervals in thin semiconductor films are actu
ally measured l7 being of the order of (10- 2-10- 1

) eV. 
It would certainly be useful to know the values of 

bound-state energies. For a rectangular Q-guide, this prob
lem will be solved by another method in a separate publica
tion. 18 In a general case, one might try to find at least the 
threshold behavior of the bound states. For a Q-guide with a 
smooth boundary and the thickness slightly less than criti
cal, a natural guess is motivated by the formula (5.2b) 

E- fz2,,? {I - [(21T)-1 i ( r 
-2md 2 

Rx[O.d] (1 + uy)2 

_ y,2 4) sin2(1Tu)dSdu]2}. 
(1 + uy) d 

(6.1 ) 

We have no estimates, however, for the remainder term in 
such an expansion; the standard coupling-constant-thresh
old arguments do not work here, because the potential is not 
linear with respect to (d - do). 

Our last remark concerns the case of periodically curved 
Q-guides which is physically very interesting; it can model, 
e.g., a thin film over a periodically scratched substrate. Moti-
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vated by the above considerations, we formulate the follow
ing conjecture. 

Conjecture 6.1: Let n be a planar Q-guide fulfilling the 
assumptions (a)-(c). The spectrum of H is absolutely con
tinuous; for all sufficiently small d it contains at 1east one 
band below the first transversal-mode energy. 

Let us mention that similar effects are known in the 
classical waveguide theory too l9

; in the quantum case, how
ever, such a band should exist even if the waveguide cross 
section remains constant. 

Note added in proof: We have learned recently that ef
forts similar to those described in this paper were experimen
tally meausred. 20 
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Different methods of avoiding the known difficulties of the Coulomb potential scattering 
theory are reviewed. Mulherin and Zinnes' [J. Math. Phys. 11, 1402 (1976)] "distorted" free 
waves and van Haeringen's [J. Math. Phys. 17,995 (1976)] Coulomb asymptotic states are 
considered. The equivalence of both approaches on the energy shell is shown. Actually the 
possibility of deriving the first method within van Haeringen's formalism by means of a 
distorted wave procedure is demonstrated. 

I. INTRODUCTION 

The scattering theory of charged particles does not fit 
into formal scattering theory.) Even the simplest case of two 
structureless particles that interact via a Coulomb potential 
V( r) = air is exceptional in many different ways: Although 
the Schrodinger equation can be solved explicitly for this 
system, and a cross section extracted using a time indepen
dent analysis, there are important difficulties that stem from 
the infinite range of the potential in a conventional time
dependent approach and in the Lippman-Schwinger time
independent theory. Actually, the Coulomb potential falls 
off too slowly at large distances to satisfy the asymptotic 
conditions of the usual scattering theory. Since the pioneer
ing work by Dollard,2 many different ways of circumventing 
this difficulty have been proposed. The formalism of Dett
mann) employs wave packets and the Lippman-Schwinger 
equation to obtain a convergent expression for the transition 
probability even though the transition matrix element itself 
diverges logarithmically. The formalism of Dollard2 and of 
Belkic-Gayet-Salin3 seeks a convergent expression for the 
T-matrix element by including the long range distortion due 
to the Coulomb potential. The resulting expression for the T 
matrix employing these "Coulomb asymptotic conditions" 
has the distorted wave form and has been treated in the liter
ature as a particular type of distorted wave amplitude.4 Van 
Haeringen5 also includes the effect of the long range Cou
lomb potential but does so in a way that avoids a distorting 
potential yet obtains a convergent expression for the T ma
trix. In Mulherin and Zinnes' paper6 a Coulomb potential 
scattering theory is developed by introducing "distorted" 
asymptotic states of the eikonal form. However, it has been 
usually stressed that this procedure does not represent a dis
torted wave formalism, 7 but that the eikonal phases repre
sent a basic requirement that the wave functions in a time
independent scattering theory of charged particles should 
meet. In van Haeringen's procedure the scattering theory of 
charged particles is developed using an alternate generaliza
tion of the usual asymptotic free states. With these asympto
tic waves the time-independent scattering theory is formallly 
reconstructed5 by a limiting process. 

This work shows that the alternative asymptotic states 

a' Permanent address: Centro Atomico Bariloche, Comision Nacional de 
Energia Atomica, 8400 Bariloche, Rio Negro, Argentina. 

are not contradictory, but represent equivalent translations 
of the same idea. We show by explicit evaluation that both 
procedures give the well-known Coulomb scattering ampli
tude. We further show that the expression for the Tmatrix in 
the representation of Mulherin and Zinnes derives from that 
of van Haeringen. Actually, we will demonstrate that Mul
herin and Zinnes' asymptotic states do represent distorted 
waves in the sense of conventional distorted wave theory 
applied to van Haeringen's more fundamental Coulomb 
asymptotic states. 

II. COULOMB ASYMPTOTIC STATES 

In the time-dependent theory of potential scattering the 
essential properties of the collision are associated with the 
isometric Moller operators 

!l ± = s-lim exp[ (i11l)Ht ]exp[ - (i11l)Hot]. (1) 
t_ =+= 00 

Here H = Ho + Vand Ho = - Ij2 a/2m are the full and free 
Hamiltonians, respectively. However, when a Coulomb in
teraction is involved, the strong limit ( 1 ) does not exist. The 
reason is that the Coulomb potential V( r) = air falls off so 
slowly as r-- 00 that it continues to influence the particles 
even as they move far apart. According to Dollard,2 a "re
normalization" term has to be included in Eq. (1) as follows: 

!lc ± = s-lim exp[ (i11l)Ht ]exp [ - (i11l)(Hot 
t~ += 00 

±a~m/2Ho-1/210g(4Holtl/ll»]. (2) 

Here m is the reduced mass of the interacting particles. This 
limit exists and formally defines the improper Coulomb sta
tionary scattering states 

Ik±) =!lc ± Ik). (3) 

These states are eigenvectors of the full Hamiltonian H, 

HI k ± ) = (k 212m) I k ± ) . ( 4 ) 

In coordinate space they are given by 

(rlk ± ) = h -3/2r( 1 ± in)exp( - 1TnI2)exp«(iIIl)kor) 

X)F)[ +in,l, ± (illl)(kr+kor)] , (5) 

Here n is Sommerfeld's parameter n = malhk. On the other 
hand, the momentum representation can be evaluated in 
terms of the matrix element (pI V Ik ± ) 
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(plk ± ) = h -3/2 f exp( - ~ p·r )(rlk ± )dr 

ft d h -3/2 f ( i ) a = - -;; dE exp - ~ p·r -;: 

X e - ErI1i(rlk ± )dr 

= -~~(pIVElk±), 
a dE 

where the limit E--O is understood. 

(6) 

Now (pI VEllk ± ) can be evaluated by means of Nord
sieck's8 method; 

(pWElk ± ) =..!:.... r(1 ± in) [p2 - (k + iE)2] ± in • (7) 
7Th e rrn12 [lp-kI 2+e]±in+1 

Therefore, 

k + = Er(2 ± in) [p2 - (k ± iE)2] ± in 

(pI -) rerrnl2 [Ip _ kl 2 + e]2 ± in 

n r (1 + in) (k .) 
-- +IE r e rrn12 -

[p2 _ (k + iE) 2] - I ± in 

X [Ip _ kl 2 + e]1 ± in 
(8) 

Following van Haeringen,5 we note that the second term on 
the right-hand side is just 

(pIGo«k ± iE) 2/2m) VElk ± ). 

Therefore we have obtained a Lippmann-Schwinger (LS) 
equation for Ik ± ) 

Ik ± ) = Ik ± E) + Go«k ± iE)2/2m)VElk ± ), (9) 

which looks very similar to the usual LS equation except for 
a Coulomb-modified improper free state, 

k + E = Er(2 ± in) [p2 - (k ± iE)2] ± in , 

(pI -) rerrn12 [lp_kI2+e]2±in (10) 

taking the place of the free particle plane waves. This Cou
lomb asymptotic state (CAS) represents a generalization of 
the usual free asymptotic state for the case of Coulomb inter
actions. Within this procedure the on-shell transition matrix 
is evaluated between Coulomb asymptotic states5 to obtain 

(p _ EIT( (k ;~E»)k + E) 

= (p _ EWE + VEG c ( (k ;~E)2) VElk + E) 

= (p-EWElk+) 

a r (1 ± in) 1 [4k 2 ] ± in 

= 7Th rO+in) Ip-kl2 Ip-kl2 ' 
which is the proper Coulomb amplitude. 

(11 ) 

1110 MULHERIN AND ZINNES' ASYMPTOTIC STATES 

Mulherin and Zinnes' formulation of Dollards' theory 
employs a particular form of asymptotic waves deduced 
from the behavior of Coulomb waves in coordinate space. 
The asymptotic form of the Coulomb stationary state 
(rlk ±), given by Eq. (5), through terms of order ft/ 
(kr+ k·r) is 

(rlk ± ) -zh -3/2 eUI1ilk.r[ kr ~ k.r] ± in 

+ h -3/2ne ± UI1ilkrr ( 1 ± in) 
r(1 + in) 

X [ kr! k.r] - (l ± inl • (12) 

By analogy with the wave function for short-range po
tentials, the asymptotic form of (rlk + ) is interpreted as an 
"incident" plane wave plus a spherically spreading scattered 
wave. On this basis Mulherin and Zinnes introduce the 
asymptotic states 

(rlkoo ± ) -zh -3/2 eUI1ilk.r[ kr ~ k.r] ± in. (3) 

These states are eigenvectors of a modified "free" Hamilto
nian H"" = Ho + U, 

(14) 

where the action of the distortion potential U on the asymp
totic state Ikoo ± ) is defined by 

(rlUlkoo ± ) 

= (rIH"" - Holkoo ± ) 

= (k 2/2m + ft2tl/2m) (rlkoo ± ) 

= (a/r)[l-(ftn/(kr+kor»](rlkoo ±). (15) 

These asymptotic states satisfy the following Lippmann
Schwinger equation: 

Ik ± ) = Ikoo ± ) 

+ G«k ± iE)2/2m) (V - U) Ikoo ± ) . (16) 

Now the time-independent scattering theory can be for
mally reconstructed if the phases introduced by the Cou
lomb potential are retained in the asymptotic states, and the 
potential and "free"Hamiltonian are consistently distorted. 
For instance, the on-shell T -matrix element reads 

(poo - ITo«k + iE)2/2m)lkoo + ) = (poo - I C V - U) + C V - U)G(Ck + iE)2/2m)( V - U) Ikoo + ) 

= (poo -ICV- U)lk+). 

The matrix element is evaluated using the coordinate space representation: 

f [pr + por] ± inp - I ( i ) a 
(poo + I (V - U) Ik ± ) = nph -3/2 ft exp - ~ p·r -;: e- ErI1i(rlk ± )dr. 
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By using an integral representation9 of [(pr ~ por) Iii] ± iflp - 1 we obtain 

(poo + I(V - U)lk ±) = ~ . r"" A- +-inPh -3/2fe- (iI1l)(1 +-iA)p.r~- (HPA)rI1l(rlk ± )dr dA-
r(1 +mp) Jo r 

= npa r"" A- +- inp _1_ r( 1 ± ink) [r - (k + iE)2 ~ 2ip(p + k ± iE)A- ] ± ink dA-
r(1 ~inp) Jo 11"h /rrnJnkk2 {(p _ k)2 + c + 2[EJ'+ip-(p _ k)]A}1 ±in. 

a [2P(P + k ± iE) ] ± ink = - r(1 ± ink )ro ± inp )[2po(p - k) ± 2iEp] -I 2 c 
11"h (p - k) + 
X [2EP ~ 2ipo(p - k)] ± i(np

- "k) F [ ... in + in '1-1 _ (p - k ~ iE)( 2po(p - k) ± 2iEP)] . 
(p _ k)2 + C 2 1 ... k' - P" 2p (p _ k)l + c 

Upon taking the limits as E-+O andp-+k we obtain the 
on-shell amplitude 

(poo ~ I (V - U)k ± ) 

a ro ± in) 1 [4k 2 ] ± in 
= 11"h rO+in) Ip-kl1 Ip-kl2 ' (17) 

of avoiding the known difficulties of the Coulomb potential, 
i.e., the plane wave, is modified only by a phase factor. How
ever, the potentials must also be consistently modified; thus 
as in Eq. ( 17) we may regard Eq. ( 12) as a particular form of 
distorted wave. 

IV. RELATION BETWEEN THE TWO APPROACHES 
which, again, is the correct Coulomb amplitude. We see that 
within this prescription the l' -matrix element is evaluated 
using "distorted" waves rather than plane waves. However, 
it has been usually stressed7 that this procedure does not 
represent a distorted wave formalism, but a consistent way 

In order to examine the relation between the Mulherin 
and Zinnes asymptotic states and the CAS, we evaluate the 
Fourier transform of Eq. (13), 

(plkoo ± ) = h -3/2 f e- (i/1l)
por(rlkoo ± )dr 

= - ~ h -3/2 f exp (-~ por)2.e - Erlli(rlkoo ± )dr 
dE Ii r 

= _ ~h -3f2.e- (illi)(k- p+ i£r).r[kr~ k.r] ± in dr 
~ r Ii 

= _ 2.~r(l + in)2±in [Ek ~ik·(k - p)] ±in 
11" dE - [Ik - pl2 + cj± in 

=.!.... r(2 + in) [2Ek ~ i2k·(k - p)] ± in - i ~ro + in) [2Ek ~ i2k·(k - p)] ± in-I 
r - [Ik - pl2 + C]2±in + r - [Ik _ pl2 + Cp±in 

(8) 

As E -+ 0 the first term on the right-hand side ofEq. (18) becomes a distribution function with support on p = k, which is 
precisely the Coulomb asymptotic state CAS. On the other hand, the second term is easily shown to equal 

(pIGo«k ± iE)2/2m)Ulk ± ). 

Therefore a Lippmann-Schwinger equation for Ipoo ± ) is obtained, 

Ikoo ± ) = Ik ± E) + Go«k ± iE)2/2m)Ulkoo ± ) . 
The LS equation (19) lets us rewrite the 1'-matrix element (p + EI VElk ± ) in the following form: 

(p+EIVElk ±) = (poo + IVElk ±) - (poo + IUGo«k ± iE)2/2m)Vlk ±) . 

By using the Lippmann-Schwinger equation (9) we rewrite the rhs ofEq. (20); 

(p~EIVElk±) = (poo + I(VE- U)lk±) + (poo + IUlk±E). 

(19) 

(20) 

(21) 

This is the standard two-potential formula of the distorted-wave theory. 10 The second term on the rhs ofEq. (21) vanishes on 
the energy shell in the limit as E -+ O. Actually 

(poo + IUlk ± E) = f(poo + IUlq)·(qlk ± E)dq = f(poo + IUlq) ~ r(2 ± in) 
7T errn/2 

[if - (k ± iE)2] ± in d 

[ I q - k 12 + c j2 ± in q 
(22) 

is absolutely dominated by 
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with 

We see that for E--+O the integrand of Eq. (23) vanishes 
pointwise. Furthermore it is bounded by the integrable func
tion lis IIr/(r + 1)2. Therefore the matrix element 
'(poo + IUlk ± E) also vanishes in the limit as E--+O. 

V. CONCLUSIONS 

We have shown that Mulherin and Zinnes' asymptotic 
states can be obtained within van Haeringen's formalism by 
means of a simple distorted wave procedure: Both ap
proaches are equivalent. Nevertheless, more fundamental is
sues concerning the relationship between these Coulomb 
time-independent schemes and experimental cross sections 
remain to be investigated. 

When the Moller operator n ± in Eq. (1) exists, it can 
be applied to a state 14» to yield 1 4> ± ) = n ± 14». Here, 
1 4> ± ) is to be thought of as describing the actual state at 
t = 0 which evolves from (or to) the freely moving prepared 
(detected) asymptotic state exp [ - U/Ii)lHIot] 14», in an 
idealization of a real scattering experiment. On the other 
hand, when a Coulomb potential is involved, the state6

,7 

exp[ - ~ lHIoc t ]4> = h -3/2 f e(i/Ii)k.r[ kr! k'r r in 

X eUk '/2m) /Ii<l> (k)d k 
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(25) 

(24) 

does not have a straightforward physical interpretation. Ac
tually exp [ - U/Ii)lHI oo t] is not an isometry. II Thus the 
usual identification of such a state at large times with the 
prepared (or detected) beam of projectiles is not obvious. 
Further discussion would be needed to relate the time-inde
pendent schemes discussed here to actual experiments when 
Coulomb interactions are involved. I 
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A realistic model for the propagation of scalar waves in a medium must take into account 
discontinuities of the medium parameters, which may act as "hard" reflectors; discontinuities 
of their gradient, which may act as "soft" reflectors; and continuous variations of parameters. 
The direct scattering problem is presented here. The "mixed potential-impedance" equation 
that characterizes the model depends on two arbitrary parameters: one of them would be the 
potential if the equation reduces to the Schr6dinger equation; the other one would be related to 
the impedance ifthe equation describes more "classical" waves. After the mathematical tools 
are constructed (Green's functions, etc.), a rigorous three-dimensional scattering theory is 
described. It encompasses the quantum three-dimensional scattering theory and the theory of 
acoustical scattering (for instance) by systems of regular surfaces of arbitrary shape. The main 
integral equations of the quantum scattering theory are generalized. Scattering amplitudes due 
to reflectors and scattering amplitudes due to diffuse scattering after reflectors have been taken 
into account are defined and constructed. Born and quadratic approximations are discussed: 
the explicit formulas corresponding to the scattering by discontinuities and those 
corresponding to diffuse scattering are not reducible to each other exactly (i.e., unless filtering 
and errors are allowed). The results can also be used to described rigorously the three
dimensional scattering by the "wave-equation" in the frequency domain-and in particular the 
response to an impulsive localized source. Further generalizations are in progress. 

I. INTRODUCTION 
( 1.2) 

A number of problems arise in the study of wave propa
gation through discontinuous media. We studied them in the 
one-dimensional case l on a model equation, the impedance 
equation, and a slightly generalized one, the mixed (imped
ance-potential) equation. The three-dimensional mixed 
(impedance-potential) equation is studied in the present pa
per. It bridges the gap between quantum wave propagation 
and acoustical wave propagation. The price to be paid is of a 
complicated mathematical structure, which is here fully 
analyzed with working assumptions sufficient for all phys
ical purposes. A complete scattering theory is provided, to
gether with the standard Born and second-order approxima
tions. 

k,XER3
, k 2 = I k·k I, the impedance factor a is everywhere 

twice differentiable with a-I AaEr, except at the surfaces 
SO,SI"",SN' At a point x of a surface Sit a(x) and 
v'grad a(x) may be undefined but their limits from the 
( + ) and ( -) sides are defined and described by the 
"transmission factor" t, the "reflection factor" r, and the 
"slope factor" s: 

Throughout the paper, we deal with a set of ordered 
domains ni and surfacesSi of class C 2

, withS = UiSi , such 
that each domain is finite but n N + I' which extends to in fin
it yin all directions, and i=l=I=;,Si nSj = 0. The "topological 
aspect" of such surfaces is that of spherelike surfaces, each Si 
enclosing a ball-like domain 

k=1 

Di = L Ok 
k=O 

(see Fig. 1). There is one unit normal vector at each point of 
Si: v(x) pointing into the + side, which for Si is the side of 
n i + I' We are interested in the equation 

[a- 2 div a 2 grad + k 2 - V]cp(k,x) = 0, xER\ (1.1) 

where V(x) is a real function, belonging to class r of "po
tentials" for which the scattering problem described by 
( 1.1) in the case a = 1 is meaningful-for instance, the 
Rollnick class: 

[t(X)]-1 =~[a(x+) + a(x-)], (1.3a) 
2 a(x-) a(x+) 

r(x) _ 1 [a(x+) a(x-) ] 
t(x) -"2 a(x-) - a(x+) , (1.3b) 

s(x) =~v.[ grada(x-) _ grada(x+)]. (1.3c) 
t(x) 2 a(x+) a(x-) 

These values are called the problem "singular data." 
The first results we obtained in this three-dimensional 

case2 are summarized by the following theorem. 
Theorem I: Let.B(x) > 0, such thata(x)I.B(x) is every

where continuous, .B(x) is twice differentiable at each regu
lar point, and 

H (a grad.B -.B grad a)'v ]~: = a(x- ).B(x+ )p(x). 
(1.4 ) 

It can be proved 1,2 that the function <I> = acp I.B satisfies the 
equation 

[.B- 2 div.B 2 grad+k 2
- V 

+ (a.B) -I div(a grad.B -.B grad a)]<I> = 0, (1.5) 

at each regular point, and that its continuity conditions 
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FIG. I. 

across a singular surface at x are 

<I>(X+) = <I>(X-), 

[V',B 2 grad <I> ];~ = - 2p(x)<I>(X),B(X- ),B(X+). 

( 1.6a) 

(1.6b) 

The impedance factors a and,B have the same transmission 
and reflection factors but not the same slope factor: 

sp(x) -Sa (X) +p(x)t(x) =0. (1.7) 

Corollaries of Theorem I are the two equivalence rules. 
Standard equivalence: Assume 

,BEC 2 (lR3 \S), a/,BEC(lR3
), 

p(x) = 0, xES, (1.8) 

a!l.,B - ,B!l.a = 0, xElR3 \S. 
Then a and,B have the same singular data, the function arp / 
,B satisfies Eq. (1.1) with,B instead of a, and the scattering 
problems of ( 1.1) with a or,B are identical to each other. 

Schrodinger equivalence: Here rp is a solution of ( 1.1) if 
and only if t/; = :arp is a solution of the chain of Schr6dinger 
equations 

!l.t/; + (k 2 - V - a-I !l.a) t/; = 0, XElR3 \S, 

!t,a at/; _ t/; aa continuous/So (1.9) 
a av av 

Hence the true data of our problem are a "potential" 

W = V + a-I!l.a, xElR3 \S, 

and the "singular data" (1.3). Another way to see it is by 
introducing a "singular data function." 

Singular data functions: We define such a function 
(T(x), if it exists, by assuming that it is positive and harmonic 
inside the shells, and such that a/(T is everywhere contin
uous. Information on the normal derivatives on S may be 
inserted into (T or they remain in the boundary conditions 
with the equation for <I> = arp / (T. Hence (T carries on the 
information on the "hard singular data" r nand tn' and does 
not depend on a---or V-inside the shells 0i' Accordingly, 
the equation for <I> shows (T only in the differential operator, 
and <I> is continuous through lR3

: 

«(T-2 div cr grad + k 2 - V - a-l!l.a)<I> = 0, xElR3 \S, 

<I>,cr - - - - - - - <I> contmuous\S. [
a<I> (1 aa 1 a(T)] . 
av aav (TaV 

( 1.10) 

Singular data functions were very useful I in the one-dimen
sional case because it was always possible to construct a 
piecewise constant (T(x), or a (T(x) that carries on the infor-
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mation on the slope factors (in our three-dimensional case it 
would mean that (T aa/ av - a a(T / av is continuous through 
S). The first of these extreme cases generally does not exist in 
the three-dimensional case, and it is only with a supplemen
tary (physical) assumption that we can use a piecewise con
stant (T(x). The second one does not afford so much simplifi
cation. 

The present paper contains an essentially complete scat
tering theory (direct problem) of Eq. (1.1). In Sec. II, we 
construct our tools, the Green's functions of chains ofSchr6-
dinger-Helmholtz equations. In Sec. III, the scattering am
plitude is constructed and it is shown that two parts can be 
identified: the one due to "diffuse scattering" is related to 
V + a-I!l.a inside the shells, and the one due to "reflectors" 
is related to the singular data. In Sec. IV, a first- and second
order perturbation theory is described. A few other prob
lems are discussed in Sec. V. 

Parts of the results contained in the present paper were 
prepublished in the proceedings of various seminars. 3-6 

Gathering and completing these results in the present paper 
can be also considered as achieving a "marriage," that of the 
scattering theory of the Helmholtz equation, as presented, 
for instance, by Colton and Kress,7 and the scattering theory 
of the Schr6dinger equation, as presented, for instance, by 
Newton.s 

II. GREEN'S FUNCTIONS FOR CHAINS OF 
SCHRODINGER EQUATIONS 

We study 'IIEC 2 (lR3 \S), which satisfies the Schr6dinger 
equation inside each 0i' 

(!l. + k 2 - W)'II(x) = 0, xElR3 \S, 

and the continuity conditions 

['II(x)/a(x) lxES,+ = Ai ['II(x)/a(x) ]XES,-' 

[
a(x)a'll(X) _ b(X)'II(X)] 

avx XES,+ 

=J.Li[a(X)a'll(X) - b(X)'II(X)] , avx xeS i-

(2.1 ) 

(2.2) 

(2.3 ) 

where 1m k-;pO, W(x) is locally integrable, and where Ai and 
J.Li are real positive numbers, the functions a(x) > 0, b(x) 
real, belong to C(lR3 \S) and go to finite limits as x-S, but 
can have jumps through the surfaces S. We call the problem 
(2.1 )-(2.3) a chain ofSchr6dinger equations, or, simply, a 
Schr6dinger chain. If Ai = J.Li = 1, as we shall see later, the 
"current" is conserved. If, in addition, a(x) is continued 
inside domains 0i by a positive function a(x)EC 2 (lR3 \S), 
which can have jumps through the surfaces Si' together with 
its normal derivative aa(x)/av(x) but in such a way that 
everywhere b(x) = aa(x)/av(x), this "conserved current" 
Schr6dinger chain is equivalent to the problem 

[a- 2 div a 2 grad + k 2 - W + a-l!l.a]<I> = 0, xElR3
, 

(2.4) 

provided <I>(x) = 'II(x)/a(x). Equation (2.4) is the imped
ance equation, the corresponding chain is the impedance 
chain, and a is the impedance factor. Another special case is 
W = O. We call the corresponding chain a Schr6dinger
Helmholtz chain. All the cited chains are homogeneous. A 
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right-hand side to (2.1) may also be added to show inhomo
geneous chains. In the following, we are interested in solu
tions of chains that satisfy, in addition, the Sommerfeld con
dition: 

(xllxl,grad'l'(x» -ik'l'(x) -o(lxl- 1
) 

as Ixl-+ 00 uniformly for all directions xllxl. (2.5) 

So as to study the general chain (2.1 )-(2.3) and (2.5), or an 
inhomogeneous one, the main tool is obviously the Green's 
function that corresponds to the Schrodinger-Helmholtz 
chain (2.1'), (2.2), (2.3), and (2.5): 

(2.1') 

The present section shows a construction of this Green's 
function in the "impedance case," and kER. 

A. Homogeneous chains 

For a solution of the Helmholtz equation in ON + l' the 
Sommerfeld condition (2.5) (see Ref. 7, p. 70) implies in 
particular that 'I'(x) = O(lxl- 1

) as Ixl-+oo. It physically 
means that 'I' (x) is a pure "outgoing" function. 

Conditions (2.2) and (2.3) imply that the total current 
on the ( + ) side of a surface Sj is proportional to the total 
current on the ( - ) side: 

1 (-a'I' a'l' ) 1 (- a'l' a'l' ) 'I' - - 'I' -- ds = Ajl-tj 'I' - - 'I' -- ds. 
s,+ av av S,- av av 

(2.6) 

We claim that a/unction 'I'(x) that satisfies (2.1'), (2.2), (2.3), 
and (2.5) must vanish. 

Proof Inside each domain OJ, the Green's theorem 
(Ref. 7, p. 68) yields 

f _ f (iii a'l' _ 'I' aiii)dS(X) 
Js,+ Js,~ 1 av av 

= 1 (iii~'I' - 'I'~iii)dx = o. 
°i+1 

(2.7) 

A similar argument inside 0 0 implies that the total current 
on S 0- vanishes. Using (2.6) and (2.7) it follows that 

1 (-a'l' aiii) 1 aiii '1'-- '1'- ds= 1m 'I'-ds=O. (2.8) 
Sf; av av sf; av 

Remember 
N 

DN = IOk. 
k=O 

A known result 7 on the Helmholtz equation is that any func
tion 'I' that satisfies (2.1') in R3'\DN and the condition (2.5) 
for a given (real) k also satisfies 

LEm, [G(x,z)~G(x, y) - G(x, y)~G(x,z) ]dx 

lim i {I a'I' 12 + k 21'1'12 + 2k Im('I' a'l' )}dS = O. 
R_ 00 I yl = R av av 

(2.9) 

Equation (2.8) implies that the last term in (2.9) vanishes, 
and thus Eq. (2.9) implies that 

limi 1'I'1 2 ds=0. 
R- oo I yl = R 

It follows from the Rellich lemma (Ref. 7, p. 77) that 'I' 
identically vanishes in R3 '\D N. Hence 'I' and a'l' I av vanish 
on Sit, and, thanks to (2.2) and (2.3), on S N' so that 'I' 
satisfies (2.1') throughout R3 ,\DN _ 1 and hence vanishes 
therein according to the Rellich lemma. Continuing the pro
cess yields 'I' = o. Q.E.D. 

B. A Green's function for the impedance chain 

For a (x), the domains OJ and the surfaces Sj as defined 
above, we seek G(x,y) such that 

x-+G(X,Y)EC 2 (R3 ,\S,x# y); (2.10) 

~G(x,y) + k 2G(x,y) = - 8(x - y); (2.11) 

G( )1 () d G( ) aa(x) ()_aG_('----x:...:...' y..:,..) x,y a x an x,y ----a x 
avx avx 

are continuous through S, 

and the Sommerfeld condition holds; 

if x-+S, y-+G(x,y) and y-+ aG(x,y) 
avx 

remain locally integrable. 

(2.12a) 

(2.12b) 

These conditions obviously imply that for x # y, x -+ G(x, y) 
satisfies (2.1'), and that if <I>(x,y) is the standard Helm
holtz-Green function, 7 

(2.13 ) 

Then x-+G(x,y) - <I>(x,y) is a solution of the Helmholtz 
equation (2.1') that satisfies the Sommerfeld condition. We 
recall by the way that two functions g(x) and hex) that 
satisfy the Sommerfeld condition are such that 

lim f [g(X)~h(X) -h(x)~g(X)]dS=O. 
R_ ooJ1xl = R av av 

(2.14) 

The function G(x, y) is defined uniquely by (2.11) and 
(2.12) since the difference oftwo solutions would be a solu
tion of the problem (2.1'), (2.2), (2.3), and (2.5). Ifit ex
ists, it is symmetric with respect to the exchange x, y: using 
the solution of (2.11), completed by (2.12), and the solution 
G(x,z) of the same equation, with Z instead of y, completed 
by (2.12), we calculate, by means of Green's formula, 

= lim i [G(X'Z)~ G(x,y) - G(x,y)~ G(X,Z)]dSx 
R-oo Ixl=R avx avx 

- f [G(X'Z)~ G(x,y) - G(x,y)~ G(X,Z)]dSx + f [G(X'Z)~ G(x,y) - G(x,y)~ G(X,Z)]dSx JSf; avx avx JSN" avx avx 
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+ ... + (f _ f )[G(X'Z)~ G(x,y) - G(x,y)~ G(X,Z)]dSx = 0, 
)So+ )so- Jvx Jvx 

(2.15 ) 

and it follows from (2.11 ) that the left-hand side is also equal 
to - G( y,z) + G(z,y). Q.E.D. 

It remains to construct the solution of (2.11) and 
(2.12). For this we need to study the problem operators. 

C. Surface operators 

We first define the operators Sij' Kij' Kif, and Tij by 

(S;j')(x) = 21dS(Z)<I> (x,z)f(z), xES;. (2.16) 
J 

(K;j') (x) = 2 f ds(z) J<I>(x,z) fez), xES;, 
)~ Jvz 

(2.17) 

(K ij/) (x) = 2 f ds(z) a<I>(x,z) fez), xES;, 
)Sj Jvx 

(2.18) 

(T;j')(x) =2~ f ds(z) a<I>(x,Z) fez), xES;. (2.19) 
Jvx )Sj Jvz 

Each of these operators maps a space of functions defined on 
Sj, with values in C, say E(Sj), into a space of functions 
defined on S;, with values in C, say F(S; ). Setting the cou
ples E, Fmust be done in a different way for S, K, K', and T, 
and may also depend on whether i = j or i=/=j. Since the sur
faces are unconnected, a "nondiagonal" operator is the value 
of a single or double layer potential, or its derivative, at a 
point that does not belong to the layer, and it is not difficult 
to prove by means of the Ascoli theorem that Sij' Kij' Kif, 
and Tij are compact operators from c(~) to C(S; ). As for 
the "diagonal operators," they are nothing but the "one sur
face" operators already studied in the literature.7 Hence Sii' 
K ii , and K;; ·are compact in C(S;) and CO.a(s;), for 
0< a < 1. But Tii is an unbounded operator, defined on a set 
...II (S;) containing C l.a (S;) and which is mapped into 
C(S;). In fact, the reader can make at this point the choice 
E = C l.a, and assume that not only the four operators, for 
any choice of i and j, but also their operator products, are 
mappings into the space of continuous functions on the last 
surface, and are compact unless a diagonal element of T is 
involved. In the study of integral equations to be given be
low, the diagonal elements of T will be eliminated, and we 
shallsetE(S) = F(S) = qS). We have called Sij' etc., "op
erator elements" and we have implicitly defined their "oper
ator product," e.g., Sk;,T;j' by 

(Sk;T ;j')(x) 

= 4 r <I>(x,t)ds(t)~ f J<I>(t,y) f( y)ds( y) 
)s, Jv, )Sj Jvy 

[\ffEE(S), xESd, (2.20) 

Now, an "operator element" like Sij applies to any f defined 
on Sj-say, fj (x). We define a function f(x) on S by the 
equalities 

f(x) =fj(x), xESj , j = 0,1, ... ,N. (2.21a) 

If each fj EE(Sj ),JEE(S). We define a "surface operator" S, 
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or K, etc., as a mapping from E (S) to F( S) such that if fj (x) 

is the restriction off to xESj , 

(Sf)(x) = .t Ij<l>(X,t)fj (t)ds(t) , xES. (2.21b) 

With these definitions, the operator product of two surface 
operators, say, ST, is the operator such that, for any fEE(S), 
xESk, k = O,l, ... ,N, 

(STf)(x) = (~Sk;(Tf) (XES;»)(X) 

= (~.tSk;T Jj )(X). (2.20') 

Since N is finite S, K, and K' are compact mappings from 
E(S) to F(S), whereas T is not, because of its "diagonal" 
elements. 

D. Relations between the surface operators 

In the standard case of one surface, there are simple 
relations between T and the other operators. They are more 
complicated in our case, but their proofs are elementary and 
need not be reproduced in detail. They proceed through re
peated use of Green's identity and of jump discontinuity for
mulas. For example, (2.24d) below is obtained by summing 
over i the element 

J i [a<I>(X,t) Jgj (t) ] Qkij = 4-
J 

gj(t) - <I>(x,t)-- ds(t) , 
Vx s, Jv, Jv, 

(2.22) 

where xESk and 

gj(t) = f J<I>;t,y) fj(y)ds(y) 
)~ Vy 

(2.23a) 

is a continuous solution of the Helmholtz equation across 
any element of S except Sj, through which the jump discon
tinuity formula is 

gj(t+) -gj(t) =gj(t) -gj(t-) =!fj(t), tESj . 
(2.23b) 

The cases k> i, k = i, k < i, and, for each one, i <j, i = j, i > j, 
are successively evaluated (see Ref. 4, Appendix). As an 
example, for k> i > j, we obtain the self-explanatory formu
las 

Qkij = 4 -- gj (t) - <I>(x,t)-gj (t) ds(t) J i [a<I>(X,t) J] 
Jvx s, Jv, Jv, 

Xds(t) +4~ r J<I>(x,t) fj(t)ds(t) 
Jvx )Sj Jv, 

J 
= 4 -g.(x) (k> i>j). 

Jv
x 

J 
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Quite similar methods apply to deriving all the other cases. 
The final results are 

SK'-KS= -S, 
KK - ST = 1 + K, 
K'K' - TS = 1 - K', 
TK-K'T=T, 

(2.24a) 

(2.24b) 

(2.24c) 

(2.24d) 

where M is obtained from the matrix M made of operator 
elements M ij by the ansatz 

{

2(k - j - 1 )Mkj , for j<.k - 1, 

Mkj = 0, for j= k, 
2(k + 1 - j)Mkj , for l;;.k + 1. 

(2.25) 

The dotted matrices involve only "nondiagonal" elements. 
Therefore t is compact on C(S). 

E. Potentials 

The right-hand sides of (2.16)-(2.19) can be continued 
for any XER3 \S as simple and double layer potentials and 
their derivatives. Well known results apply7 and readily 
show that the single layer potential [(2.16)-(2.21)] and the 
double layer potential [(2.17)-(2.21)] define solutions of 
the Helmholtz equation in R3 \S that satisfy the Sommerfeld 
condition (2.5). In addition, it is well known that the single 
layer potential is continuous throughout R3 but the normal 
derivative has known discontinuities when crossing the sur
face where it is defined. The reverse is true for the double 
layer potential. These results will be used to construct our 
Green's function. 

F. Construction of the Green's function 

We can choose between constructing a solution of 
(2.11) and (2.12) directly, by writing down G(x, y) as the 
sum <I> (x, y) + a single layer potential + a double layer po
tential, or using the same ansatz to solve the inhomogeneous 
equation 

au(x) + k 2u(x) = - lex), 

completed by the conditions 

u aa au . 
- and u - - a - contlOuous/S, 
a av av 
u(x) is Sommerfeld outgoing. 

(2.26a) 

(2.26b) 

Then G(x, y) is identified as the resolvent kernel of this 
problem. We use this second approach and write down 

N i lM>(x z) u(x) = F(x) +.I ds(z) , 'h(z) 
}=o Sj avz 

(2.27) 

where 

F(x) = i,<I>(X, y)/( y)dy. (2.28) 

The potential representations satisfy the Helmholtz equa
tion and the Sommerfeld condition; since F(x) satisfies 
(2.26) and the Sommerfeld condition, so does u(x) also. 
Now the continuity conditions through S; imply that, for 
xES;, the following equalities must be satisfied, where the 
index i reminds us that xES;, i = 0,1,2, ... ,N, and the nota
tions introduced above are used: 

(2.29) 

= {(a+ (x) - a- (x»)[2F' (x) + (T¢)(x) + (K'cp)(x)] - (a'+(x) - a'- (x»)[2F(x) + (K¢)(x) + (Scp)(X)]}XES,. 
(2.30) 

In these formulas, the prime used in a' and F' stands for the 
normal derivative at xES; and cp; and ¢; are, respectively, the 
restrictions of cp and ¢ to xES;. Equations (2.29) and (2.30) 
must be satisfied for all ts. It is convenient to rewrite them by 
introducing the functions on S, or "multiplicative opera
tors" {3, {3 " and y, hereafter defined as 

{3(x) = a+ (x) - a- (x) , 
a+(x) + a-ex) 

{3'(x) = a'+(x) - a'-(x) , 
a+ (x) + a- (x) 

() 
a'+(x)+a'-(x) 

y x = . 
a+ (x) + a- (x) 

(2.31a) 

(2.31b) 

Sufficient assumptions on{3, {3', and yare that they belong to 
C I.a (S). Hence, with this condensed notation, the continu
ity conditions through S yield the following equations for the 
functions cp (xES) and ¢ (xES): 

¢ = 2{3F + {3Scp + {3K¢, (2.32) 
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cp + y¢= 2{3F' - 2{3'F+{3T¢ 

- {3 'K¢ + {3 K' cp - {3 'Scpo (2.33) 

If the system obtained from (2.32) and (2.33) by setting 
F= F' = o has a solution ¢o,cp 0, then inserting it into (2.27) 
yields a solution '1'0 (x) of the homogeneous chain (2.1'), 
(2.2), (2.3), and (2.5) (with A; =/-L; = 1). We know from 
Sec. V that '1'0 necessarily vanishes, and using jump relations 
across layers shows that so do ¢o and cp 0. Hence if the system 
(2.32) and (2.33) has a solution, it is unique. 

The domains in the following derivations are easier to 
check if one assumes a priori {3, {3', y, and ¢ in C I,a (S), cp in 
CO,a (S) (O<.a<. 1) so that T¢, TKcp, etc., make sense. But 
the final equations and results make sense for a = 0 
[CO,o(S) = C(S),CI,o(S) = CI(S)].Sotoobtainthesolu
tion, we may try solving (2.32) in terms of ¢ and insert the 
result into (2.32). However, (1 - {3K) -I exists as a bound
ed operator if and only if 1 is not eigenvalue of {3 K. Since K is 
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bounded, there is at least a range of values of {3 small enough 
(say, 1I{3I1<IIKII-1) where 1 cannot be an eigenvalue. On the 
other hand, if 1 is an eigenvalue of {3 K, Eq. (3.32) yields ¢ if 
and only if {3( 2F + S<p) is orthogonal to the n-dimensional 
null space of the adjoint of (1 - {3 K). Then ¢ itself contains 
n parameters corresponding to the null space N(I- 13K); 
inserting it into (2.33) can give <p up to n parameters, which 
are eventually determined by the condition on{3(2F + S<p). 
This process is complicated. For the sake of simplicity, we 
shall not study it here. Except in the special case with As
sumption B below, we assume that 

N(1- 13K) = 0. (2.34) 

Since K is compact, the Fredholm altervative holds for 
(2.32) considered as an equation for ¢; (1 - {3 K) -I is a 
bounded operator and it enables us to construct ¢ from <po 
Reinserting the result into (2.34), we meet the operator 

(2.35) 

which needs special study, because it involves the product of 
an unbounded operator and a compact one. First, notice that 
if 1 - {3 K is inversible, the null space of the adjoint operator 
1 - K'{3is zero, so that if v did exist such that v = {3K'v, K'v 
would vanish and hence so would v. Therefore 1 - {3 K', too, 
is inversible. 

Using (2.23) and (2.24), we obtain, after elementary 
calculations, 

U = (1-{3K,)-I{[T,{3]S -{3(1- K'K' - K') 

(2.36 ) 

Let us show that [T,{3] is a bounded operator. The only 
elements that need a proof are the "diagonal ones," which 
read, for xESk [and applied tOfk (x)], 

Dk (x) = ~ f J<p(x,t) {3(t)fk (t)ds(t) 
Jvx )Sk Jv, 

-{3(x) f J<p(x,t) fdt)ds(t) 
)Sk Jv, 

= (~{3(X») f J<p(x,t) fk (t)ds(t) 
Jvx )Sk Jv, 

+ ~ f J<p(x,t) [{3(t) - {3(x) V(t)ds(t). 
Jvx )Sk Jv, 

(2.37) 

The first term in the last right-hand side of (2.37) is the 
product of J{3(x)/Jvx by (KkJk) (x) and thus defines a 
bounded operator. The boundedness of the next one follows 
from the lemma (2.10) of Ref. 7 (after a few easy calcula
tions). Q.E.D. 

Going back to U in (2.35), and since the product ofa 
compact operator by a bounded operator is compact, we see 
that U + {31 is compact: 

U= -{31+C, (2.38) 

where C is complicated, but trivially written down from 
(2.36). Inserting the solution ¢ of (2.32) into (2.33) and 
taking (2.38) into account yield 
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(1 + {32)<p = AF + Btp, 

where 

AF= 2{3F' + [2{3T(I- {3K)-I/3 - 2{3' - 2{3'K 

X (1- {3K)-I{3 - 2y(1- {3K)-I{3]F, 

(2.39) 

(2.40) 

B = - y(I-{3K)-I{3S +{3C -{3'K(I-{3K)-I{3S 

+ 13K' - {3'S, (2.41) 

(1 + {3 2) - 1 B is compact, the Fredholm alternative holds, 
and the homogeneous solution yields a solution of (2.1'), 
(2.2), (2.3), and (2.5) and therefore vanishes. Hence tp can 
be constructed in C(S) as 

(2.42) 

G. Simplifications 

Construction of the Green's function is much simplified 
in two cases. 

(a) Assumption A. a(x} is continuous throughout R~' 
Then one can use (2.27) with ¢ = 0, and {3 vanishes identi
cally. The remaining equation (2.33) reduces to 

<p= -{3'(2F +S<p). (2.43 ) 

With our assumptions on a, {3'S is compact on C(S), the 
homogeneous equation has only the zero solution because of 
our results on homogeneous chains, and 

tp = - 2(1 + {3'S) -I{3'F= : - 2(1 - {3'R){3'F. (2.44) 

It follows from (2.27) and (2.28) that the Green's function 
is then 

G(x,y) = <I>(x,y) - 2k~oLdS(Z)<I>(X'Z){3'(Z)<I>(Z'Y) 

+ 2 k~O lkdS(Z) <I> (x,z){3 , (z) 

X jto Ijds(t)R (z,t){3' (t) <I> (t, y), (2.45 ) 

where R(z,t) is the kernel ofR. 
(b) Assumption B: For each surface, the "relative discon

tinuity" a+ (x)la- (x) does not depend on the position ofx 
on the surface. 

In this case, it is possible to construct, as in the one
dimensional case, 1 a piecewise constant "singular data" 
function, say, u(x) equal to uN+ 1 = 1 and xE11N+ I' and 

U; = u;+ 1 a (xES ;-) '\a(xES /), (2.46) 

in each domain 11; (i = N,N - 1, ... ,0). We can solve the 
problem made ofEq. (2.26) completed by the Sommerfeld 
condition and the impedance continuity conditions (2.11) 
and (2.11) by setting v = ul u, g = flu and solving instead 
the problem 

~v(x) + k 2V (X) = - g(x), xER3 ,\S, (2.47a) 

vex) and ~[~ _..!!... Ja] continuous, 
Jv a Jv 

Sommerfeld condition. (2.47b) 

The analysis of Sec. II A applies to the homogeneous form of 
(2.47) and guarantees the uniqueness of the solution, which 
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can be constructed by making use of (2.27), with t/J = 0, 
solving the Fredholm equation 

rp = i/3G' - i/3'G + /3K'rp - /3'Srp, (2.48) 

where 

G(x) = .L<I>(X, y)g( y)dy 

and, for each xES, 
_ «(7+)2 _ «(7-)2 
{3(x) = , 

«(7+)2 + «(7-)2 

/3'(x) = ((7+)2_1_ aa+ _ «(7_)2_1_ aa-) 
a+ Jy a- Jy 

X[«(7+)2+ «(7-)2]-1. 

(2.49) 

The Fredholm alternative guarantees that (1 + /3'S 
- /3 K') - I exists as a bounded operator. It yields 

vex) = r g(x, y)g( y)dy. JR] 
This resolvent g(x, y) (which is, of course, not symmetric), 
readily yields the Green's function of the original problem as 
the product 

G(x, y) = (7(x)g(x, y)/(7( y). 

Thus we see that our problem is much simpler than the gen
eral three-dimensional problem. Yet, this case is more com
mon in physical problems. From the mathematical point of 
view, it is the direct generalization of the one-dimensional 
case. 

H. Consequences of the "standard equivalence" 

The "standard equivalence" between impedance factors 
a, which lead to the same function 6.ala inside the domains 
fii and the same singular data on the Si' leads us to the 
question: how can a "representative" of this class be con
structed, uniquely determined, for instance, by the condition 
that it goes to 1 and Ix I- oo? The answer is that we have to 
construct aO such that 

(2.50a) 

aO ° aa aao 
and a - - a -- continous through S, 

a ay ay 
(2.50b) 

aO - 1 is Sommerfeld outgoing, (2.50c) 

It is a limit case of the problem (3.2) below (for k = 0) and 
is solved in a similar way. 

Going further into the "standard equivalence," we can 
see that the Green's function should not be modified if a is 
replaced by ii, which satisfies with a condition (2.50b). This 
invariance is related to that of the chains when continuity 
conditions are mixed or when, equivalently, a part of Eq. 
(2.32) is added to Eq. (2.33). It follows that{3' can be re
placedby{3' + q{3 la+a-, rbYr - qla-a+, whereq(x) is 
any function continuous through S. A clever choice yields 
the "standard" coefficients, completely expressed in terms 
of the singular data ( 1.3) : 

2591 

Ii = (1 - t + r)/(1 + t + r), 

71' = -sit, Y= -{3{3', 
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(2.51 ) 

where we used the overbar to denote the standard coeffi
cients, instead of a superscript zero, to mean that these two 
reductions are independent. Notice also that the standard 
coefficients (2.51 ) are defined only on S and may not corre
spond to an impedance factor continued in R3 ,\S. 

III. THE THREE-DIMENSIONAL IMPEDANCE 
SCATTERING 

A. The fundamental integral equation 

We come back to Eq. (1.1), with a(x)EC 2 on the fi;'s 
and jumping together with its normal derivative through the 
surfaces Si' We are looking for rp(k,x) satisfying 

(a- 2 div a 2 grad + k 2 - V)rp(k,x) = 0, xER3, 
(3.1 ) 

arp - exp [ik·x] outgoing as Ix I + 00. 

The "outgoing condition" is that precisely settled by the 
Sommerfeld condition (2.5). Now, let t/J = arp. As in (1.9), 
t/J satisfies 

6.t/J + k 2t/J - (V + a- l 6.a)t/J = 0, (xER3 ,\S), 

(a+)-It/J+ = (a-)-It/J-, xES, 

a+ at/J+ _ t/J+ aa+ = a- at/J- _ t/J- aa-, xES, 
ay ay Jy ay 

t/J(k,x) - exp[ik·x] outgoing (lxi- 00). (3.2) 
So as to construct t/J, we shall use the Green's function 
G(x, y) defined by (2.10)-(2.12). Let R be large enough so 
that DN CB(O,R) = {x: Ixl < R}. Applying the Green's 
theorem to t/J and Gin w(R) = B(O,R) '\DN' we get 

J. [6.y t/J(k, y)G(x, y) - t/J(k, y)6.yG(x, y) ]dy 
cu(R) 

=J. G(x,y)[V(y) +a-'(y)6.a(y)]t/J(k,y)dy 
cu(R) 

{
t/J(k,X), ifxEw(R), 

+ 0, otherwise, 

= -G-t/J- ds(y) 1 (at/J aG) 
IYI=R ayy ayy 

- -G-t/J- ds(y). i (at/J aG) 
sit ayy ayy 

(3.3 ) 

The integral on I yl = R, say I(R), can be divided into two 
parts: 
I(R) = II (R) + i 2(R) 

= r [a(t/J - e
lk

'
Y

) G _ (t/J _ e'k'Y ) aG]dS( y) 
J1yl = R ayy ayy 

+ _e_ G(x,y) _ e'k.y 1 [a Ik·y 

Iyl = (R) ayy 

x aG(x, y) ]dS( y). 
ayy 

(3.4 ) 

If we apply the Green's theorem to exp[ik·x] and G(x, y) in 
w(R) we obtain 

i 2(R) = --G(x,y) - e,k'y_(x,y) i [Jelk'y aG] 
sit ayy ayy 

+ {e lk'X
, ifxEOJ(R), 

0, otherwise. (3.5) 
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Since ",(k,y) - exp[lkoy] and G(x,y) satisfy the Sommer
feld condition, II (R) goes to zero as R -- 00. Hence letting 
R-- 00 in (3.4) yields, for any XEO N + 1> 

",(k,x) = "'in (k,x) 

_ ( G(X,y)[V(Y) + aa(y) ]"'(k,Y)dY JnN + 1 a(y) 

-i (a"'(k,y) G(X,y) 
sit aVy 

_ ",(k, y) aG~~: y) )dS( y), (3.6) 

where "'in (k,x) is defined by the formula 

.1. (k ) - i [ae
lk

'
y 

G( ) Ik·y aG(X, y) ]d ( ) 'f'in ,x - -- x,y - e s y 
sit a~ a~ 

+ ' {
elk' X 

0, 

ifxEON + I' 

otherwise. 

Now, in each domain Oi' the Green's theorem yields 

_ ( G(X,y)[V(Y) + aa(y) ]"'(k,y)dY In, a( y) 

(3.7) 

+ i [a"'(k, y) G(x, y) - ",(k, y) aG(x, y) ]dS( y) 
Si~1 avy avy 

-i [a"'(k,Y) G(X,Y)_"'(k,y)aG(X'Y)]dS(Y) 
s/ avy avy 

__ {"'(k,X), ifxEOi, 

0, otherwise, 
(3.8) 

and the continuity conditions (2.12) imply that (a",/ 
av)G - ",aG /avhas the same value onS / andS i-' Add
ing (3.6) and the formulas (3.8) written for 
i = (N - 1), (N - 2) , ... ,0, we obtain the scattering integral 
equation 

",(k,x) = "'in (k,x) - ( G(X, y) 
JR',S 

x [V( y) + a: ]"'(k, y)dy, ER3"s. (3.9) 

It generalizes the usual scattering integral equation to our 
problem, and reduces to it when there are no discontinuities. 
Then, according to (3.7), "'in reduces to exp[lkox], and 
G(x,y) reduces to <I>(x,y) given by (2.13), with k = Ikl. 
Hence there are two steps in our way of processing, and they 
have a different physical meaning. 

First step: Construct "'in and G(x, y) from a knowledge 
of the singular surfaces and the singular data only-this can 
be called the step of reflectors (or hard scatterers). 

Second step: Construct '" by solving the integral equa
tion (3.9), where the "diffuse scatterers" represented by 
V(x) and a-I aa appear for the first time-this is the step of 
diffuse scatterers. 

B. Properties of the incident wave function 

The argument used above also shows that "'in is the solu
tion of 

(a + k 2 )"'in = 0, xER3 "S, 
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d a"'in '" aa an a---·-
av IN av 

continuous/S, (3.10) 
a 

"'in - exp[lkox] outgoing at 00. 

Hence "'in is the wave function that corresponds to the phys
ical problem of impedance scattering by an impedance factor 
u(x), which would be the (piecewise harmonic) solution of 
(3.10) withk = 0. To find the behavior of "'in as Ixl-- 00, we 
apply the Green's theorem to "'in and <I> (X, y) in (j)(R). For 
xE(j)(R), we readily obtain 

"'in (k,x) = ( [a"'in(k,Y) <I>(X,y) 
Jlyl =R aVy 

- "'in (k, y)~ <I> (X, y) ]dS( y) 
aVy 

-i [a"'in(k,Y) <I>(X,y) 
Sit aVy 

- "'in(k,Y)~<I>(x,Y)]dS(Y). (3.11) 
avy 

Since "'in - e'k
•
x is outgoing, as R goes to infinity, the integral 

over the sphere tends to e,k
'
x

, giving the representation 

Now using (2.13), the derived formula 

a<l>(x, y) 

avy 

(v( y), x - y) (1 _ ik Ix - yl )<I>(x, y) 
Ix-yl2 

and the asymptotic behavior 

<I> (x, y) = (41Tlxl) -I exp[ik( Ixl - x'Y)] 

+o(lxl)-I,lxl--oo, 

we obtain, for Ix 1-- 00, 

(3.13) 

(3.14 ) 

eik Ixi 
"'in (k,x) = exp[lkox] - (41T) -I-Ao( Iklx,k) 

Ixl 

+o(lxl)-I, (3.15) 

with X = x/lxi, we used Ikl in Ao for the length ofk instead 
of k to be more clear, and 

Ao(~,k) = i e- iX.~[a"'in (k,x) 
sit avx 

+ i~oV(X)"'in (k,x) ]dS(X). (3.16 ) 

This "first step" scattering amplitude gives information not 
only on S N but also, by means of "'in, on all the:' reflectors. 

It is interesting to see that "'in (k,x) is also related to the 
asymptotic behavior of G(x, y). So as to prove it, we apply 
Green's theorem to G(x,y) and <I>(x,y) in zE(j)(R), with 
x,yfixed (x#y),xin(j)(R). We get 

( [<I>(x,z)azG(z, y) - G(z, y)a<l>(x,z)] dz 
L(R) 
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= {G(X,Y) - $(x,y), if JXiDN' 
G(x,y), if yElJN' 

=(r _ r )[$(X,Z)aG(Z,y) 
Jizi = R Js i; avz 

- -(x,z)G(z,y) ds(z). a$ ] 
avz 

(3.17) 

Letting R --+ 00, and since G and $ are outgoing, we obtain, 
for any XEnN + I' 

G(x,y) = - r [$(X,Z)aG (z,y) 
JSi; avz 

_ a<fl(x,z) G(z, y) ]dS(Z) 
avz 

{
$(X,y), if JXiDN' 

+ 0, if yElJN' 

As I x 1--+ 00, inserting (3. 14), this yields 

1 eik Ixl 
G(x,y)---r/!in( -Iklx,y) (Ixl--+oo). 

417' Ixl 

C. The full scattering amplitude 

Substituting (3.19) in (3.9) yields 

1 eik Ixl 
r/!(k,x) -r/!in (k,x) - - -AI (Iklx,k) 

417' Ixl 

+o(lxl-l) as Ixl--+oo, 

where 

(3.18 ) 

(3.19 ) 

(3.20) 

AI (S,k) = i r/!in ( - S,x) [V(X) + aa (x) ]r/!(k,X)dX. 
R',S a 

(3.21 ) 

Combining (3.15) and (3.20) finally yields the asymptotic 
representation of r/!( k,x) : 

1 eik Ixl 
r/!(k,x) =e,k'x---A(lklx,k) +o(lxl- I ), (3.22) 

417' Ixl 
where 

(3.23) 

HereAo is the scattering amplitude due to reflectors only; A I 
is the scattering amplitude due to diffuse scattering, the re
flectors being present; A is the full scattering amplitude, the 
quantity to be measured. It is easy to see now that these 
results trivially reduce to the usual ones for the Schr6dinger 
problem when no reflector is present. Notice also that the 
generalization to ]Rn with n>3, is trivial. 

IV. PERTURBATION THEORY 

Linear and higher-order approximations are obtained in 
the problem by expanding results along "small" parameters, 
which may be either the relative jumps through the singular 
surfaces measured by /3, /3', r, or the diffuse scattering pa
rameter V + aa/ a, or both. Hence we obtain three kinds of 
approximation: the approximations of reflectors scattering, 
no diffuse scattering being present; the approximations of 
full scattering (reflectors plus diffuse); and the approxima
tions of diffuse scattering, the scattering amplitude Ao and 
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the reflectors' Green's function being first calculated exact
ly. More precisely, we introduce the norms 

11/311 = Sup( 1/31,1/3 'I, I rl), 
XES 

IIWII = i,J Vex) + a: (x) !dX, 

w = Sup( 11/311,11 WII)· 

(4.1 ) 

(4.2) 

(4.3) 

The first approximations are those of small 11/311, II WII = 0; 
the second ones of small w; and the third ones of small II W II. 
We shall give the linear approximation in all cases, but the 
quadratic one only in the cases where it is reasonably simple, 
viz., the continuous case (Assumption A of Sec. n G) and 
the specially discontinuous case (Assumption B of Sec. 
n G). When the "standard coefficients" p, P', and rare 
used, r is O( 11/3112) so that further simplifications occur. 

A. Approximations of G(x,y) and Ao(s,k) 

The Neumann series expansion of (I - /3K) -I, where 
K is a compact operator and /3 a multiplicative operator, 
certainly converges for 11/311 small enough. We readily derive, 
from Eqs. (2.35)-(2.42), 

r/!= (I +/3K)(2/3F+/3Sr/!) + (11/311 3
), (4.4) 

AF= 2/3F' - 2[/3' + r/3-/3T/3+/3'K{3] 

XF + O( 11/311 3
), 

B =/3K' -/3'S + 0(11/311 2), 

cp- (I + B)AF + O( 11/3112). 

(4.5) 

(4.6) 

(4.7) 

So to justify that/3T/3Fis O( 11/3112), in spite of the unboun
dedness of T, it is sufficient to insert the representation 
(2.28) and a decomposition ofT as in (2.36). Notice that C 
being O( 11/311) does not appear in (4.6) and (4.7), sothatthe 
linear and quadratic approximations are much simpler than 
the third-order one. Let us now give the linear approxima
tion of G and Ao in more detail. Inserting (2.28) into (4.4) 
and (4.7), and the results into (2.27), keeping the linear 
terms, and identifying G(x, y), we obtain 

N i a G(x,y) = $(x,y) + 2I ds(z)/3(z)-
}=o Sj avz 

x [$(x,z)$(z,y)] - 2 jtoijdS(Z)/3'(Z) 

X$(x,z)$(z,y) + 0(11/3112) . (4.8) 

Let us now use the asymptotic behaviors (3.13) and (3.14) 
of$ and derivatives as Ixl--+ 00. Inserting them in (4.8), and 
comparing the asymptotic behavior of (4.8) to (3.19), we 
readily derive 

r/!in (k, y) = exp(zk'y) + 2 jto ijdS(Z) 

a 
x/3(z)- [exp (ik·z) $ (z,y) ] avz 

- 2 jto i
j
dS(Z)/3' (z)exp(ik·z)$(z,y) 

+ O( 11/3112) . (4.9) 
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Finally, the asymptotic behavior of (4.9) as I YI-+ 00 yields 
Ao by means of (3.15): + 2 jto ljds(z)p'(Z)exP(ikOZ - ilkl y.z) 

XP(z)~[exp(ikoz - ilkl y·z)] avz 

For Assumption A, 

G(x,y) = <I>(x,y) - 2 k~olkdS(Z)P'(Z)<I>(X'Z)<I>(Z'Y) 

+ O(IIPI1 2
). (4.10) 

Notice that if the standard coefficients are used, the term 
containing y(z) can be suppressed in (4.5), since it would be 
O( liP 11

2
). The quadratic approximation is nevertheless com

plicated in the general case. When the simplifying assump
tions A or B hold, it is easy to write it down. We only give the 
results. 

+ 4 k~O lkdS(Z)P' (z)<I>(x,z) jto ljdS(t)P' (t) <I> (z,t) <I> (t,y) + O( IIPI1
3

) , 

¢in (k, y) = exp(ik'y) - 2 h~O LdS(Z)P , (z)exp(ikoz)<I> (z, y) 

(4.11 ) 

+ 4 h~O lhdS(Z)p'(Z)exP(ik'Z)jto ljdS(t)P' (t) <I> (Z,t) <I> (t, y) + O( IIPI1 3
) , 

Ao( Ikl y,k) = 2 h~O lhdS(Z)P' (z)exp(ikoz - ilkl yoz) 

( 4.12) 

- 4 h~O L ds(z)P' (Z)eXPUkoZ)jto ldS(t)p' (t)<I>(z,t)exp( - ilkl y.t) + O( IIPI1 3
) . (4.13) 

For Assumption B, 

G(x, y) = :~;~ {<I>(X,Y) + 2 jto ljdS(Z) <I> (x,z) 'I' (z,y) + 4 h~O lhdS(Z) <I> (X,Z)jto ljdS(t) 'I' (t,Z) 'I' (Z, y) + O( IIPI1
3

) } , 

(4.14 ) 

where 

- a<l>(zy) -
'I'(z,y) =P(z) , -P'(z)<I>(z,y), avz 

17( y)¢in (k, y) = exp(ikoy) + 2 jto ljdS(Z)exP(zkoZ)'I'(Z, y) 

+ 4 h~O lhdS(Z) exp (lk"Z)jto ljdS(t) 'I'(Z,t) 'I' (t,y) + O( IIPI1
3

) , 

Ao( Ikly,k) = - 2 jto ljdS(Z)eXP(lkoZ)iIi(Z,lkIY) 

- 4 h~O LdS(Z)eXP(lkoZ)jto ljdS(t) 'I' (z,t) iii (t, Ikly) + O( liP 11 3
) , 

where 

iIi(z,lkly) = P(z) ~ exp( - ilkly.z) - P'(z)exp( - ilklyoz) . avz 

(4.15 ) 

(4.16 ) 

( 4.17) 

(4.18 ) 

Needless to say, the approximate formulas (4.11) and (4.14) must be equivalent, up to O(IIPI1 2
), to the formula (4.8), 

conveniently reduced by means of Assumption A or B. This is obvious as for the couple (4.11) and (4.18). It can also be 
proved directly for the couple (4.14) and (4.8) after using the Green's theorem repeatedly, and relating the coefficient I7(X)/ 

I7(Y) to P and p'. 

B. Approximations of A (s,k) 

In the following, we shall assume that there is no solution of the homogeneous form of (3.9) on the real k axis or at k = 0, 
i.e., that there is no real exceptional point or zero energy bound state (part of this assumption can be proved if V + t::.a/a is 
sufficiently "short range" but we shall not give this proof here). 
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It follows from (3.21) and (3.23) that second-order approximations of AI' i.e., estimates with remainders O(w3
), can be 

obtained after inserting into (3.21) an estimate of ¢( k,x) with remainder O( w2
). This estimate is readily obtained from (3.9) 

as 

¢(k,x) = ¢in (k,x) + t5¢in (k,x) + O(w2
), ( 4.19) 

8¢in(k,x) = - r Go(X,y)[V(y) + .6.a(y)]t/Jin(k,y)dY =O(W), JR3 ,S a 
( 4.20) 

where Go(x,y) is the zeroth-order approximation ofG(x,y), i.e., <P(x,y), and t/Jin is given in (4.9), (4.12), or (4.16). The 
results are for the general case, 

N ( a 
t/J(k,x) = exp(ikox) + 2 j~O Js

j
ds (z){3(Z) av

z 

[exp(lkoz)<P(z,x)] 

- 2 jto L
j
dS(Z){3'(Z)exP(ikoZ)<P(Z,X) - i,,/z[ V(z) + .6.: (z) ]expCtkoZ)<P(Z,X) + O(w2

). (4.21 ) 

When (4.21) is inserted into (3.21), it yields the part A I of the scattering amplitUde due to diffuse scattering up to O( w3
). 

Since we have calculated the partAo due to reflectors up to O(w2
) only in (4.10), the full scattering amplitUde is given, up to 

O(w2
), by the generalized Born formula: 

Nl a A(k',k) = - 2 L ds(z){3(z)- exp[i(k - k')oz] 
j= Sj avz 

+ 2j~ljdS(Z){3'(z)exp[i(k - k')oz] + i,/z[ V(z) + ~(Z) ]exp[i(k - k')oz] + O(w2
). (4.22) 

Assumption A: Inserting (4.21) into (3.21) and taking into account (4.13), we obtain the full scattering amplitude up to 
O(w3

): 

A(k',k) = 2 h~lhdS(Z){3'(z)exp[i(k - k')oz] + i.,/z[ V(z) + ~(Z) ]exp[i(k - k')oz] 

- 4h~OjtlhdS(Z){3'(Z) LdS(t){3'(t)eXP[i(kOZ - k'°t) } <I> (z,t) 

- 2j~ljdS(Z){3'(Z) 1,,/t [V(t) + ~ (t) ]{eXP[i(kot - k'oz)] + exp[i(koz - k'ot) ]}<I>(z,t) 

- r dZ[V(Z) + .6.a(Z)] ( dS[V(t) + .6.a(t)]eXP(i(koZ-k'ot)]<P(Z,t) +O(w3
). 

JR"S a JR',S a 
(4.23 ) 

Notice in this formula the self-interference terms and the cross-interference term between diffuse scattering and (soft) 
reflectors. Notice also that {3' (z) can be replaced by its "standard value," which is simply - s(z). 

Assumption B: From (4.16) and (4.22) we derive 

t/J(k,x) = [u(x)] -1 exp(lkox) + 2jtljds(z)expCtkoz)'I'(Z,X) 

_ ( <I> (x, y) [V( y) + .6.a (y)]eXP(lkoY)dY + O(w2
), 

JR3 ,S a 
(4.24) 

and, inserting this result into (3.21), we derive AI, which can be added to Ao, as given by (4.17), in order to derive the 
quadratic approximation of A: 

A(k',k) = - 2 f ( ds(z)exp(lkoz)\iI(z,k') + r dZ[V(Z) .6.a (Z)]u-2 (z)eXP[i(k - k')oz] 
i=oJSj JR),S a 

N r N r -
- 4 h~O JS

h 
ds(z)exp(lkoz) /~o )Sj ds(t)'I'(z,t)'I'(t,k') 

_ r dX[ Vex) + .6.a (X)]u-I(X) r dZ[ V(z) + .6.a (Z)]u-l(z)eXP[i(koz - k'ox) 1 <I> (Z,x) , (4.25) 
JR',S a Jft-',S a 
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where 'I' and ill, as written in terms of "standard coeffi
cients," i.e., in the case of Assumption B, 

are 

p(z)=r(z), +!3'(z) = -s(z), 

'I'(z,y) = r(z)a<I>(z,y) +s(z)<I>(z,y), 
avz 

(4.26) 

(4.27a) 

- a 'I'(Z,k) =r(z)-exp[ -ikoz] +s(z)exp[ -lkoz]. avz 

(4.27b) 

One easily checks that (4.25) reduces to (4.23) for u = 1, 
since p' is then !3'. Checking that the first order of (4.25) 
reduces to (4.22) when Assumption B holds requires a re
peated use of Green's theorem, with estimates of u(x) in 
terms of its values on the Si 'so Again, notice the self-interfer
ence and the cross-interference terms of hard reflectors [rep
resented by r(z)], soft reflectors [represented bys(z)], and 
diffuse scattering [represented by V(z) + (.~a/a)(z)]. 
Notice also that u = I + No(w), so that u- 1 can be dropped 
in the quadratic terms if N is small. 

c. Approximations of A1(~,k) only 

There are a few cases where "'in and G(x,y) can be 
exactly calculated and the results can be used to derive ap
proximately the additional term Al (~,k). The most general 
of these special cases is that of spherical surfaces 
Ixl = Ro,R1,. .. ,RN , between which u(x) is constant. The 
Green's function G(x, y) is then equal to u(x)g(x, y)/ 
u( y), where g(x, y) is the solution ofthe problem: 

ag(x, y) + k 2g(X, y) = - 8(x - y), 

g(x,y), ~(X)ag~x,y) 
Vx 

continuous functions of x through S, 

g(x, y) purely outgoing. 

(4.28) 

For a fixed "point" y, we can use Oyas the axis of a system of 
spherical coordinates (cos 0 = xoy) and expand g(x, y) 
along the spherical harmonics in such a way that it solves 
( 4.28). This implies that the expansion coefficients are func
tions g/ of Ixl and Iyl (which are, respectively, the radial 
coordinates of the "points" x and y) : 

g(x,y) = (41Tklxllyl)-1 

00 

X I (21 + 1)p/(cos O)g/( 141 yl). (4.29) 
/=0 

The g/ 's satisfy the following constraints for any yElR3 \S: 

[~ k2_1(/+ 1)] Ixll I -0 
d Ixl 2 + Ixl2 g/( ,y) - , 

Ixl #Ro,R1, ... ,RN ; (4.30) 

Ixl-+g/(lxl,lyl) continuousinR\ 

Ixl-+~(lxl>~g/(lxl,1 yl) 
dlxl 

continuous in R3
\ {Ixl = I yl}, 

Ixl-+g/ (lxl,1 yl) outgoing, 
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(4.31 ) 

Let U 1 (Ik 1,lxl) be the solution of (4.30) such that 

u/(Ik 1,lxl) 
---:---:--~c:-'-'-'------+ 1 as Ixl-+O 
(1T/2)lkllxl)1/2/1+ 1I2 (lkllxl> ' 

and let/t(lk 1,lxl) be the solution of (4.30) that goes to 
exp[i( Ik Ilxl - 11T/2)] as Ixl-+ 00. We readily obtain 

41Tlxl I ylg(x, y) 
N 

= I(2/+1)P/(cosO)(w/)-I~(lyl> 
1=0 

X {U/(Ik 1,lxl>/t(lk 1,lxl), 

ul(lk 1,1 yl)/t(lk 1,lxl), 

x<y, 

x>y, 
(4.32) 

where w/ is the number (independent of I yl) defined by 

WI = ~ ( I y I ) [ u i ( I k I, I y I )/t ( I k I, I y I ) 

-ul(lkl,lyl)/i(lkl,lyl)]. (4.33) 

Going now to the general representation of G(x, y) in an 
arbitrary reference system centered at 0, we obtain 

1 00 

G(x, y) = I (21 + 1)P1 [cos Ox cos Oy 
41Tlxll yll=o 

+ sin Ox sin Oy cos(lf'x - If'y)] 

X u( Ixl )u( I yl) 
w/ 

X {U/(Ik 1,lxl)/t(lk 1,1 yl), 

u 1 ( I k I, I y I )/t ( I k I, I x I ) , 

Ixl <Iyl, 

Ixl>lyl· 
(4.34) 

The other case where the discontinuous problem, with 
piecewise constant u(x), is easily dealt with, is the cylindri
cal problem: in some way the limit case of the previous one as 
Ro,R 1,R2 , ••• ,RN go to infinity. However, this problem is not 
a particular case of the previous one and the scattering am
plitude can be defined only for angles that are not 1T/2. 

In all these cases, the approximations for A are easily 
derived by expanding (3.21). In particular, the Born ap
proximation is only 

AI(~,k) = f dX"'in( -~'X)[V(X) + aa(X)] 
Jw,s a 

X "'in (k,x), (4.35) 

where "'in is obtained from (4.34) by using (3.19). 
We reserve more detailed studies for applications. 

v. MISCELLANEOUS RESULTS 

The perturbation theory presented in Sec. IV corre
sponds to series of powers of singular and diffuse data that 
converge if w is small enough and our assumptions are satis
fied, but the rate of convergence may depend heavily on k, 
especially at low energies. Thus a study of Born series (espe
cially zero energy ones) should include additional informa
tion on the discrete spectrum and the analytical properties in 
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k. Here we show a few results on these points, without any 
attempt to be more complete. In fact, all the topics presented 
in this paper are only meant to give a clear exposition of the 
direct problem, but more general and more complete studies 
would be needed to prepare an interesting study of the in
verse problem. For instance, we should have studied in Sec. 
II piecewise C I surfaces rather than C 2 surfaces (angular 
points), and we should have worked in H - 1/2 (S) instead of 
C(S), so as to get larger domains for the scattering opera
tors. This generality, which requires much heavier math
ematics, is not in the scope of the present paper. We shall 
finish the paper with a sketch for further generalizations. 

A. Bound states 

We can make a study quite similar to a previous one9 

valid for aEC 2. We basically assume that there is in the set of 
all standard-equivalent impedance factors one that is every
where bounded above and bounded below by two positive 
numbers 0 < a, < a 2 < b. Now k is considered in (1.1) as a 
complex number, and we seek eigenvalues, i.e., values of k 
allowing a solution q; such that Iq; 12 and Igrad q;'grad q; 1 
belong to L I (R3

). Let k be such a value and k * its complex 
conjugate. Writing down (1.1) and its conjugate, and since 
a and Vare real, we obtain, in the ball w(R) [15N Cw(R)], 

( [q; * div a 2 grad q; - q; div a 2 grad q; *]dx 
jW(R) 

+ (k 2_k*2) ( a 2q;q;*dx=0. 
jW(R) 

(5.1) 

Because of our assumption ona, a2q;q; * anda21q; 1 1 grad q; 1 
are in L I(R3

). Using the Gauss theorem and letting R- 00 

yields 

lim ( a 2(q; aq; * _ q; * aq; )dS 
R- 00 jlxl = R av av 

=0 

= 4 Re k 1m k L,a2q;q; * dx. (5.2) 

Hence the discrete spectrum contains only real values of k 2. 

We have ruled out by assumption the real values of k ("ex
ceptional points"). As for the imaginary ones (bound 
states), if k = iK is one of them, we readily obtain, from 
(1.1), 

( q; div(a2 grad q;)dx 
jW(R) 

-~i a 2q; 2dx-i Va2q;2=0. (5.3) 
w(R) w(R) 

Again, using the Gauss theorem and letting R - 00 yield 

lim ( a 2q; grad q;'ds 
R-oojlxl = R 

=0 

= ~ L,a2q; 2 dx + i,a2 grad q;' grad q; dx 

+ ira2
q; 2 dx. (5.4 ) 
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Hence, if V;;;.O, there cannot be any true bound state [K > 0, 
<pEL 2(R3

), Igrad q; IEL 2(R3
)]. If Vis somewhere attractive, 

it is easy to give conditions on its size that discard bound 
states. The method. and results closely follow Ref. 9 and we 
shall not reproduce them here-neither shall we give the 
proof that there is no exceptional point, i.e., no solution of 
the homogeneous version of (3.9), if V + a-I~a is short 
range; the proof requires heavier mathematics. 

B. Analytic properties of G(x, y) as a function of k 

In Secs. II-IV, k was meant as the length k (and some
times noted Ikl). However, k is a number, we can consider it 
in C and study the corresponding continuation of G(x, y). 
The only case that is reasonably simple is that of Assumption 
B ( or Assumption A, since it is a particular case of B). When 
Assumption B is valid, it follows from (2.47)-(2.49) that 

q; = 2R[rG' + sG], (5.5) 

where we used the standard coefficients (4.26) and R is the 
operator (1 - rK' - SS) - I. Let &l (x, y) be the kernel of R 
in C(S). We readily obtain 

u( y)G(x, y) = u(x)<I>(x, y) + 2j~O hto l}dS(Z) <I> (x, y) 

X ( ds(t)&l (z,t) 
jSh 

X [r(t) a<l>(t,y) + s(t)<I>(t,y)]. (5.6) 
aVt 

Now <I> (x, y) is defined as an holomorphic function for any 
finite kEC, and it has the properties we used to study homo
geneous chains for any k with 1m k;;;.O. It follows from the 
Fredholm alternative that, for 1m k;;;.O, &l (z,t) is a holomor
phic function of k, and thus so is G(x, y). 

c. Generalizations and applications 

The mixed impedance-potential equation ( 1.1) is suffi
ciently general to describe the propagation of almost all sca
lar waves when it is studied in the frequency domain. The 
two independent parameters a 2 and k 2 - V are both func
tions of x and can be used to describe separately two indepen
dent local properties of the medium. For instance, it is easy 
to relate ( 1.1) to the acoustical equation 

A div P - 1 grad P + w 2p = 0 (5.7) 

(density p, Lame parameter A, frequency w, pressure P) by 
settinga2 = p-I,C2 = A Ip,andk 2 - V = w 2/c2.Noticethat 
our assumptions on V allow the velocity c to be discontin
uous (or more singular) even inside the "regular domains" 
D.. 

Also, the scattering theory can very easily be modified 
to accommodate, for instance, geophysical problems where a 
source is located at a point aED. N + I' If such a source is 
purely impulsive, and of strength A, we replace problem 
(3.2) by 
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{

11t/J+k 2t/J- (V+a-'l1a)t/J= -B8(x-a), 

i... and a at/J _ t/J aa continuous/S, (5.8) 
a av av 

t/J is Sommerfeld outgoing as Ix 1-+ 00, 

where B = Aa (0). This problem is, in fact, that of the gen
eral Green's function for the mixed impedance-potential 
equation. It is convenient to set H(x,a) = BG(x,a), so that 
X = :t/J - H is the solution of the problem 

I1X+k 2X- (V+I1/a)t/J=O, 

X aX aa - and a--x- continuous/S, (5.9) 
a av av 

X is Sommerfeld outgoing as Ix 1-+ 00 • 

The analysis of (5.9) is quite similar to that of Sec. III and 
yields the integral equation 

x(x;a) = - r G(x, y) [V( y) + (l1a)( y) ]H( y,a)dy 
JR"S a 

_ r G(X,y)[V(Y) + (l1a)(y)]x(y;a)dY. 
JR''-S a 

(5.10) 

The problem where fiN +, is limited by a plane (physically, 
the Earth's surface, say) where t/J must vanish can be easily 
dealt with: setting x = (XO,x1 ), the plane being Xo = 0, the 
reflection principle shows that the response is 

t/J(xO,x1 ;aO,a1 ) - t/J( - XO'X1 ; - aO,a1 )· 

Notice also that if fiN +, is a medium with V = 0 and con
stant a, the values of the response t/J can be related to those on 
S:; by a formula quite similar to (3.18) and can thus be 
related to the quantities introduced in the scattering prob
lem. More detailed results are given elsewhere. 10 A similar 
analysis could deal with normal mode problems by general
izing a former study" of the author. 

Vectorial cases, in particular, those of wave equations in 
rigid media and those of electromagnetic wave theory, are in 
progress. Applications to evaluate the replacement of dis
continuities distribution by inhomogeneous continuous me
dia for interpreting the data will be published soon. 
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Approximation of SchrOdinger eigenvalues and eigenfunctions by canonical 
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A first-order approximate formula for eigenvalues and eigenfunctions of the Schrodinger 
operator of the periodically driven quantum rotator is given by means of the classical 
perturbation theory and an estimate for the remainder is provided; in the nonresonant case the 
remainder is of order 2 while in the resonant case the remainder turns out to be of order 3/2. 
In the first case, to what extent the procedure can be interated to higher orders is also 
discussed. 

I. INTRODUCTION 

Recently Graffi and Paul) have shown that classical per
turbation theory by the Hamilton-Jacobi method is an effec
tive and powerful tool in quantum perturbation theory and 
in semiclassical quantum mechanics. Namely, they have 
shown that, in the case of the entire holomorphic perturba
tion of the nonresonant harmonic oscillator, the Rayleigh
Schrodinger perturbation series for the quantum eigenvalues 
and the classical Birkhoff normal form are generated by the 
same algorithm. By the same device, Graffi, Paul, and Silver
stone2

•
3 have given a criterion for predicting a threshold for 

the occurrence of avoided crossing in the periodically driven 
quantum rotator which is deeply related to the Chirikov res
onance overlapping criterium (see Ref. 4, Sec. 4). 

The aim of this paper is to exploit this method in the 
calculation of approximate eigenvalues and eigenvectors of 
the Schrodinger operator 

If a2 
• a 

T = - --+ eV(a{3) -IW-. (Ll) 
£ 2 aa2 ' a{3 

acting in L 2 ( T 2
), where T 2 is the two-dimensional torus and 

the perturbating potential has the form 

V(a,{3) = v(a)cos{3, (1.2) 

with 
+00 

veal = L r vreira. (1.3 ) 

We assume that the function (1.3) has an analytic continu
ation in the sense that there exists a constant 5> 0 such that 
the Laurent series 

+00 
L r Vrzr (1.4) 

converges in the complex neighborhood of the one-torus 

Cs = {ZEC: e- S < Izl <es}. (1.5) 

The interest in the eigenvalues and eigenfunctions of the 
operator ( 1.1 ) lies in their close connection with the solution 
of the time-dependent Schrodinger equation 

ifz at/! = H£ (t)t/!, at 
where H£ (t) is the time-dependent Hamiltonian of the peri
odically driven quantum rotator 

If a 2 
H£(t) = ----2 +EV(a,wt) 

2 aa 

(see Ref. 5, §1 and Ref. 2, §1). 

( 1.6) 

The following lemma represents the foundation on 
which the forthcoming proofs rely. 

Lemma 1.1: (See Ref. 2, §3, step 1; see also Ref. 1, §III.) 
Let 

rp(a,{3) = e(i/~)W(a.{3). (1.7) 

Then rp is an eigenfunction for the operator T£ with eigenval
ueE, 

T£rp = Erp, ( 1.8) 

if and only if the function W solves the equation 

1 (a~2 aw ifz a
2
w - - +w-+eV(a,{3) ----=E. 

2 aa a{3 2 aa2 ( 1.9) 

Remark: Observe that, apart from the term - (ifz/2) 
(a 2W /aa2), Eq. (1.9) is precisely the Hamilton-Jacobi 
equation for the classical Hamiltonian 

Y£ (A,B,a,{3) =!A 2 + wB + eV(a,{3), (A,B,a,/3)ET*T 2 

(LlO) 

(T*T 2 is the cotangent bundle of the two-torus). Hamilto
nian (LlO) is the classical counterpart of the SchrOdinger 
operator T£ [( 1.1 ) ] and, on the other hand, it is the quasien
ergy representation of the time-dependent Hamiltonian of 
the periodically driven rotator 

2£ (A,a,t) =!A 2 + eV(a,wt), (Lll) 

which in turn corresponds to the quantum operator H£ (t) 
[ ( 1.6) ]. The representation (1.7) and Eq. (1.9) are the 
bridge between the stationary Schrodinger equation (1.8) 
and classical perturbation theory. 

The paper is divided into two sections besides this Intro
duction. 

In the following section we treat the nonresonant case; 
that is, the case of quantum numbers n such that the oscilla
tion frequency of the angle a of the unperturbed classical 
system Yo (A,B,a,{3) corresponding to the action inA = nfz 
is not a rational multiple of the frequency w of the angle{3. In 
this case we solve Eq. (1.9) to first order in e, setting 

W= Wo + WI' E=Eo+E), 
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and requiring that ~ and E j satisfy Eq. (1.9) to order e j
, 

for j = 0,1 (see Proposition 2.1 for a precise statement). 
Then we examine the dependence of WI on fz in Proposition 
2.2 and the possibility of iterating the procedure in Proposi
tion 2.3. These results are related to those obtained by Herc
zynski6 of the perturbation of nonresonant rotators. 

In the last section we pass to the resonant case, i.e., when 
the frequency A of the angle a is a rational multiple of the 
frequency liJ of the angle,8. In this case we work out only the 
first-order approximate solution of (1.9), W = Wo + WI 
(for the precise statement, see Theorem 3.1). The calculus is 
much more involved since we must separate the nonresonant 
component of WI' which can be treated along the lines of the 
nonresonant case, and the resonant one, which gives rise to a 
Mathieu equation; for details we refer to the proof of 
Theorem 3.1. 

II. THE NONRESONANT CASE 

In this section we examine the nonresonant case; that is, 
[see (2.1)] the oscillation frequency of the non perturbed 
classical system, JfPo[ (1.11)], is not a rational multiple of 
the frequency ofthe forcing term ofthe perturbed one, JfP£. 

In Proposition 2.1 we compute the solution of (1.9) to the 
first order in e, while in Proposition 2.2 we express this solu
tion by means of a series, the terms of which are of order j 
with respect to fz as fz--+O, forj = 0,1, .... 

Proposition 2.1: Let A,BER such that 

Ar+liJ¥=O, VT'El. (2.1) 

Then for every m,nEl and fz> 0 such that 

nfz=A, mfz=B, (2.2) 

and 

(2.3 ) 

(here d denotes an r-independent positive constant), there 
exist an approximate eigenvalue E and an approximate ei
genfunction qJ: T2--+C in the form 

E = !A 2 + liJB, (2.4 ) 

qJ(a,{3) = e(illl) W(a.f3.E.£) , 

such that 

T£qJ = EqJ + R, 

with 

(2.5) 

(2.6) 

(2.7) 

where C is a constant depending only on the potential Vand 
on the constant din (2.3); we observe that despite the depen
dence of don fz the constant C may be chosen independent of 
fz if we assume a condition slightly stronger than (2.1) . We 
refer to the remark after the proof. 

Proof In order to compute the approximate eigenfunc
tion (2.5) and the approximate eigenvalue (2.4) satisfying 
(2.6) and (2.7) we look for a constant E and a function W 
that solve Eq. (1.9) approximately; we write 

(2.8) 

and 

W(a,{3,E,e) = Wo(a,{3,Eo) + WI (a,{3,E,e) , (2.9) 
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where Eo and Wo,EI and WI solve (1.9) toorderOand 1 ine, 
respectively. Namely, Eo and Wo solve (1.9) as e = 0, 

1. (aWo)2 liJ awo _ ifz a2wo = E (2.10) 
2 aa + a{3 2 aa2 0' 

while EI and WI solve 

awo aWl +liJ aWl +eV(a,,8) _ ifz a
2
w I =EI. 

aa aa a{3 2 aa2 

(2.11 ) 

Looking for solutions of (2.10) in separated variables 
and requiring periodicity in a and,8 for the function e( illl) w." 
it is easy to obtain (see Ref. 2, §III, step 1) 

Eo = !(nfz)2 + liJmfz, 

Wo(a,{3,Eo) = nfza + mfz{3. 

(2.12) 

(2.13 ) 

Obviously the assumptions of Proposition (2.1) lead us 
to consider values for m, n, and fz that satisfy (2.2) and 
(2.3 ). 

In order to solve (2.11) we expand the function WI into 
a Fourier series 

+00 
WI (a,{3,E,e) = I r(Wr,1 (E,e)ei(ra+ f3) 

(2.14 ) 

Keeping in mind (1.2) and (1.3) it is easy to see that the 
function (2.14) solves Eq. (2.11) if and only if 

and 

i vr 
W (Ee) =e--------
r,l' 2 Ar + liJ + (fz/2)r ' 

i vr 
W (Ee)=e-------...,.. 

r. -1' 2 Ar _ liJ + (fz/2)r 

E I =e-
I
- 2 ( V(a,fJ)dad{3=O. 

(21T) JT' 

rEl, (2.15) 

(2.16) 

The form of the Fourier coefficients (2.15) and the as
sumption (2.3) yield the uniform convergence in T2 of the 
series in the rhs of (2.14); moreover, the function WI can be 
analytically continued to the whole complex neighborhood 
Cs [( 1.5)] of the torus as the convergence of the Laurent 
series (1.4) in Cs implies the convergence of the series ob
tained by replacing the coefficients Vr by wr• ± I . 

Inserting the rhs of (2.13) and (2.14) into that of (2.9) 
and substituting into {l.5) we get 

1 (aw )2 (T£qJ)(a,{3) = EqJ(a,{3) +2" aa l (a,{3) qJ(a,{3) , 

(2.17) 

where E is given by (2.8), (2.12), and (2.16). Formula 
(2.17) is precisely (2.6) with 

R(a,{3,E,e) = - _I (a,{3) cp(a,fJ). 1 (aw )2 
2 aa 

(2.18 ) 

Obviously 

1 1 aw I' IIR(a,{3,E,e) IIL'(T') <- max __ I (a,{3) IIqJ IIL'(T')' 
2 T' aa 

(2.19) 
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In order to estimate the factor 

max 1 aWl (a,fJ) 12 
T' aa 

in the rhs of (2.19), we again exploit the Fourier expansion 
(2.14) for the function WI and the form of its coefficients 
[(2.15)]: 

max 1 aWl (a,{3) 12 
T' aa 

..;;(maxl£ Y ,( rv, ei(,a+ f3l 

T' _ 00 Ar + w + (l1/2)r 

+ Ar-w:~ li/2 )r ei(,a - f3l) I r (2.20) 

Since the series (1.4) converges in the neighborhood Cs 
[ ( 1. 5) ], for every a E (D,S), there exists a constant C> 0 
such that 

(2.21 ) 

Inequality (2.7) can now be easily proved estimating 
the modulus of the series in the rhs of (2.20) by the series of 
the moduli and then using (2.21) and the assumption (2.3). 

This concludes the proof the Proposition (2.1). 
Remark: It has been remarked by Herczynski7 that as

sumptions (2.1) and (2.3) can be replaced by the following 
Diophantine condition on the couple (A,w): there exist two 
positive constants C and r such that 

IAr+wsl-I..;;C(lrl + Isl)r, (2.22) 

for every r, s E Z with (r,s) =1= (0,0). In fact, taking into ac
count (2.2) the condition (2.22) allows us to estimate the 
denominator in the rhs of (2.20) as follows: 

IAr±w+ (li/2)rl-I..;;C[1I(lir+I)]lrI2r, (2.23) 

for every r E Z. Since the maximum of the lhs of (2.23) is 
attained for r in a neighborhood of + 2n ± (wA), (2.23) 
and (2.21) allow us to prove that the constant Cin the rhs of 
(2.7) can be chosen independent of Ii, at least if Ii is suffi
ciently small. For the proof of (2.23) we refer to Ref. 6, Sec. 
2, Lemma 1. 

The explicit expression (2.15) of the Fourier coeffi
cients of the function (2.14) shows that WI is the product of 
£ times a function depending on the coordinates a and {3 and 
the parameters A and Ii. 

The problem of the dependence on Ii of this function is of 
considerable importance (see Ref. 1); in the following prop
osition we give a deeper insight into this problem. 

Proposition 2.2: The function WI (a,{3,E,£) can be given 
the form 
WI (a,{3,E,£) 

= £j(a,{3,E,Ii) 

where 

00 

+£ I lijgj (a,/3,E,Ii) +£R(a,{3,E,Ii), 
j~ I 

(2.24) 

R(a,{3,E,Ii) = o(lin), as Ii-+O, VnEN; (2.25) 

the functions/, gj' and the remainder R have analytic con
tinuation to the neighborhood Cs ' where the same property 
is true for the potential V(a,{3) [(cf. (1.3)-(1.5)]; more-
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over,J and gj con verge to functions of the same kind as Ii -+ O. 
Prool We first examine how the generic Fourier coeffi

cient (2.15) of the function (2.14) depends on Ii. For fEZ 
with IAr + wi> (li/2)r, W,.I can be written in the form 

i v, i v, 00 "( - r )j WI =£----+£---- I Ii) . 
" 2 Ar+w 2 Ar+wj~1 2(Ar+w)' 

(2.26) 

on the other hand, for fEZ with IA r + wi < (li/2) r, we have 

. v, 1 
W"I =£1 lir 1 +2[(Ar+w)/(flr)] . 

(2.27) 

By the assumption (2.1), if Ii is small enough, the inter-
val 

[ (A + ~A 2 - 2wfi) Iii, (A - ~A 2 + 2wli) Iii] 

does not contain an integer; we shall suppose that this condi
tion is met throughout the following and this ensures that 
(2.26) holds if -r_(Ii) <r<r+(Ii), while (2.27) holds 
elsewhere. Here we have set 

r + (Ii) = (A + ~A 2 + 2wli)/li, 

r _ (Ii) = (A + ~A 2 - 2wli)/li. (2.28) 

By the very same assumption we find the following for
mulas for w,. _ I analogous to (2.26) and (2.27), respective
ly: 

i v, i v, 00 "( - r )j W,_I =£----+£---- I Ii) , 
. 2 Ar-w 2 Ar-wj~1 2(Ar-w) 

for fEZ, with - r +(Ii) <r<r _(Ii), and 

. v, 1 
w,. - I = £1 lir 1 + 2(Ar _ w)/(lir) , 

for fEZ, with rEt ( - r + (Ii), r _ (Ii». 
Set now 

j(a,{3,A,Ii) 

and 

= ~( I _V_,_ ei(ra + f3l 
2 _ ,_(Ii) <,<,+(Ii) Ar + w 

+ I _V_,_ ei(,a - (3») 
- ,.(Ii) <,<,_(1i) Ar-w 

(2.29) 

(2.30) 

(2.31) 

Now r ± (Ii)-+ + 00 as Ii-+Oby definitions (2.28); this 
and the convergence properties of the series (1.4) entail the 
analyticity for the functions j and gj in the neighborhood C s 
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and for their limits as Ii-.O as well. 
Finally 

R(a,{3,E,Ii) 

=i 
Vr 1 

lir 1+2(Ar+m)/(lir) 
ei(ra + (3) 

+i L Vr 1 (/(ra-{3). 
lir 1 + 2(Ar- m)/(lir) fEZ 

(2.33 ) 

In order to prove the estimate (2.25) we first go back to the 
asymptotic behavior (2.21) of the coefficients of the series 
(1.4). Inserting (2.21) in (2.33) we estimate the modulus of 
R(a,{3,E,Ii) by 

IR(a,{3,E,Ii) I <2 L 
fEZ Ii 

I't( - r_(fi),r_(fi») 

on the other hand, r _ (Ii) >A Iii and therefore the above esti-
mate gives 

IR(a,{3,E,Ii)I<4 C e- aAlfi i: _~. 
Ii r= I r 

(2,34) 

Obviously (2.34) yields (2.25). 
The above two propositions show clearly that the func

tion W[ (2,9)] and the approximate eigenvalue E[ (2.8)] 
solve ( 1. 9) up to the term! (a W/ aa) 2; this term is of order 
e2 and has analytic continuation to the complex neighbor
hood C s [( 1,5 ) ] , Hence one can wonder whether the proce
dure leading to the proof of Proposition 2,1 can be iterated. 
The answer is negative, as can be easily seen setting 

(2.35) 

and 

W(a,{3) = Wo(a,{3) + WI (a,{3) + W2(a,{3); (2.36) 

and requiring that Ej and- ~ be solutions of ( 1.9) to order) 
ine, for) = 0,1,2. This means thatEj and ~ solve the equa
tion 

)=0,1,2, (2.37) 

where obviously 

So(a,{3,E,e) = 0, Sj(a,{3,E,e) = eV(a,{3), 

S2(a,{3,E,e) = - __ I (a,{3) . 1 (aw )2 
2 aa 

From (2.14) and (2.15) it is easy to see that the function 
S2(a,{3,E,e) can be expanded into the Fourier series 

S2 ( a ,(3,E,e ) 
+00 
" (s (E e)ei(ra + 2(3) + s (E e)eira 
~ r ~ , ~ , 

(2.38) 
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Now (2.38) suggests we look for a solution of (2.37) for 
) = 2 of the form 

W2(a,{3,E,e) 

+00 
= L r(w~,~)(E,e)ei(ra+2(3) + w~,~)(E,e)eira 

+ w~,22. 2 (E,e)ei(ra - 2(3). 

Inserting (2.38) and (2.39) into (2.37) we obtain 

(Ar+ms+ (1i12)r)w~,;)(E,e) = -s2.s(E,e), 

(2.39) 

(2.40) 

for every (r,s) i= (0,0), with rEZ and s = - 2,0,2, while 

E2 = so,o (E,e). (2.41 ) 

From (2.40) we could obtain formulas analogous to (2.15) 
if and only if 

(Ar + ms + (1i/2)r)i=0, for every (r,s) i= (0,0), with 
rEZ and s = - 2,0,2, 

but this is false, at least for r = - 2n and s = ° [we recall 
(2.2)]. 

If we assume that the Diofantine condition (2.22) 
holds, we can solve Eq. (2.37) for) = 2 only in the following 
approximate sense: define the function W2(a,{3,E,e) by 
(2.38) where the coefficients w~,;) (E,e) are given by (2.40) 
for every rEZ and s = - 2,0,2 with (r,s) i= (0,0) and 
(r,s) i= ( - 2n,0) and set wf/d (E,e) = W<':)2n,o (E,e) = 0; 
then W2(a,{3,E,e) solves (2.37) except for the term 
S<':)2n,o (E,e)e - 2nia. By the analyticity of the known term 
S2 (a,{3,E,e) in a complex neighborhood of the two-torus it is 
easy to see that there exists a constant k> ° such that [cf. 
(2.21)] 

s_2n,o(E,e) =O(e- kn ), as n-.oo. 

Keeping in mind (2.2), we see that the function 
W2 (a,{3,E,e) satisfies 

awo aW2 + m aW2 _ iii a
2

w 2 S (a{3E ) 
aa aa a{3 2 aa2 + 2 ",e 

= E2 + O(e - klfi), as Ii-+O, (2.42) 

where E2 is given by (2.41) and k is some positive constant. 
Eq. (2.42) is the counterpart ofEq. (15) in Ref. 6. 

Now if W2(a,{3,E,e) and E2 are as above and W(a,{3), 
E, and t,bare defined by (2.36), (2.37), and (1.7), respective
ly, then E is an approximate eigenvalue and t,b is an approxi
mate eigenfunction of the operation To in the sense that they 
satisfy 

(2.43 ) 

with 

IIR(a,{3)IIL'(T 2 ) <e3C11q? IiL'(T 2 ) +e2Ce- klfi. (2.44) 

Under the Diophantine condition (2.22) this procedure can 
be obviously iterated by setting 

and 

E=Eo+E1 + ... +Ek (2.45) 

W(a,{3) = Wo(a,{3) + WI (a,{3) + ... + Wk (a,{3), 
(2.46) 

and requiring that ~ (a,{3) be an approximate solution of 
(2.37) for) = O,I, ... ,k in the sense of (2.42). We state this 
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result in the following proposition. 
Proposition 2.3: Under the above assumptions the func

tion (1.7) with W(a,p) given by (2.46) is an approximate 
eigenfunction relative to the approximate eigenvalue E 
[ (2.45)] in the sense that 

TECP = Ecp + R, 

with 

IIR(a,p) IIL'(T') <£k+ IC IIcp IILl(Tl) + £2Ce- kif'. 

At least for the particular potential (1.2) the above 
proposition provides a (perhaps unsatisfactory) answer to 
the question raised by Graffi, Paul, and Silverstone (see Ref. 
2, Sec. III, Step 2) of whether Eqs. (2.37) could be solved 
recursively. 

III. THE RESONANT CASE 

We come now to the resonant case; that is, the case in 
which the oscillation frequency of the unperturbed system is 
a rational multiple of the frequency of the forcing perturba
tive term. The following theorem is analogous to Proposition 
2.1. However, in this case the first-order approximation has 
no trivial extension to higher orders in £, which parallels 
Theorem 2.3 of the preceding section. In fact, in this case the 
remainder turns out to be of order £3/2 and qualitatively dif
ferent from the potential V(a,p) which appears in the equa
tion valid to first order in £ [compare (3.7) and (3.44) with 
(2.7) and (2.18), respectively]. 

The reason for this is to be found in the technique of the 
proof, which is reminiscent of the canonical perturbation 
theory introduced by Poincare in the resonant case (see Ref. 
8, Chap XIX, § 199-203 ); precisely we split the function WI 
[see (2.9) ] and the perturbation V( a ,/3) into a nonresonant 
part and a resonant one (see step 1 of the following proof). 
The nonresonant part satisfies a linear equation (see step 2) 

while the resonant one is required to satisfy a nonlinear equa
tion (see step 3 (3.22): as in the classical case the fractional 
power of £ arises from this equation. We remark also that Eq. 
(3.22) coincides with the equation in Ref. 8, Chap. XIX, 
§199, p. 316, but for the (quantum) term 

.fl p2J 2S 
-1----. 

2 4 J/1? 
Theorem 3.1: Let A,BER such that there exists p6l such 

that 

Ap + w = O. (3.1 ) 

Then for every m,nE'l and fl> 0 with 

nfl = A, mfl = B, (3.2) 

and 

IAr±w+(fl/2)rl>d>0, VrE'l with r#p, 
(3.3 ) 

there exist an approximate eigenvalue E and an approximate 
eigenfunction cP: T2 _ C of the form 

cp(a,p) = e(i/fI) IV< a,f3,E,E)cp , (a,p) 

and 

E=Eo+EI 

such that 
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(3.4) 

(3.5) 

and 

1 2 
Eo=-A +wB [c.f. (2.12)], (3.6) 

2 

E, = £V + pfl[ ~£V !log(£V)] r(p,fl,£) + O(f!2), 

as fl- 0 [cf (2.16) ], 

with 

IIR IILl(Tl) 

<£3/2C(1 + o(1)max lcplllle(i/1;)WII Ll(T') 
T' 

+ £2C IIcp IIL'(T'l' (3.7) 

where 0(1) is to be meant as fl-O. [The function W{a,/3) is 
quite similar to the function Wappearing in the approximate 
eigenfunction (2.5) in the nonresonant case, while the func
tion CPI is a Mathieu function; for the precise definitions see 
(3.35) and (3.36)]. The constant Vin the first term of the 
rhs of (3.6) denotes the absolute value ofthe Fourier coeffi
cient vp of the potential V( a,p) relative to the resonant mode 
e ± i(pa + 13) [see (1.2) and (1.3)]. The function r(p,fl,£) in 
the second term in the rhs of (3.6) is bounded as £-0 and 
fl-O. As for the constants in the rhs of (3.7), they depend on 
theL 2(T2) norm of the potential V(a,p) and on (3.3). 

Remark: Also in this case the constant CI in the second 
term of the rhs of (3.7) can be chosen independent of fl if fl is 
sufficiently small since the minimum of the absolute value of 
the rhs of (3.15) is attained in a neighborhood of 
- 2n - p - Iff/ / n and is of order fl- I as fl- 0; again the 

dependence of the constant din (3.3) on fl does not imply the 
same dependence for CI. 

Proof We divide the proof into six steps. 
Step 1 (Separation o/the resonant and nonresonant com

ponents): We proceed as in Ref. 2, § III, step 2, and write the 
potential V( a,p) as a sum of two terms: 

V(a,p) = 'ha,p) + V(a,/3). 

Then V( a,p) is obtained by summing up all the nonresonant 
modes, 

V(a,p) = ~ (~ ei(ra + 13) + V;r e- i(ra+f3)} (3.8) 

while the term V(a,p) consists of the resonant part, 

V(a,p) = (vp/2) ei(pa + 13) + (v_p/2) e- i(pa+f3l. 
(3.9) 

We modify the method of Proposition 2.1 for finding a 
solution for ( 1. 9) of the form (1.7) by writing the function 
WI [see (2.9)] as a sum of a nonresonant term WI and a 
resonant one WI; namely, 

(3.10) 

and 

W(a,p,E,£) = Wo(a,p,Eo) + WI (a,p,E,£) 

+ W,(a,p,E,£), (3.11) 

where Eo and Wo are still given by (2.12) and (2.13), respec
tively, while 

Franco Nardini 2603 



                                                                                                                                    

and 

WI(a,[3,E,E) = L (Wr,1 (E,E)e i(ra+ f3
) 

fEZ 

r~p 

+ W _ r, -I (E,E)e- i(ra+ f3
) 

W - ( [3 E ) - ~ w- (E) ij(pa + f3) I a, , ,E - £., j pJ ,E e . 
jEZ 

(3.12) 

(3.13 ) 

The functions W(a,{3) and W(a,[3) are, respectively, 
the counterparts of the terms V f-t SI and f-t S2 that appear in 
the development of the generating function introduced in 
Ref. 8, Chap. XIX, §204, Eq. (2). 

~tep 21Equation for the nonresonant components): As 
for EI and WI' we require that they satisfy an equation analo
gous to (2.11), 

A A A 

awo aWl + w aWl _ i!!:.... a
2

w I + EV(a,[3) = HI' 
aa aa a[3 2 aa2 

(3.14 ) 

From (3.9) it is clear that the function (3.12) satisfies 
Eq. (3.14) if and only if 

~ E i Vr . h 
W ( E) = E - fEZ Wit r=/=p, 
r,l' 2 Ar + w + (fz/2)r' 

(3.15 ) 

~ i Vr 
W (EE)=E- fEZ 
r,-I' 2 Ar-w+ (fz/2)r' 

with r=/= - p, 

and 

A 1 I A EI = E --2 V(a,{3)da d[3 = 0, 
(21T) T' 

(3.16 ) 

where A is the constant defined in (3.2) 
It is worth noticing that (3.15) and (3. 16) parallel 

(2.15) and (2.16), respectively; thus we can conclude also in 
this case that the function W has analytic continuation to the 
complex neighborhood Cs- [( 1.5)] by (3.3) and the assump
tion on the series (1.3). 

Step 3 (equation for the resonant components): In order 
to derive an equation for the resonant components EI and 
WI we first observe that requiring that they satisfy an equa
tion analogous to (3.14) would lead to a solu tion like (3.15) 
with r = p; in this case, however, the denominator in the rhs 
of (3.15) would be simply (fz/2)p2 [by (3.1)] and hence 
infinitesimal as fz-O, The way out from this shortcoming is 
taking into account the quadratic term (a W/ aa) 2 arising in 
( 1.9) under substitution of (3.11); hence we require that EI 
and WI satisfy the equation 

awo aWl + w aWl + EV(a,{3) 
aa aa a[3 

_ ifz a
2wI + ~(aWI)2 = EI. 

2aa2 2aa 
(3.17) 

On the other hand, the sum of the first and second term in the 
lhs of (3.17) is zero by (3.1) and (2.13) and the equation 
reduces to 

(3.18) 

2604 J. Math. Phys., Vol. 30, No. 11, November 1989 

We start computing a solution for (3.18) by noticing 
that 

V(a,[3) = V cos(pa + [3 + y), 

where V= IVpl andy=argvp [see (3.9)]. With no loss of 
generality we can suppose y = 0 and set 

V(a,[3) = V cos(pa + [3). ( 3.19) 

Now we use a relevant property ofEq. (3.18) highlight
ed in Ref. 2, §III, step 4; namely, the known term (3.19) and 
the unknown (3.13) depend only on the classical "slow" 
variable. Precisely we perform the change of variable 

f-t = (pa + [3) 12 

and set 

S(f-t) = WI (a,[3), 

(3.20) 

(3.21 ) 

where S is a periodic function with period 1T. Inserting 
(3.19)-(3.21), Eq. (3.18) becomes 

1 (p as)2 . fz p2 a 2s _ 
- -- -1----+ EVcos(2f-t) =EI. 
2 2 af-t 2 4 af-t2 

(3.22) 

We follow once more Ref. 2, §III, step 5, and set 

(3.23) 

Thus we transform (3.22) again into a Schrodinger equa
tion, since S solves (3.22) if and only if U [ (3.23)] solves 

_ ~(pfz )2 a 2~ (f-t) + E V cos(2f-t) U(f-t) = EI U(f-t). 
2 2 af-t 

(3.24) 

Equation (3.24) is a Mathieu equation which we write in the 
canonical form (see Ref. 9, Chap. 2, §2.21) 

a2 u 
-2 (f-t) + (A - 2q cos(2f-t»U(f-t) = 0, (3.25) 
af-t 

where 

(3.26) 

and 

(3.27) 

In accordance with the meaning of the function U [see, 
(3.21) and (3.23) ], we look for a periodic solution of (3.25) 
with period 1T. It is well known (Ref. 9, Chap. 2,§2.2) (see, 
also, Ref. 10, part I, Chap. II) that, for every q, Eq. (3.25) 
has two sequences of eigenvalues 

..1= a2m (q), m = 0,1,2, ... , 

and 

..1= b2m (q), m = 1,2,3, ... , 

and two corresponding sequences of periodic solutions with 
period 1T: the first one made up of even functions 

U(f-t) = ce2m (f-t,q), m = 0,1,2, ... , 

and the second one made up of odd functions 

U(f-t) = se2m (f-t,q), m = 1,2,3, .... 

Step 4 (correction of the eigenvalue to first order in E): 
Since we are looking for an approximate eigenvalue of the 
form (3.5) and EI plays the role of first-order correction 
(with respect to the perturbation size), we must require that 
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in some sense EI-EVas Ii-O; this entails that the param
etersA [(3.26)] and 2q [(3.27)] of the Mathieu equation 
(3.25) are near to each other in the sense that they belong to 
the region IV of Ref. 11, Chap. I, § 1.2 and Chap. II, §4.1, 
( 4.1). Therefore we exploit the formulas [Ref. 11, Chap. II, 
§4, (4.13b)] with n = 2m, keeping in mind that they hold 
under the condition that the quantity 

r ± (m,E,Ii) = (2m ± l)1T -.JT6q (3.28) 
I 

is small. 
We start examining (3.28) with the plus sign; substitut

ing (3.27) in (3.28) and choosing m such that the rhs of 
(3.28) is minimum we find 

~ 5 ~EV 3 
4----<m<4--+-

trfzp 8 trfzp 8 
(3.29) 

and correspondingly 

A=a (4 EV)=8 EV +16~ EV r+(m,E,Ii) +0(1), 
2m 1i2p2 1i2p2 Ij2p2 log(EV Ilj2p2) + 8 log 2 - r'(V/nv (3.30) 

as Ii-O. In this case the solution of (3.25) is the even Mathieu function 

U(f.-l) = ce2m (f.-l,4(EV 1(lj2p2)). (3.31 ) 

Ifwe choose the minus sign in (3.28), we must replace (3.29) with 

4 ~EV -~<m<4 ~EV +~ 
trfzp 8 1riip 8 

(3.32) 

and correspondingly 

A=b (4 EV)=8 EV +16~ EV r_(m,E,Ii) +0(1), 
2m 1i2p2 1i2p2 1i2p2 log(EV l1i2p2) + 8 log 2 - r'W/r(i) 

(3.33) 

I 
A A 

as Ii-O. In this case the solution of (3.25) is the odd Mathieu T£ = To + EV, 't = To + E V, (3.37) 
function 

U(f.-l) = se2m (f.-l,4EV 1(1i2p2)). (3.34 ) 

Conditions (3.29) and (3.32) yield that Ir ± (m,E,Ii) 1 
< 1T and correspond to the quantization condition of the 
slow action introduced in Ref. 2, § III, step 5. 

We conclude the computation of the approximate eigen
value (3.5) and the approximate eigenfunction (3.4) by set
ting 

A A 

W(a,/3) = Wo(a,/3) + WI (a,/3) (3.35 ) 

and 

((JI(a,/3) = U«pa +/3)12), (3.36) 

where Wo is given by (2.13), WI by (3.12) and (3.15), and 
finally Uby either (3.31) or (3.34), according to the fact 
that either (3.29) or (3.32) holds. The three terms of the 
approximate eigenvalue E[ (3.10)] are given by (2.12), 
(3.16), and (3.26) with A provided by either (3.30) or 
(3.33). 

Step 5 (pro%/(3.6) and computation o/the reminder}; 
We are now ready to undertake the proof of (3.6). Set 

- ~ a ~ am ( T m ) e(i/fr)( w,. + w.) _ Ij2 _ e(i/fr)( w,. + w.) _'Y_I 

£'YI ~ ~ 

where Vand Vare, respectively, the nonresonant component 
(3.8) of the potential V(a,/3) and the resonant one (3.9). 
We express T£ ({J with the aid of the pair of operators intro
duced in (3.37): 

T£({J = T£ (e(i/fr)( w,. + W. )({JI) 

= (T£e(i/fr)(w,.+ w'»)({J1 + (t({JI)e(i/fr)(w,.+ w.) 

a ~ am _ 1i2 _ e(i/fr)( w,. + w.) _'Y_I • 

aa aa 
(3.38) 

For the computation of the first term in the rhs of (3.38) 
we go back to (2.17) and notice that a similar analysis yields 

(T£e(i/fr)(W,.+ w'»)({JI 

~ 1 (aW)2 ~ = E e(i/fr)(W,.+ W')m + ___ I m e(i/fr)(w,.+ w.) 
o 'Y 1 2 aa 'Y 1 , 

(3.39) 

where Eo is given by (3.6). As for the other term in the rhs of 
(3.38) we observe that 

= _ ~[~ u(pa + /3) _ 2 E V cos (pa + /3) U (pa + /3)]e(i/fr)( w,. + w.) 
2 aa2 2 Ii 2 

_ {i(J)li~ u(pa + /3) + iii awo ~ u(pa + /3)}e(i/fr)(w,.+ w.) + iii aWl ~ u(pa + /3) e(i/fr)(W,.+ w.). 
~ 2 ~ ~ 2 ~ ~ 2 

By the resonance condition the term within the curly brackets in the rhs of (3.40) vanishes, while the term within the square 
brackets can be computed by means of (3.24) and (3.26): 
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(t m )e(i/Ii)(w,.+ W,) + fz2 ~ e(i/Ii)(W,.+ W,) acpI 
ETI aa aa 

= fz2p2 AU (pa + P\e(i/Ii)( w,. + W,) + i !!J!.... a WI U ,(pa + l!\e(i/Ii)( w" + W,) 
8 2 -) 2 aa 2 -) , 

where A is given by either (3.30) or (3.33) since U has been chosen accordingly to either (3.31) or (3.34) under the conditions 
(3.29) and (3.32), respectively. 

Now inserting (3.39) and (3.41) in (3.38) and using (3.30) and (3.33) again we get 

TECP = (Eo + EI)cp + R(a,{3,E,E,fz), (3.42) 

where Eo is given by (2.12). 

- r (mEfz) 
EI = EV ± 2fzp~EV ± " + 0(fz2), as fz-->O, 

log(EV) - 2Iog(fzp) + 8 log 2 - r'«2 + 1 )/4)/r«2 + 1 )/4) 
(3.43 ) 

and 
A A 

R(a{3EEfz) =.!.(aWI )2m +i fzp aWIU,(pa + {3)e(i/Ii)(w,. + W,). 
"" 2aa T 2aa 2 

(3.44 ) 

Clearly (3.43) proves (3.6). 
Step 6 {estimate o/the remainder}; We start the estimate of the remainder (3.44) by observing that the term 

can be treated just like (2.19). 
As for the second term in the rhs of (3.44) we obviously obtain 

Ii
i !!J!.... aWl u,(pa + {3)e(i/Ii)( w" + W,) II ,.!. fzp max I aWl I max IU'I Ile(i/Ii)( w" + W,) IlL'( T') • 

2 aa 2 L'(T') 2 T' aa [0.1') 
(3.45 ) 

Then we estimate the term max[O,l') I u' I by the following well known interpolation inequality: there exists a constant C> 0 
such that, for every OE (0,1 ), 

maxi U'I,C( 110) max IUI + 0 maxlU" I. 
[0,1') [O,1T) [0,1') 

(3.46 ) 

Using Eq. (3,25) and substituting from (3.27), (3.30), and (3.33) we can estimate the second term in the rhs of (3.46) by 

o maxi (2q cos(2,u) - A) U(,u) I ,018 ~V2 + 8 ~~(1 + 0(1») I maxi U I, 
[0,1') fz P fz P [0,1') 

as fz-->O. Inserting this into (3.46) we get 

_ EV 
maxlU'I,(Co I +016~(1 +o(1)))maxlUl. 
[0,1') fz P [0,1') 

(3.47) 

Keeping in mind that the term 

maxi aWl I 
T' aa 

can be estimated as (2.20), we now choose 0 = fzp/~EV and insert (3.47) into (3.45); this yields 

II i fzp aWl u,(pa + {3)e(i/Ii)( w" - W,) II ,CE~EV maxlU 1(1 + 0(1) )lIe(i/Ii)( w" + W')IIL'(T')' 
2 aa 2 L '( T') [0,1') 

This concludes the proof of (3.7). 
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A new class of Einstein's field equations with the energy-momentum tensor of a perfect fluid 
with nonlinear electromagnetic field aligned along the Debever-Penrose directions is 
determined. The solution obtained is a nonlinear electromagnetic generalization of the fluid 
NUT-B( + ) [Newman-Unti-Tamburino and Carter B( + )] solution. 

I. INTRODUCTION 

Recently several axisymmetric fluid solutions have been 
determined, 1.2 and it is well known that this class of solutions 
has great interest in cosmological problems.3 On the other 
hand, nonlinear electrodynamics is interesting in cosmologi
cal theories as a simple classical model to explain vacuum 
polarization processes-a possible influence of the mecha
nism of the evolution of the early universe. In this paper, a 
metric that can be considered as produced by a perfect fluid 
with nonlinear electromagnetic field of the Born-Infeld type 
is given. It may be remarked that there are very few known 
exact solutions to the Einstein-Born-Infeld (EBI) equa
tions, and that even in the flat space-time, the solutions to the 
Born-Infeld equations are rather scarce. 

This paper is organized as follows. Section II outlines 
some facts about the nonlinear electrodynamics of the Born
Infeld type4

•
5 in terms of the null tetrad formalism. Section 

III contains the EBI equations for a general type D metric 
with fluid in the case when the double Debever-Penrose vec
tors are aligned along the eigenvectors of the nonlinear elec
tromagnetic field. In Sec. IV the stationary axisymmetric 
fluid metric with nonlinear electromagnetic field is derived, 
and Sec. V contains some conclusions. 

II. THE EINSTEIN-BORN-INFELD EQUATIONS 

Here we give a very concise exposition of the basic facts 
about the nonlinear electrodynamics in terms of the null tet
rad formalism of Debney-Kerr-Schild, 6 according to which 
the metric is given by 

g = 2el ® e2 + 2e3 ® e4
, 

e2 = el
, e3 = e3

, e~ = ~, 
(2.1 ) 

where the eaEA I have to fulfill the first Cartan structure 
equations 

(2.2) 

with r a bEA I satisfying the second structure equations 

(2.3 ) 

The Riemann curvature components R a bcd may be re
placed by the Weyl conformal tensor components and the 
components of the traceless Ricci tensor 

Cab: = Rab - ! gab R , 

Rab: = R qabq' R = R aa' 
(2.4) 

In the Born-Infeld nonlinear electrodynamics the elec-
tromagnetic field is described by two skew-symmetric tensor 
fields Fab and Pab which must fulfill the equations 

(2.5) 

wherejb = PUb denotes the electromagnetic current density. 
We shall use the convention Fab = !EabcdFCd, where Eabcd is 
the Levi-Civita symbol with E1234 = 1. The fields Fab and Pab 
are related by the "constitutive equations" 

(J~) (J~)V 
Fab = JP Pab + JQ Pab' (2.6) 

where ~ = b 2 - (b 4 - 2b 2p + Q) 1/2 is the Born-Infeld 
structural function, b is a positive real constant, and 

(2.7) 

are the invariants of Pab; Pis real and Qis pure imaginary. In 
the limit when b-+ 00 one recovers the linear theory. 

III. EINSTEIN EQUATIONS COUPLED TO NONLINEAR 
ELECTROMAGNETIC FIELD 

In this paper, we are concerned with solutions to the 
Einstein equations, 

Rab - ! gab R = - Tab' 

Tab = Vz + E)UaUb +jzgab - 81TEab , 

uaua = - 1, jz + E#O, 

(3.1 ) 

(3.2) 

(3.3 ) 

where the energy-momentum tensor of the nonlinear elec
tromagnetic field is given by 

41TEab = ~ p ( - PasPb s + gab P ) 
v 

+ (P~p + Q~Q - ~)gab' (3.4) 

and Ua is the (timelike) fluid four-velocity, jz is the fluid 
pressure, and E is the energy density. 

The system offield equations is completed by the Max
well-Faraday equations (2.5). Furthermore, we are assum
ing that there exists a known equation of state such that the 
energy density is given by E = E(n,s), where n denotes the 
particle density and S the entropy density of a fluid point; the 
fluid flow may be characterized by (1) a Eulerian velocity 
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ull(XV) defined for every event P(XV) situated in its world 
trajectory, (2) the specific volume V = 1/ n, and (3) the 
phenomenologic temperature T and pressure p encountered. 
These hydrodynamic variables are measured with respect to 
a local rest frame. The velocity is normalized such that 
ull u

ll = - 1. Since the fluid is isotropic and frictionless, en
tropy is conserved. Therefore 

and 

(nua);a = O. 

The first and second laws of thermodynamics, 

dE=nTds+ [(E+p)ln]dn, 

are postulated. 

IV. DERIVATION OF THE SOLUTION 

We shall consider the Carter metric 7 

g( - 1,0) = (1/HZ){(N IP)dxz + PN dyZ 

+ (N IQ)dyz - Q IN( - dr + MdO')Z}, 

(3.5) 

(3.6) 

(4.1 ) 

with H=H(x,y), P=P(x), Q= Q(y), N=N(y), and 
M = 21x. We choose the null tetrad in the form 

:~} = (1/J2H){(~N IP )dx ± i~PN do}, 

e:} = _l_{(~N IQ )dy ± (~QIN)( - dr+ M dO')}. 
e J2H 

(4.2) 

The connection one-forms for the tetrad (4.2) are given 
byZ 

r4z =H ~[HY _ Ny _l....-MX]e l 

\j2NH 2N 2N 

-H(;) ~ I[ ~]e3 =: _ Ze l +Ae3, 

r 31 = - Zez + Ae4, (4.3) 

r r H( P ) ~ I [2HX Px ] I Z IZ+ 34=- - --- (e -e) 
2 2N H P 

+ H(~)~1[2HY 
2 2N H 

Qy Ny .MX] 3 4 
-Q+/i+l/i (e -e), 

and the nonvanishing components of the traceless Ricci ten
sor Cab read as 

2608 

Cll = Czz = (HzP 12N) [ - 2 (HxxIH) ], 

C33 = C44 

= _ H
Z
Q[2 Hyy _ Nyy +! (Mx)z + (NY)1 

2N H N 2 N Z ' 

C13=CZ4=-vPQ -2Hxy+-Hx H Ini'\[ Ny 
2N N 

i ( Mxx )] + N -MxHx+-
2
-H , (4.4) 
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1 HZ [ (HX) C12 =4/i Pxx-2Px H -Qyy 

+2Qy(~ + ~)_p( _2H;X)] 

+ Q [2 Hyy _ 4 Ny Hy 
H N H 

_ ~ (Mx)z + (NY)1. 
2 N Z 

Aligning the eigenvectors of Fab (and Pab ) in the direc
tions of the DPvector e3 and e4

, the only nonvanishing compo
nents of Fab are F12 and F34 (P12 and P34 ), and the two-form liJ 

assumes the form 

liJ = (F12 + P34 )e l
/\ eZ 

+ (F34 + P 12 )e3/\e4
• (4.5) 

In the Bom-Infeld nonlinear electromagnetism 

7t"=b z - (b 4 _2b zP+Q)I/Z, (4.6) 

we parametrize the nonzero components of Pab as 

P12 = ib[ 1 - exp( - 2v)] I/Z sin cp 

= ib sin cpG(-), 

P34 = b[ exp(2v) - 1] I/Z cos cp 

= b cos cpG(+), 

with v, cp real functions. In this parametrization, 

F12 = i exp( v)b sin cpGH, 

F34 = exp( - v)b cos cpG(+). 

(4.7) 

(4.8) 

Considering the field equations (3.1 )-( 3.4) with 

ull = 8'"rH 1&, and assuming that u4 = U 3 = - U4 

= - u3 = 1/ J2, the trace of the momentum-energy tensor is 
v 

T= 3fi - E + (ll1r)(P7t"p + Q7t"Q -7t"), (4.9) 

or in the (4.8) parametrization 

T= 3fi - E + (b z/1r)(cosh v - 1), (4.10) 

the non-null components of the fluid part of the momentum
energy tensor are 

TJ2 =fi, T33 = T44 =!(h + E), 
(4.11 ) 

The nonvanishing components of the traceless Ricci ten
sor are 

C33 = C44 = -!(h + E), 

C12 = - C34 =!0 + E) - 2E34 +! Tr E ab • 

( 4.12) 

By considering that in the BI nonlinear electromagnetism8 

81TE12} 
81TE34 

Eqs. (4.12) take the form 

- C IZ = C34 =!(h + E) - (b z/41T)Sinh v. (4.14) 
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From Eqs. (4.12) and (4.4) for the traceless Ricci tensor 
components, one obtains the energy-pressure equations 

fi + E = H2Q[ (2iI /H) + 2/2] (4.15) 

and 

e12 = - ~(,h + E) + (b 2/417") sinh v 

= (_H 2/4){ - 2Eo - Q+ 2QCH /H) 

- Q(2iI /H) - 6/ 2)}, (4.16) 

where we have made the assumption that P = a + dx - E~, 
with a,d constants, and Eo = ( - 1,0,1) and H = H(y), 
H = dH(y)/dy, etc. 

By substituting Eq. (4.15) inEq. (4.16),onearrivesat 

(b 2/41T) sinh v + (H2/4){ - 2Eo - Q + 2Q(H /H) 

- 4Q(H /H) _/ 2
)} = O. (4.17) 

The right-hand side of Eq. (4.17) depends only on the variable 
y, so the left-hand side must depend only on y, i.e., v = v(y). 
Furthermore, Eq. (2.5) must be fulfilled, these equations are 
the electromagnetic current equations, and there is a require
ment that Fij be a curl; in tensoriallanguage we have 

p/-L\v = 41fi 

and ( 4.18) 

F/-LV = A/-L;v - Av;w 

The solution also must satisfy the continuity equation/ i = O. 
We suppose that the vectorial potential depends only on x and y 
and also we are aligning the eigenvectors of Fij with the DP 
vectors; this condition amounts to 

Fax = iNF12/H2 =Aa,x' 

Frx = 0 =Ar,x' 

Fry = - F34/H2 =Ar,y, 

Fay = MF34/H2 =Au,y' 

(4.19) 

From these equations, expressions (4.8), and the integrability 
conditions for A/-Lv' Aa,xy = Aa,yx, we obtain the condition 

41e - v cos ¢ sinh v 

= 4H sin ¢ sinh v/ H 

- 'hp cos ¢ sinh v _veV sin ¢, (4.20) 

while the electromagnetic currents are given by 

/'= 0 =1=.1= 0, 

r= -lbeCy/2[cy/(cy+ 1)]1/2/21T. 
(4.21) 

Therefore, solutions to Eqs. (4.17) and (4.20) complete the 
nonlinear electromagnetic generalization to the fluid NUT
B( + ) solution. 

We shall consider the case when ¢ = 1T/2; then Eq. (4.20) 
turns out to be 

4H sinh v/H - veV = O. (4.22) 

One solution to (4.22) is H = ecy/4 and v = In(cy + 1) 1/2, 
C = const. Then (4.17) amounts to 

b 2e- cy/2[ (eCY + 1) 1/2 - (ecy + 1) -1/2]!21T - 2Eo 

= Q - cQ /2 + Q(c2/4 - 4/ 2
). (4.23) 
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This is a second-order linear inhomogeneous differential equa
tion for Q = Q(Y), and the general solution to (4.23) is given 
by 

(4.24) 

where U I ,U2 are two solutions of the associated homogeneous 
equation, CI,C2 are arbitrary constants, and up is any particular 
solution of the inhomogeneous equation. 

One solution is U I (y) = eky with k = (c/ 4 ) 
±H-32+64/2]1/2, for this solution 1#0; and 

D - ky + cy/2 D t G' d be d U2 = e ,= cons. Iven UI an U2' up can e-
termined: 

up = ~ f F(s)exp[J P(S)dt] 

X [U2(y)U I (S) - UI (y)u2(s)]ds, (4.25) 

with 

F(s) = b2e- Cy/2[(ecy + 1) - (eCY + 1)]!21T- 2Eo 

and p(S) = el2. This leads to integrals of the form 
f ets (eCS + 1) 1/2 ds which can be integrated numerically in the 
interval - 1 <y< 1. FromEq. (4.15) we see that the condition 
for fi + 00 is Q>O, so this solution has a physical meaning. 

The equations of motion (Lorentz equations) for the 
charged fluid are satisfied in the example presented. 

For the pressure of the fluid one obtains the explicit 
expression from the scalar curvature 

b 2 H2 
fi = - -(cosh v(y) - 1) +-

41T 4 

while from the Bianchi identities, one obtains 

fix = 0, 

b
2 

1 {[ .. fiy= --sinhv(y)+-ay H2 -Eo+Q 
41T 4 

which hold for fi from Eq. (4.26). 

(4.27) 

We can see from Eq. (4.26) that the pressure is affected by 
the nonlinear electromagnetic field and that in the limit of lin
ear field the expression seems to be of the same form as that in 
absence of electromagnetic field.2 

v. CONCLUSIONS 

A nonlinear electromagnetic generalization of the NUT
B( + ) metric with fluid is presented here. The field equations 
are reduced to a pair of nonlinear differential equations for 
three functions of one variable. This fact is the result of the 
alignment of the nonlinear electromagnetic field with the DP 
directions. 

The cosmological constant A can be incorporated into an 
energy-momentum tensor of the perfect fluid type by substitut
ing (,h - A) for fi, and (E + A) for E; of course this may violate 
the condition E> O. 
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This solution requires a deeper analysis in order to find the 
corresponding topology. It is also of interest to investigate the 
possibility of regarding this solution as an interior metric. 
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Spatially homogeneous perfect fluid space-times pertaining to the Bianchi V class are 
considered from the point of view of the evolution (3 + 1) formalism of general relativity. It is 
shown that the metric can be written in diagonal form in the nontilted case. The necessary and 
sufficient condition for the metric of a Bianchi V model to be diagonaIizable is given. 

I. INTRODUCTION 

Spatially homogeneous models have been widely con
sidered in cosmology as generalizations of the standard 
Friedmann-Robertson-Walker space-times. The (spatial) 
homogeneity means that there is an isometry group whose 
orbits are spacelike three-dimensional surfaces. This pro
vides a privileged foliation of the space-time and this sug
gests that a 3 + 1 splitting of the four-dimensional geometry 
may be suitable for hypersurface-homogeneous models. 

In the case of Bianchi V models, I the isometry group is 
generated by three Killing vectors m such that 

[m"m2J = 0 [m"m31 = m I, [mZ,m3J = mz, (1) 

and the line element is given by 

(2) 

where the vectors ma and the one-forms wa can be written in 
an adapted coordinated system as follows: 

a a a a a 
m, = ax' m2 = ay' m3 = x ax + y ay - az' (3) 

(4) 

The Bianchi V line element (2) is said to be diagonal if 
the off-diagonal terms in the matrix of coefficients Yab van
ish. This is usually taken as a simplifying hypothesis in con
structing explicit solutions.2

,3 We will show that the metric 
of a Bianchi V perfect fluid model is always diagonalizable in 
the non tilted case. 

II. A NEW COORDINATE SYSTEM 

A direct calculation starting from (2) shows that the 
spatial hypersurfaces (the group orbits) are locally constant 
curvature manifolds. Space-times admitting a constant cur
vature foliation have been considered in other works.4 On 
the other hand, it is clear that there exist local coordinate 
systems [different from the one used in (3) and (4)] in 
which this geometrical property of the space metric is more 
transparent. We will look for a coordinate transformation 
that carries the line element (2) to the form 

ds2 = - dt 2 + Yij(dx i + /3 i dt) (dx
j + /3j dt) 

(ij= 1,2,3) (5) 

(3 + 1 decomposition) with the space metric Y ij being of the 
form 

Yij = R(t)2 diag(e2Z,e2Z,I). 

This can be achieved in three steps. 
(i) The transformation 

X--+X + e - j"(t), y--+ y + e - Zg(t), 

(6) 

(7) 

wheref(t) and g(t) must be chosen in order to cancel the 
two off-diagonal terms containing dz. The resulting coeffi
cient of dr is to be identified with R (t)2. 

(ii) The rotation in the x - y plane that cancels the 
dx dy term so that the space metric is written in diagonal 
form: 

(8) 

(iii) The two separate dilations of the new x and y axis 
such that the final form (6) is obtained. 

Of course, these transformations introduce new off-di
agonal terms that must be taken into account by the shift 
vector /3 i. It will be of the form 

/3x = a(t)x + b(t)y + hi (t)e - Z, 

/3Y = b / (t)x + c(t)y + h2(t)e - z, 

/3z = 0, 

(9) 

where the six coefficients are related with (the time deriva
tives of) the five transformation parameters J, g, etc. The 
presence of a redundant parameter is related with the invar
iance of the space metric (6) under time-dependent rota
tions in the x - y plane. This can be used to get b (t) = b / (t) 
in (9) so that the final form of the four-dimensional metric 
(5) contains the same number of arbitrary functions [five in 
/3 i plus R (t) in Y ij] as the original form (2). 

Note that all the transformations we have made pre
serve both the z coordinate and the form of the third Killing 
vectorin (3). The first two Killing vectors will now appear 
as time-dependent combinations of a lax and a lay, which 
are not by themselves Killing vectors in the generic case. 

III. NONTILTED MODELS 

A homogeneous model is said to be nontilted if the nor
mal n to the group orbits is an eigenvector of the Ricci ten-
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sor. Allowing for the constraint equations in the evolution 
(3 + 1) formalism,5 this condition can be written 

(10) 

where D is the covariant derivative operator associated to 
the three-dimensional metric Yij and Kij is the extrinsic cur
vature of the spatial hypersurfaces; in our case 

(11 ) 

where L is the three-dimensional Lie derivative operator. 
A straightforward computation starting from (6) and 

(9) shows that the vector equation (10) is equivalent to the 
three algebraic conditions 

(12) 

so that the nontilted Bianchi V metric depend only on the 
three functions a (t), b (t) ,and R (t). The spatial components 
of the Ricci tensor can now be computed from the evolution 
equations in the 3 + 1 formalism5

: 

R[[ = R 2e2Z [ - 2/R 2 - (ara + 3{)a) + a,{) + 3{)2], 

R[2 = - R 2e2z(arb + 3{)b), R13 = 0, 

(13 ) 

R22 = R 2e2z [ - 2/R 2 + (a,a + 3{)a) + a,{) + 3{)2], 

R23 = 0, R33 = R 2[ - 2/R 2 + a,{) + 3{)2], 

where we have taken for short 

a,R 
{)(t) =-. 

R 
(14) 

In the case of a perfect fluid model, the algebraic struc
ture of the Ricci tensor is 

R,.,v = (p + p)u,.,uv + [(p - p)/2]g,.,v (,u,v = 0,1,2,3), 
(15) 

So that in the nontilted case U I = ° and Eqs. (13) read 

a,a + 30a = a,b + 30b = 0, 

(p - p)/2 = - 2/R 2 + ar{) + 3{)2, 

(16) 

(17) 

where the energy density p is given by the scalar constraint 
equation5 

p = _ 3/R 2 + 3{)2 _ (a2 + b 2 ), 

so that the pressure p can be computed from (17): 

p = l/R 2 _ 2 ar{) - 3{)2 _ (a2 + b 2). 

(18) 

(19) 

Both equations (16) are easily integrated allowing for 
(14): 

(20) 

where k [ and k2 are arbitrary constants. Ifwe now substitute 
(20) and (12) into the expression (9) for the shift vector, we 
obtain 

(]X = (k[x + k 2 y)/R 3, 

flY = (k2x - k[ y)/R 3, (JZ = 0, (21) 

and it is clear that we can perform a (time-independent!) 
rotation in the x - y plane in order to obtain 

/3x = kx/R 3, /3 Y = - ky/R 3, /3Z = 0, (22) 
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where we have noted k 2 = k[2 + k/. We can collect our re
sults as follows. 

Theorem 1: The general form of the metrics of non tilted 
homogeneous perfect fluids of Bianchi class V is given by 

ds2 = - dt 2 + R(t)2{e2z [ (dx + kx/R 3 dt)2 

+ (dy - ky/R 3 dt)2] + dr}, (23) 

where k is constant and R (t) is an arbitrary function of time. 
The energy density and the pressure of the fluid are given, 
respectively, by 

p = 3{) 2 _ 3/ R 2 _ k 2/ R 6, 

(24) 
p= -2a,{)-3{)2+ l/R2_k 2/R6. 

Corollary: The metrics of the non tilted Bianchi V per
fect fluids are diagonalizable: they can be written in the form 

ds2 = _ dt 2 + R(t)2{e2Z [e- 2A(t)dx2 

(25) 

where the two functions A(t) and R(t) are related one to 
another by 

R(t)3 a,A = k (constant). (26) 

IV. TILTED MODELS 

The situation is much more complicated in the tilted 
case, because one cannot start from the algebraic conditions 
(12) and the general form (9) of the shift vector (with 
b t = b) must be used. We will restrict ourselves to the case in 
which the spatial velocity of the fluid is directed along the z 
axis [remember that our z coordinate coincides with the 
original one in (2) ] . It follows from the constraint equations 
that the first two equations (12) (but not the third one) also 
hold true in that case, 

(27) 

By making R [2 = ° and R22 = R 33, we obtain, respec
tively, 

arb + b(3{) - 2a+) = 0, 

ara_ + a_ (3{) - 2a+) = 0, 

where we have noted 

a+ = (a + c)/2, a_ = (a - c)/2, 

(28a) 

(28b) 

(29) 

and this will be enough for us. Of course, the evolution equa
tion for a+ (which was zero in the nontilted case) and the 
expressions for p and p could also be obtained, but they are 
rather complicated and we will not use them in what follows. 

Let us introduce now the auxiliary function A + (t) such 
that 

arA+ = a+ (t), (30) 

so that Eqs. (27) can be easily integrated: 

(31) 

where kl and k2 are constants. Allowing for (27) and (31), 
the components of the shift vector /3i can be expressed now: 
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{3X = a+ (t)x + (klx + k 2 y)/R 3 e2A.+, 

{3Y = a+ (t)y + (k2x - k) y)/R 3 e2..t+, 

{3z = 0, 

(32) 

and again we can perform a time-independent rotation such 
that 

{31 = [a+(t) + k/R 3 e2..t+ ]x, 

{32 = [a+ (t) - k /R 3 e2..t+ ]y, 

{33 = 0, 

which amounts to taking k2 = 0 (b(t) = 0). 

(33) 

The form (33) of the shift vector implies that the four
dimensional metric is diagonalizable. To see this,let us intro
duce the function ,L (t), 

a,A_ = a_(t) = k/R 3e2A.· (34) 

and let us consider the coordinate transformation 

x-xexp[ - (,.1+ +,.1_)], y-yexp[ - (,.1+ -,.1_)], 
(35) 

which puts the space-time metric into diagonal form. Our 
results can be stated as follows. 

Theorem 2: The metrics of Bianchi V models in which 
the spatial velocity of the fluid is directed along the z axis are 
diagonalizable. They can be written in the form 

ds2 = - dt 2 + R (t)2{exp[2z - 2,.1+ (t)] 

(36) 

The nontilted models correspond to the case ,.1+ = const. 
Corollary: The necessary and sufficient condition for the 

metric (2) of a Bianchi V perfect fluid model to be diagonali
zable is that the spatial velocity of the fluid be directed along 
the z axis. 

Proof Theorem 2 states that the condition is sufficient. 
To see that it is necessary, one can start with the general 
diagonal form (36) and verify, by using the constraint equa
tions, that the tilting is along the z axis. 

V. CONCLUDING REMARKS 

A lot of work has been done by many authors in the 
nontilted case,2 starting with diagonal metrics as a simplify
ing hypothesis. In Sec. III, we have shown that the results 
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obtained by these authors do actually apply to general non
tilted Bianchi V models. 

The situation is slightly different in the tilted case, 
where most of the work has been done under the assumption 
oflocal rotational symmetry. This means that the space-time 
admits a fourth Killing vector field that can be written in the 
notation of Sec. I, 

a a 
m4=x--y-, 

ax ay 
(37) 

so that, in this particular case, it is known that the metric can 
be put into diagonal form. 6 

It is easy to see that this case corresponds to making our 
assumption (27) plus the supplementary condition 

c(t) = a(t), (38) 

and the metric can be put into the diagonal form (36) with 
,.1_ = const. In Sec. IV, we have extended this result by giv
ing a necessary and sufficient condition for a Bianchi V met
ric to be diagonalizable, which does not assume the condi
tion (38). 

ACKNOWLEDGMENT 

The authors acknowledge financial support from the 
CAICYT of Spain under Project No. PB87-0583. 

'See for instance, F. B. Estabrook, H. D. Wahlquist, and C. G. Behr, J. 
Math. Phys. 9, 497 (1968). 

'R. A. Matzner, Astrophys. J. 157, 1085 (1969); G. F. R. Ellis and 
M. A. H. MacCallum, Commun. Math. Phys. 12, 108 (1969); V. A. Ru
ban, SOY. Phys. JETP 45,629 (1977); B. K. Nayak, Gen. Relatiy. Grayit. 
15,1067 (1983); B. K. Nayak and G. B. Bhuyan, ibid. 18, 79 (1986). 

'G. F. R. Ellis, J. Math. Phys. 8,1171 (1967); D. L. Farnsworth, ibid. 8, 
2315 (1967); J. M. Stewart and G. F. R. Ellis, ibid. 9,1072 (1968); I. S. 
Shikin, Commun. Math. Phys. 26, 24 (1972); A. R. King and G. F. R. 
Ellis, ibid. 31, 209 (1973); C. B. Collins, ibid. 39, 131 (1974). 

4c. Bona and B. Coli, J. Math. Phys. 26,1583 (1983); 29, 327 (1987). 
'See for instance, R. Arnowitt, S. Oeser, and C. W. Misner, in Gravitation, 
edited by L. Witten (Wiley, New York, 1962). 

"See the works of Farnsworth and King and Ellis in Ref. 3. 

C. Bona and P. Palou 2613 



                                                                                                                                    

Killing spinors and separability of Maxwell's equations 
G. F. Torres del Castillo 
Departamento de FlSica Matematica. Instituto de Ciencias de la Universidad Autbnoma de Puebla. 72000 
Puebla. Mexico and Departamento de Flsica. Centro de Investigacibn y de Estudios Avanzados del Instituto 
Politecnico Nacional. Apartado Postal 14-740. 07000 Mexico. D. F.. Mexico 

(Received 24 January 1989; accepted for publication 7 June 1989) 

It is shown that the separation constant not related to the space-time symmetries, which 
appears in the solution ofthe source-free Maxwell equations on a type-D vacuum background 
with cosmological constant, can be defined in an invariant way as the eigenvalue of a 
differential operator made out of a two-index Killing spinor, with the eigenfunctions being the 
separable solutions of the Maxwell equations. 

I. INTRODUCTION 

In a recent paperl it has been shown that the separable 
solutions of the source-free Maxwell equations on a type-D 
vacuum space-time can be characterized by means of a dif
ferential operator constructed from a two-index Killing 
spino!. This differential operator provides, at the same time, 
a covariant definition of the Starobinsky constant, which 
arises from the differential relations that connect the sepa
rated functions (the so-called Teukolsky-Starobinsky iden
tities) . 

Each separated function that depends on one of the non
ignorable coordinates satisfies an ordinary differential equa
tion that involves a separation constant whose existence is 
not related to the space-time symmetries (this separation 
constant is analogous to Carter's "fourth constant" found in 
the case of the Hamilton-Jacobi equation in the Kerr back
ground). In Ref. 2, by using the expressions for the electro
magnetic field in terms of Debye potentials, it has been 
shown that in the specific case of the Kerr metric, which is of 
type D, the separation constant mentioned above can be 
characterized in a covariant way in terms of the Killing
Yano tensor admitted by the metric. 

Killing spinors and Killing-Yano tensors have been in
vestigated previously in connection with the separability of 
the Hamilton-Jacobi equation,3 the Dirac equation,4.5 the 
Weyl neutrino equation,6 and Maxwell's equations. 7 (See 
also Refs. 8 and 9.) The existence of a Killing-Yano tensor 
imposes additional conditions to those implied by the exis
tence of a two-index Killing spinor; whereas all the type-D 
vacuum metrics admit a two-index Killing spinor,3 not all of 
them admit a Killing-Y ano tensor. Nevertheless, in the case 
of massless fields, or massless particles, the separability of 
the corresponding equations is associated with the existence 
of a two-index Killing spinor. 

The aim of this paper is to show that for all the type-D 
vacuum metrics with a cosmological term, the separation 
constant referred to above, appearing in the solution of the 
source-free Maxwell equations, can be defined in a covariant 
way as the eigenvalue of a certain differential operator made 
out of the existing two-index Killing spinor, with the eigen
functions being the separable solutions of Maxwell's equa
tions. 

This fact can be proven by using the explicit expression 
for the complete solution of the source-free Maxwell equa-

tions obtained by means of the procedure given in Ref. 1. 
Table I contains the complete solution of Maxwell's equa
tions on all the type-D vacuum metrics, following the nota
tion of Ref. 10. (The separability of certain components of 
the electromagnetic spinor on all the type-D vacuum metrics 
was originally established in Refs. 11 and 12.) 

II. COVARIANT CHARACTERIZATION OF THE 
SEPARATION CONSTANTS 

The separable solutions of the source-free Maxwell 
equations involve three separation constants, denoted as k, I, 
and A in Refs. 1 and 10; the separation constants k and I are 
related to the two-dimensional Abelian isometry group ad
mitted by the type-D vacuum metrics and, apart from a fac
tor i, they can be defined in a covariant way as the eigenval
ues of the Lie derivatives with respect to the Killing vectors 
au and au, respectively, where u and v are the ignorable co
ordinates. 10 

The separation constant A, by contrast, is not related to 
space-time symmetries; it turns out that A is the eigenvalue 
of a second-order differential operator constructed from the 
two-index Killing spinor, LAB' which a type-D vacuum met
ric possesses. In fact, a straightforward computation, mak
ing use of the ordinary differential equations satisfied by the 
separated functions, the Teukolsky-Starobinsky identi
ties,lO and the expressions given in Table I, shows that if ({JAB 
is a separable solution of the source-free Maxwell equations 
then 

v C' (BX D) C' = A({JBD' 

where 

and 

X AB · ==~ LB.C' {</J¢-IV M C' (</J-I¢L MD({JDA ) 

- LAD({J DM¢-IV M C'¢} 

LB,C' == L Be , </J-2 = -! LABL AB. 

(1) 

(2) 

With respect to a frame such that Loo = 0 = Lll> using 
the source-free Maxwell equations in order to eliminate ({J 1 in 
favor of ({Jo and ({J2' which have simpler expressions, one finds 
that the components of XAB" defined in (2), are given by 

X oo' = !(</J¢)-I[ (D - 2p)({J1 + (;5 - 2a + 317"+ 21')({Jo] 

= (</J¢) -I (;5 - 2a + 217" + 1')({Jo, 
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TABLE I. Complete solution of the source-free Maxwell equations. The standard components of the electromagnetic spinor with respect to the null tetrads 
defined in Ref. 10 are given by !Po = <l>oeUku + "",!P, = (1!..j2)I/J<I>,eUku + '''',!P, = (1!2)1/J'<I>,e i

(ku + "". Here B is the Starobinsky constant. '0 

Metric 

B -'1/J9"R_,.Y,S+, 
B -'(!Po -I/J)R_,.Y,S+, 

B-'IiJoR_,(.Y, - iW)S+, 
B -'2iqR_,(.Y, - iW)S+, 

<1>2 

B,gS,g· S,gC 
pcB( +) 

pCB( -) 
pGS 
pCA 
pDM 
pPD 

I/JR+,S+, 
R+,S+, 
R+,S+, 
R+,S+, 
R+,S+, 
R+,S+, 

B -'(9 0R_,.Y,S+, -I/JR_,Y',S+, - iWS+,!iJoR_,) 
B -'2iqR_,(.Y, - il/J/P)S+, 

I/JR_,S_, 
R_,S_, 
R_,S_, 
R_,S_, 
R_,S_, 
R_,S_, 

(l-xy)R+,S+, B -'I/J[ (y + ix)9 0 R_,.:I',S+, - R_,J,S+, - i/pS+,9J,/L,l (l-xy)R_,S_, 

X OI ' = -~(<,bib)-I[(8-27)'P1 

+ (.:l - 2y + 3f-l - 2,u )CPo] 

- (<,bib)-I(!~. - 2y+ 2f-l-,u)'Po, 

X IO' = ~(<,bib) -I [(8 + 21T)'P1 + (D + 2€ - 3p + 2p)'P2] 

= (<,bib) -I (D + 2€ - 2p + p)'P2' 

XII' = - ~(<,bib)-I[(Ll + 2f-l)'P1 

+ (8 + 2/3 - 37 - 2iT)'P2] 

- (<,bib) -I (8 + 2/3 - 27 -iT)'P2' (3) 

And, using the fact that K = (J' = A. = v = 0, one has 

v C'oXoc' = (D - € + E - p)XOI ' - (8 - /3 - a + iT)Xoo" 

2V C'(oXI ) C' 

= (D + € + E + p - p)XII • 

+ (8 - a + (3 - 1T - 1')XOI ' 

- (8+/3-a+7+iT)X IO, 

- (Ll- y- r-f-l +,u)Xoo" 

VC'IX\C' = (8 + a +(3 -1')XII , - (Ll + y- r+ ,u)XIO" 

(4) 

Making use of Eqs. (3) and (4), together WIth the equations 
given in Ref. 10 and Table I, one can readily verify that Eq. 
(1) holds. 
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III. CONCLUDING REMARKS 

The validity of Eq. (1) implies that the operator acting 
on 'P AB on the left-hand side ofEq. (1) maps a solution of the 
source-free Maxwell equations into another solution. The 
field given by 'Po = 0 = 'P2' 'PI = const (<,b2) is a solution of 
the source-free Maxwell equations that does not have the 
form given in Table I and, as can be easily seen from Eq. (3), 
satisfies Eq. (I) with A = O. (This solution is precisely the 
electromagnetic field corresponding to the type-D solutions 
of the Einstein-Maxwell equations with a non-null electro
magnetic field, whose principal directions coincide with 
those of the conformal curvature. ) 

In the case of the Schwarzschild metric, where the sepa
rated functions S ± I are spin-weighted spherical harmonics, 
the separation constantA has thevaluej(j + I), withjbeing 
an integer greater than O. 
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Viscous heat-conducting fluid and anisotropic fluid space-times admitting a special conformal 
Killing vector (SCKV) are studied and some general theorems concerning the inheritance of 
the symmetry associated with the SCKV are proved. In particular, for viscous fluid space
times it is shown that (i) if the SCKV maps fluid flow lines into fluid flow lines, then all 
physical components of the energy-momentum tensor inherit the SCKV symmetry; or (ii) if 
the Lie derivative along a SCKV of the shear viscosity term 1]Uab is zero then, again, we have 
symmetry inheritance. All space-times admitting a SCKV and satisfying the dominant energy 
condition are found. Apart from the vacuum pp-wave solutions, which are the only vacuum 
solutions that can admit a SCKV, the energy-momentum tensor associated with these space
times is shown to admit at least one null eigenvector and can represent either a viscous fluid 
with heat conduction or an anisotropic fluid. No perfect fluid space-times can admit a SCKV. 
These SCKV space-times and, also, space-times admitting a homothetic vector are used to 
illustrate the symmetry inheritance theorems. 

I. INTRODUCTION 

Homothetic vectors (HV's) and conformal Killing vec
tors (CKV's) have been studied at length by various au
thors. Cahill and Taub1 and Taub2 have discussed perfect 
fluid solutions which are self-similar, i.e., admit a HV. 
Wainwright and Yaremovich3 have studied charged perfect 
fluids and McIntosh4 has made a general study of HV's in 
general relativity, with an emphasis on vacuum and perfect 
fluid space-times. Herrera and co-workers5 have studied 
CKV's, with particular reference to perfect fluids and aniso
tropic fluids; Mason and Tsamparlis6 have investigated 
spacelike CKV's; and Maartens et al. 7 have made a study of 
CKV's in anisotropic fluids, in which they are particularly 
concerned with special conformal Killing vectors 
(SCKV's). 

In this article we are principally interested in imperfect 
fluids (i.e., viscous, heat-conducting fluids) and, to a lesser 
extent, anisotropic fluids. The energy-momentum tensor for 
an imperfect fluid is 

Tab =f-lUaUb +phab -2rWab +qaUb +qbua' 0.1) 

wheref-l is the energy density,p is the isotropic pressure, qa is 
the heat flux vector relative to the four-velocity ua 

, 1] (;;;,0) is 
the shear viscosity coefficient, hab = gab + Ua Ub is the pro
jection tensor, and Uab is the shear tensor. The energy-mo
mentum tensor for an anisotropic fluid is 

Tab =f-lUaUb +Pllnanb +P1Pab' 0.2) 

where na is a unit spacelike vector orthogonal to Ua; Pab is 
the projection tensor onto the two-plane orthogonal to ua 

and na; and PII ,P 1 denote the pressures parallel to and per
pendicular to na 

, respectively. 
The effect of a HV on space-times corresponding to the 

energy-momentum tensor ( 1.1) has been discussed by Hall 

and Negm,8 but only in the case when one of 1] and q a is zero. 
In fact, there has been no systematic study ofCKV's, HV's, 
or even Killing vectors (KV's) in fluids of type (1.1), al
though fluids of type ( 1.2) were discussed in Refs. 5 and 7; in 
the latter reference the SCKV discussion was confined to the 
casef-l + PII #0. 

We shall consider space-times that admit a CKV 5' , i.e., 

(1.3 ) 

where !£ 5 signifies the Lie derivative along 5' and 1/I(xa ) is 
the conformal factor. If 1/I;ab = 0, but 1/I.a #0, then 5' is a 
SCK V; when 1/1 is a constant, S a is a HV and 1/1 = 0 corre
sponds to a KV. Although our ultimate aim is to study the 
properties of proper CKV's (i.e., CKV's that do not degen
erate into SCKV's or HV's in imperfect fluids, in this article 
we shall confine our attention to the simpler SCKV's and 
HV's. 

In Sec. II, the Lie derivatives of the various kinematical 
quantities are calculated and the results applied to the ener
gy-momentum tensor (1.1) and, also, to (1.2) in the special 
case f-l + PII = O. In Sec. III, we define what we mean by 
symmetry inheritance for a SCKV and prove a number of 
theorems on the inheritance of the symmetry of a SCKV by 
the physical components of the energy-momentum tensor 
( 1.1). In particular, we prove the results that if either 
!£ 5 ua = 1/Iua or !£ 5 (1]Uab ) = 0, the symmetry of 5' is in
herited by all physical quantities. We conclude Sec. III by 
discussing symmetry inheritance by an anisotropic fluid in 
the particular case f-l + PII = 0, which was omitted from a 
similar discussion in Ref. 7. 

In Sec. IV we find all space-times (irrespective of the 
field equations that they satisfy) which admit a proper 
SCKV, i.e., a SCKV for which 1/1 is not constant, and which 
satisfy the dominant energy condition. We find that (i) there 
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are no perfect fluid space-times admitting a proper SCKV; 
(ii) anisotropic fluid space-times admitting a proper SCKV 
must satisfy Il + PH = 0, Pi = 0; and (iii) there do exist im
perfect fluid space-times admitting a proper SCKV. 

Result (i) invalidates that part of Ref. 5 in which it was 
assumed that perfect fluid space-times admitting SCKV's do 
exist and result (ii) invalidates a result in Ref. 7 since it 
shows that SCKV anisotropic fluids are not compatible with 
the assumptionll + PH #0 made in Ref. 7. The space-times 
admitting a proper SCKV form a very restricted class in that 
they must admit either two null eigenvectors, or a repeated 
null vector, of the energy-momentum tensor. Because of the 
limited number of proper SCKV solutions, the work de
scribed here on symmetry inheritance has, perhaps, its great
est relevance in the study of HV's, but is couched in the 
language of CKV's because of our intention to extend the 
work to proper CKV's. In Sec. V, we illustrate the theorems 
of Sec. III with examples of both the SCKV and HV and in 
Sec. VI we make some concluding remarks. 

II. KINEMATICAL AND DYNAMICAL RESULTS 

In order to discuss the effect on the various kinematical 
quantities of the Lie derivative along a CKV, we first note 
the following result proved by Maartens et ai., 7 namely, if X" 
is any unit vector (timelike or spacelike) and 5' is a CKV 
satisfying (1.3), then 

!fsxa= -t/JXa+ ya, 

!fsXa = t/JXa + Ya' 

(2.1) 

(2.2) 

where Y" is some vector orthogonal to Xa, i.e., xaYa = O. 
Applying this result to the fluid velocity vector ua 

, we have 

!f sua = - t/Jua + va , 

!f sUa = t/JUa + Va , 

(2.3 ) 

(2.4 ) 

where va is a spacelike vector with Ua va = O. Note that 
ua!f sua = - ua!f sUa = t/J. If va = 0, i.e., !f sua 
= - t/Jua, then fluid flow lines are mapped into fluid flow 

lines by the action of 5' . 
We first consider imperfect fluids with Tab of the form 

( 1.1 ). The heat flux vector qa is not a unit vector and if we 
define Q to be the magnitude of qa , i.e., qa qa = Q 2, then by 
an argument similar to that used in establishing (2.1) it can 
be shown that 

!fsqa= {Q- 1!fsQ_t/J)qa+ wa, (2.5) 

where waqa = O. Note that if 5' is a HV, i.e., t/J is a constant 
and if we require a self-similar solution (which does not au
tomatically follow for an imperfect fluid), the dimensional 
requirements9 imply that !f s Q = - 2t/JQ and wa = O. 

Since Ua qa = 0, it follows that 

- ua!f sqa = - ua!f sqa = qa!f sua = qa!f sUa =Ll, 
(2.6) 

which serves as the definition of the scalar quantity Ll. Equa
tion (2.6) implies that 

(2.7) 

If {b a c} is the metric affinity of gab' then 10 
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!f s {b aJ = 8: t/J,c + 8~t/J,b - gbc tfra 

and (2.4) and (2.8) give 

!f sUa;b = t/JUa;b + va;b + gab t/J.c Uc - t/J,a Ub , 

!f sa = - t/J9 + Va;a + 3t/J,a ua , 

!f shab = 2t/Jhab + 2U(aVb) , 

(2.8) 

(2.9) 

(2.1O) 

(2.11) 

where a = ua;a is the expansion scalar for the fluid velocity 
congruence. 

Recalling that the shear tensor is defined by 

(2.12) 

and using (2.9)-{2.13), after a long calculation we obtain 

!f sUab = t/Juab - jhabvC;c - ~aU(aVb) + V(aUb) 

+ v(a;b) + Uta Vb) + Uta Ub);C VC , (2.13 ) 

where the overdot indicates the covariant derivative in the 
direction of the fluid flow, i.e., X = X;a ua. Note that!f sUab 
is explicitly independent of the derivatives of t/J. Also, 
Uab~b = 0, Uab ub = 0, and ~b!f s-uab = 0, but 

(2.14 ) 

Note, also, that if !f sUa = t/Jua, i.e., Va = 0, then !f sUab 
= t/JUab' 

Turning now to dynamical results we note that if 5' is a 
CKV satisfying (1.3), then 7 

!f sRab = - 2t/J;ab - gabDt/J, 

!f sR = - 2t/JR - 6Dt/J , 

!f sGab = 2gabDt/J - 2t/J;ab , 

(2.15 ) 

(2.16) 

(2.17) 

where Dt/J=~b t/J;ab' We consider Einstein's field equations 
in the form 

Gab + Agab = Tab 

and so find 

(2.18 ) 

(2.19) 

We take Tab to be of the form (1.1) and, by taking the 
Lie derivative of ( 1.1) with respect to 5' , we obtain 

!f sll{UaUb) + !f sp{hab ) + 2t/J{p,uaub + phab) 

+ 2{1l + P)V(aUb) - 2uab!f s''l - 21J!f sUab 

+ 2{Q -1!f sQ + 2t/J)U(aqb) + 2q(aVb) 

+ 2U(a Wb) = 2{Dt/J + At/J)gab - 2t/J;ab , (2.20) 

where!f sUab is given by (2.13) and we have used (2.4) and 
(2.5). 

For the remainder of this article we shall confine our 
attention to HV's and SCKV's, i.e., we assume that t/J;ab = o. 
We shall also assume that A = 0; this is not a particularly 
restrictive assumption since the replacements Il-+ Il + A, 
P-+P - A will reproduce the effects of including A. Thus 
(2.19) becomes !f sTab = 0 and we focus our attention on 
(2.20) with zero rhs. 

Contracting (2.20) in tum with ua ub, h ab, uah bc' 
h aCh btl _ jh abh cd, qb, qaub, and qa qb ,and simplifying we ob
tain 
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.Y sJ-l + 21/1J-l + 2il = 0 , 

.Y sP + 21/1p + jil = 0 , 

2rWab Vb = Wa - ilua + (J-l + p)va 

+ (Q-l.Y SQ+21/1)qa' 

.Y 5 (1]O"ab) = 21]O"c(a ub) VC 

(2.21 ) 

(2.22) 

(2.23 ) 

+ q(avb) - jilhab , (2.24) 

2qb'y 5 (1]O"ab) = jilqa + Q 2Va + [(J-l + p)il 

+ Q.YsQ+ 21/1Q 2]ua , (2.25) 

21]O"ab vbqa = Q(.Y sQ + 21/1Q) + (J-l + p)il, (2.26) 

2qaqb.Ys (1]O"ab) =~ilQ2. (2.27) 

The case in which Tab is given by (1.2) has been dis-
cussed in Ref. 7. However, Ref. 7 assumed that J-l + PII #0. 
As we shall see, space-times admitting a SCKV and satisfy
ing the field equations for an anisotropic fluid must have 
J-l = - PII =!R and Pi = 0, so that the energy-momentum 
tensor is limited to the form 

Tab = !R(uaub - nanb) . (2.28) 

For a SCKV we have .Y sTab = 0, .Y sR = - 21/1R and 
since na is a unit vector, 

.Y sna = 1/Ina + ma , (2.29) 

where mana = O. From Eqs. (2.29) and (2.4), the Lie deriv
ative of (2.28) yields 

0= !R(vaub + VbUa - manb - mbna ) . 

Since R cannot be zero for a non vacuum solution, this im
plies that 

(2.30) 

where ~ = - ua ma = nava. It follows that either 
Va = ma = 0 or Va' ma are parallel to Ua, na' respectively. 
Thus the result that Va = ma = 0, given in Ref. 7 and based 
on the assumption J-l + PII #0, is not necessarily true. 

III. SYMMETRY INHERITANCE 

If a perfect fluid space-time is self-similar, i.e., admits a 
HV sa , the density, pressure, and fluid velocity must satisfy 

.Y sJ-l = - 21/1J-l, .Y sP = - 21/1p, .Y sUa = 1/Iua , 

and we say that these quantities inherit the space-time sym
metry defined by sa . In contrast, if a space-time admitting a 
HV satisfies Einstein's field equations with Tab given by 
( 1.1 ), then in general, the symmetry is not inherited by the 
dynamical and kinematical quantities appearing in Tab' 
However, if we impose self-similarity on the complete solu
tion, dimensional considerations9 will imply that the follow
ing set of equations will hold: 

.Y sJ-l = - 21/1J-l, .Y sP = - 21/1p, .Y sUa = 1/Iua , 

.Y sqa = - 1/Iqa' .Y sO"ab = 1/IO"ab' .Y 51] = - 1/11] . 
(3.1 ) 

For a SCKV, there is no self-similarity unless the SCKV is in 
fact a HV. However, we will now make the following defini
tion. 

Definition: If the space-time solution of Einstein's field 
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equations with Tab given by (1.1) admits a SCKV sa given 
by ( 1.3), then the solution will be said to inherit the symme
try corresponding to sa ifthe set of equations (3.1) holds. 

In this section we investigate the conditions under 
which an imperfect fluid given by ( 1.1) will inherit the sym
metries corresponding to a SCKV sa. We also comment on 
the symmetry inheritance for an anisotropic fluid ( 1.2), thus 
extending the work of Maartens et al. 7 to a crucial case 
which they omitted. Throughout this investigation we re
quire that the fluid satisfies the dominant energy condition. 

We consider a number of possible cases. 
Case 1: In Ref. 7 it is shown that when qa = 0, Eqs. 

(3.1) will hold provided that J-l + p#O and either 
.Y sUa = 1/Iua (i.e., Va = 0) or .Y 5 (1]O"ab) = O. We now 
complete this result by considering the exceptional case 
J-l + P = O. Equation (2.23) becomes 21]O"ab Vb = 0, so that 
O"ab must be of the form O"ab = O"(xaxb - YaYb)' wherexa ,Ya 
are orthogonal unit spacelike vectors which are also orthog
onal to Ua and Va' By applying the dominant energy condi
tion to the resulting Tab' we find that 1]0" = 0, so that the 
fluid degenerates into a perfect fluid with J-l + P = O. Hence, 
Eqs. (3.1) hold for an imperfect fluid and we have the fol
lowing theorem. 

Theorem 1: If qa = 0 and if either .Y sUa = 1/Iua or 
.Y 5 (1]O"ab) = 0, the symmetries of a SCKV sa are inherited . 

Case 2: Suppose that .Y 5 (1]O"ab) = O. Contracting Eq. 
(2.25) with qa yields ~ilQ 2 = 0, so that either il = 0 or 
Q = O. The latter case immediately leads to inheritance from 
Theorem 1, so we consider il = O. Equation (2.25) then be
comes 

which implies that Va = 0 and .Y sQ + 21/1Q = O. Equation 
(2.23) then implies that Wa = 0, and so we have the follow
ing theorem. 

Theorem 2: If .Y 5 ( 1]0" ab) = 0, the symmetries of a 
SCKV sa are inherited. 

Corollary 1: If 1]O"ab = 0, the symmetries of a SCKV sa 
are inherited. 

Case 3: Suppose that .Y 5 Ua = 1/Iua, i.e., fluid flow lines 
are mapped onto fluid flow lines. In this case Va = 0, il = 0, 
and Eq. (2.24) becomes.Y 5 (1]O"ab) = 0, so that Theorem 2 
leads to the following theorem. 

Theorem 3: If .Y 5 Ua = tPua, the symmetries of a SCKV 
Sa are inherited. 

Corollary 2: If a SCKV sa is parallel to ua
, then the 

symmetries of sa are inherited. 
Theorems 2 and 3 are the primary results in this paper; 

they are new results which generalize the work of Ref. 7 to 
viscous fluids with nonzero heat conduction. Theorems 2 
and 3 are definitive in that they give a complete characteriza
tion of the SCKV inheritance problem for the fluid (1.1) . 
Note that from Theorems 1 and 2, the vanishing of the shear 
viscosity is sufficient to ensure inheritance, whereas the van
ishing of the heat conduction is not sufficient. However, as 
we shall see in Case 4, there are conditions on qa which will 
ensure inheritance. 

Case 4: Suppose that qa is an eigenvector of the shear 
tensor, i.e., 
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(3.2) 

Equation (3.2) implies that, geometrically, qa and ua span a 
timelike invariant two-space of Tab 8 and, physically, there 
exist no shear velocities between neighborhood surface ele
ments orthogonal to the direction of the heat flux. 11 Taking 
the Lie derivative of (3.2) and using Eqs. (2.21 )-(2.24) we 
obtain 

[Q(2'sQ+2t,bQ) - (,u+p)a]ua -aqa +Q 2va 

- AWa + 21/(fab Wb = 0, 

2' sA + Ut,b = ~a . 
(3.3 ) 

(3.4 ) 

Relations (3.3) and (3.4) do not imply inheritance. How
ever, if we make the additional assumption 

(3.5) 

i.e., Wa = 0, a = 0, and 2' sQ = - 2t,bQ, then (3.3) shows 
that Va = 0, so that from Theorem 3, we have complete in
heritance. 

Conversely, if we first assume (3.5), the Lie derivative 
of (2.23) contracted with qa Vb leads to 

VbVbQ2 + 21/(fabqa 2' svb = (,u + p)qa 2' sVa (3.6) 

and since (3.5) implies that qa 2' sVa = 0, this shows that 
the imposition of (3.2) leads to inheritance. On the other 
hand, when Va #0, i.e., if we have noninheritance, then (3.6) 
shows that qa cannot be an eigenvector of (fab' Thus we have 
proved the following theorem. 

Theorem 4: If qa is an eigenvector of (fab and, also, 
2' sqa = - t,bqa' then the symmetries of a SCKV 5' are 
inherited. If either of these conditions does not hold, then the 
symmetries are not inherited. Furthermore, if the symme
tries are not inherited qa cannot be an eigenvector of (fab' 

Theorem 4 is a new result since it requires qa #0, a situa
tion that has not been investigated for SCKV's. 

It should be emphasized that the results given here ap
ply not only to SCKV's, but also to HV's. Indeed, when t,bisa 
constant, Theorems 2 and 3 give the definitive conditions 
under which the physical quantities constituting the energy
momentum tensor ( 1.1) can inherit the self-similar symme
try associated with a HV. 

These results apply also to KV's (t,b = 0) and are again 
new since no investigation has been made of KV's in a vis
cous, heat-conducting fluid. The major results for KV's may 
be summarized in the following theorem. 

Theorem 5: If 5' is a KV of space-time satisfying Ein
stein's field equations for an imperfect fluid with the energy
momentum tensor (1.1), then the necessary and sufficient 
condition for the symmetry defined by 5' to be inherited by 
the physical quantities associated with the fluid, i.e., for the 
quantities 

2' s,u = 2' sP = 2' sUa = 2' s1/ = 2' s(fab = ° 
to hold, is that 2' s (1/(fab) = ° or, equivalently, 2' sUa = 0. 

We now turn to the case of an anisotropic fluid given by 
(1.2) and, in particular, to the special case ,u + PII = 0, 
Pi = 0, for which Tab is given by (2.28). Since 
,u = - PII = !R, it follows that 2' s,u = - 2t,b,u and 2' sPIl 
= - 2t,bPII ' so that,u and PII always inherit the symmetry of 
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the SCKV 5'. However, as shown in Sec. II, Va and rna [as 
defined by (2.29) ] are either zero or nonzero and parallel to 
na , Ua , respectively, so that the symmetry of the SCKV may 
or may not be inherited. Maartens et aJ.1 showed that in 
general, Va is given by 

Va = 2WabSb + aUa - a,bh ab , (3.7) 

where a = - Sa ua andwab is the vorticity tensor. Complete 
inheritance occurs when Va = 0; two special cases of this are 
when 5' is parallel to ua and, also, when 5' is orthogonal to 
ua and the fluid is vorticity-free, i.e., S aUa = ° and Wab = O. 
Hence we have the following theorem. 

Theorem 6: For an anisotropic fluid of the form (1.2) 
with,u + PII = O,Pi = 0, the symmetries ofa SCKV 5' are 
inherited if and only if expression (3.7) for Va is zero. 

IV. SPACE·TIMES ADMITTING A PROPER SCKV 

We now turn to the problem of determining those space
times that admit a proper SCKV. A SCKV is defined by 
( 1.3) with t,b;ab = 0. This implies that t,b,a is a covariantly 
constant, hypersurface orthogonal, geodesic vector, result
ing in considerable simplification ofthe space-time metric. 12 
It also implies that t,b.a is globally timelike, globally space
like, or globally null. We consider these three possibilities in 
turn. 

A. The vector "'.8 timelike 

We can choose coordinates in which 

t,b.a = ( - 1,0,0,0) (4.1 ) 

and the metric is of the form 

dr= -dt 2+ga(3(xY )dxa dx(3= -dt 2+d0,2, (4.2) 

where a, p, r = 1, 2, 3. 
Equation (4.1) implies that t,b = - t and the metric 

(4.2) implies that ~ i k} = 0 if any of i, j, k = 0. Equations 
(1.3) take the form 

So.o = t, (4.3 ) 

So,a +Sa,o =0, (4.4 ) 

Sa;(3 + S(3;a = - 2tga(3 . (4.5) 

Integrating (4.3) yields 

So=!t 2+A(xY ), (4.6) 

where A is a scalar function and (4.4) and (4.6) yield 

Sa.o = -A,a , 

i.e., 

(4.7) 

where Ba is a vectorfunction. Substituting (4.7) into (4.5) 
yields 

- 2A;a(3t + Ba;(3 + B(3;a = - 2tga(3 

and equating coefficients of t we obtain 

Ba;(3 + B(3;a = 0, (4.8) 

so that Ba is a KV of the three-dimensional space and 

A;a(3=ga(3' (4.9) 

Petrov13 quotes a result due to Sinyukov,14 namely that 
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if a Vn admits a vector field <Pa satisfying <Pa;p = pgaP' 
where p is a nonzero scalar function, a system of coordinates 
exists in which the metric takes the form 

di;, =gll (dXI)2 + (lIgll)rpq(x2, ... ,xn)dxPdxq , (4.10) 

wherep, q# 1; gIl = [2fp(x l )dx l + C] -I; andp is now an 
arbitrary function of Xl only. Applying the result (4.10) to 
Eq. (4.9), in which <Pa = A.a and p = 1, we find that for the 
three-dimensional metric d02

, gil = (2x1 + C) -I and the 

transformation ~2XI + C -+X yields 

df!2 = dx2 + x2r AB (xc)d~ dxB
, 

where A, B, C take the values 2, 3. The two-dimensional 
metric r AB d~ dxB can be transformed into dy2 
+ j2(y,z)dr, so that the space-time metric takes the final 

form 

d? = - dt 2 + dx2 + x2[dy2 + j2(y,z)dr]. (4.11) 

After excluding linear combinations with the KV admitted 
by this metric, we find that only one SCKV exists, namely 

sa = ( _ !t2 - !X2, - tx,O,O) . 

which is timelike. 

B. The vector "'.8 spacelike 

We can choose coordinates in which 

¢,a = (0,1,0,0) , 

so that ¢ = x and the metric will be of the form 

ds2 = dx2 + gaP (xY)dxa dxP, 

( 4.12) 

(4.13) 

where, in this case, a, [J, r = 0, 2, 3. Following precisely the 
same argument as in the timelike case, we obtain two possi
ble solutions, namely 

and 

ds2 = dx2 + dy2 + r[ - dt 2 + h 2(t,z)dr] . (4.15) 

However, the metric (4.15) does not satisfy the dominant 
energy condition and so will be discarded. 

The metric (4.14) admits only one proper SCKV, 
namely 

sa = (xt,!X2 + !t 2,0,0) ; 

this SCKV is spacelike. 

C. The vector "'.8 null 

(4.16) 

Since ¢,a is a gradient vector and a null KV, it follows 
that we have a generalized pp-wave space-timel5 with a met
ric of the form 

ds2 = P-2(dx2 + dy2) - 2 du(dv - m dx + H du) , 
( 4.17) 

where H, P, and m are arbitrary functions of u, x, andy only. 
We label the coordinates (u,v,x,y) == (xo, Xl, x2, x3) and then 
the null KV ka = ¢ ,a is given by ka = (0,1,0,0), i.e., 
k a = ( - 1,0,0,0), so that 

¢ = - u . ( 4.18) 
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When R = 0, it can be shown that the general metric admit
ting a covariantly constant null gradient vector is (4.17) 
with P = 1 and m = 0,15 i.e., 

( 4.19) 

However, in general, the imperfect and anisotropic fluids 
considered in this article will not have zero Ricci scalar, so 
we will use the metric (4.17). We require those metrics of 
this form which admit a SCKV. 

The nonzero components of the Ricci tensor for the 
metric (4.17) are 

Roo = p 2(Hxx + Hyy + mux + !m;p2) 

+ 2P-2(PPuu - 2P~) , 

R02 = - !myyp2 - myPPy + P -2 (PPux - PuPx ) , 

R03 = !mXy p 2 + myPPx + P -2(PPUY - PuPy ) , 

R22 = R33 = P -2 (PPxx + PPyy 

_P~_P;)=!P-2R. 

Recalling (4.18), the SCKV equations are 

So,o = (Hu + mmup2 + mHxp 2 )SI 

+ (mu + Hx )P 2S2 + HyP 2S3 + 2Hu , 

So, I + Seo = 2u , 

SO,2 +S2,O =2(Hx -mp-IPu)SI 

- 2P -IPuS2 - myp 2S3 - 2mu , 

SO,3 + S3,O = 2(Hy + !mymp2)SI 

(4.20) 

+myp2S2-2P-IPuS3' (4.21) 

SI,I = SI,2 +S2,1 = SI,3 + S3,I = 0, 

S2,2 = - (P- 3pu +mp-Ipx +mx)SI 
-P- IPxS2 +P- IPyS3 - up-2, 

S2,3 + S3.2 = - (my + 2mp- IPy )SI 

- 2P- IPyS2 - 2P- IpxS3 , 

S3,3 = - (P- 3pu - mp-IPy)SI 

+ p- IPA2 - P- IPyS3 - uP- 2
• 

Solving equations (4.21), we find that the most general 
form of the SCKV when R #0 is 

Sa = [ - (u2 + au + {J),av - D(u,x,y) + (2H + m 2p 2
) 

X (u2 + au + {J) + mP 2B(u,x,y) , 

mP 2 (u2 + au + [J) + p 2B(u,x,y),p 2C(u,x,y)] , 
( 4.22) 

where a and [J are arbitrary constants and B, C, and Dare 
three functions satisfying the differential equations 

Du = (Hu + mmup2 + mHxp 2) (u2 + au + [J) 

+ (mu + Hx )P 2B + HyP 2C + 2Hu, 

Bx = - (P- 3pu +mp-Ipx +mx )(u2+au+[J) 

- P-IPxB + p-IpyC - up-2 , 

Cy = - (P- 3pu -mp- IPx )(u2+au+[J) 
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+ P-IPxB - p-IpyC - uP -2, (4.23) 

Dx + Bu = 2(Hx - mP -Ipu )(u2 + au + /3) 

-2P- Ip B-m p 2C-2mu u y , 

Dy + Cu = 2(Hy + !mymp2) (u2 + au + /3) 

+ myp 2B - 2P -lpuC, 

By + Cx = - (my + 2mP -IPy )(U2 + au + /3) 

- 2P- Ip yB - 2P- Ip xC. 

By eliminating a, /3, B, C, and D from Eqs. (4.23), an expres
sion connecting H, P, m, and their derivatives will be ob
tained which delineates those members of the general set of 
space-times with the metric (4.17) which admit a SCKV. 

In the special case of the metric (4.19), i.e., when R = 0, 
the SCKV is of the form 

sa = [ - (u2 + au + /3) ,au _ !X2 _ !y2 

+ Jux + KuY + L(u), - ux + YY 

+J(u),-uy-yx+K(u)] , (4.24) 

where a, /3, and yare arbitrary constants and J, K, and L are 
arbitrary functions of u only. In order to admit a SCKV, the 
function H in the metric must satisfy 

Hu (u2 + au + /3) + Hx (ux - yy - J) 

+ Hy (uy + yx - K) 

+ 2H(u + a) - Juux - KuuY + Lu = o. (4.25 ) 

Thus far in this section, we have found all space-times 
admitting a SCKV irrespective of the field equations that 
they satisfy. These are the space-times with metrics given by 
( 4.11 ), (4.14), (4.15), and those metrics (4.17) that satisfy 
Eqs. (4.23). Of these, (4.15) and some members of the set 
( 4.17) do not satisfy the dominant energy condition; we 
shall confine our attention only to those space-times that do 
satisfy this condition. 

The integrability conditions for the existence of a covar
iantly constant vector if;.a are 

by contraction, this implies 

Tabif;,a = - !Rif;,b , 

(4.26) 

(4.27) 

so that if;,a is an eigenvector of the energy-momentum ten
sor. In the cases of the metrics (4.11) and (4,14), by calcu
lating the Einstein tensor, each of these solutions possesses a 
timelike and a spacelike eigenvector in the tx plane which 
have the same eigenvalues, so that there are two independent 
null eigenvectors in the tx plane, namely 

ka = (l/J2)( -1,1,0,0), la = (1/~)(1,1,0,Q), (4.28) 

where we have normalized the null vectors to satisfy 
ka la = 1. Furthermore, there exist two spacelike eigenvec
tors in the yz plane, each of which has a zero eigenvalue. 
Hence, it follows that for the two metrics (4.11) and (4.16), 
Tab is ofSegre type {( 1,1) (11 )}16 and can be written in the 
form 
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(4.29) 

In the case of the space-times with the metric (4.17), 
Eq. (4.27) shows that if;,a is a null eigenvector of the energy
momentum tensor. Since we also require Tab to satisfy the 
dominant energy condition, this implies 16 that Tab must be 
either of Segre type {( 1,1 ) II} or {2, II} and so can be writ
ten, respectively, in the forms 

(4.30) 

or 

(4.31 ) 

where ka, la are null vectors with ka I a = 1 and xa, Ya are 
mutually orthogonal unit spacelike vectors which are also 
orthogonal to ka and la. The quantities A, B, C, and Dare 
scalar functions of the coordinates. The eigenvectors are ka 
(= if;,a ), xa, andYa in the second case and, additionally, la in 
the first case. 

From (4.20), the nonzero components of the Einstein 
tensor are Goo, GOI ( = !R), G02' and G03• Equating Gab with 
Tab given by the more general expression (4.31) and using 
the fact that ka = (0, 1,0,0), so that II = 1, XI = YI = 0, we 
find that 

A = !R, C = D = 0 , 

so that Tab is given by 

Tab = - !R(kalb + kbla) + Bkakb , (4.32) 

which includes the form (4.29) when B = O. Thus Tab is 
either of Segre type {(1, 1 ) (11)} or {2 (11 )} and we have 
proved the following theorems. 

Theorem 7: A space-time that admits a SCKV and satis
fies the dominant energy condition has an energy-momen
tum tensor which admits two independent spacelike eigen
vectors with zero eigenvalues and, also, admits either two 
independent null eigenvectors with the same eigenvalue or a 
repeated null eigenvector, i.e., the Segre type of the energy
momentum tensor is either {(1, 1) (11 )} or {2 (11 )}. The 
energy-momentum tensor has the form (4.32), where B = 0 
or B # 0 according to whether Tab is {(1, 1 ) (11)} or 
{2( 11 )}, respectively. 

Theorem 8: There exist no perfect fluid space-times 
which admit a SCKV. 

Having established the Segre type of the energy-momen
tum tensor, we shall investigate the field equations that are 
satisfied by the SCKV space-times. 

For the metric (4.11), the only nonzero components of 
the Einstein tensor are 

(4.33 ) 

and, assuming a comoving velocity ua = (1, 0, 0, 0), the 
metric satisfies the field equations for an anisotropic fluid, 
with Tab given by (1.2). We find that 

J..l= -PII = -x-2(1 +j-IJ;,y), PI =0, (4.34) 

and we must have 1 + j- "J;,y < 0 for the dominant energy 
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condition to be satisfied. Alternatively, if we assume a non
comoving velocity of the form 

ua = (cosh t,b,sinh t,b,0,Q) , (4.35) 

where t,b = t,b(t,X) , then the metric satisfies the viscous fluid 
field equations, with Tab given by (1.1), with 

fL= -3p=21]X= -x-2(I+f- lhy)' Q=O, 
(4.36) 

where 

X = (t,b, - x-I)sinh t,b + t,bx cosh t,b. (4.37) 

Note that for fL > 0, 1]>0, we must have 1 + f-Ihy < ° and 
X>O. 

The space-time with the metric (4.14) has similar prop
erties; the nonzero components of the Einstein tensor are 

Gg = G: = - t -2(1 - f-Ihy) (4.38) 

and the field equations for a comoving anisotropic fluid are 
satisfied, with 

fL= -PII =t-2(1-f- lhy)' Pl =0, (4.39) 

so that 1 - f-Ihy > ° for fL > 0. The space-time (4.14) also 
satisfies the viscous fluid field equations with ua of the form 
(4.35) and 

fL = - 3p = 21]X= t -2(1- f-1;,y), Q = 0, (4.40) 

where 

X = t,b, sinh t,b + (t,bx - t -I)cosh t,b (4.41) 

and we must have 1 - f-1hy < ° and X>O. 
Thus each of the space-times (4.11) and (4.14) may 

represent an infinite set of viscous fluid solutions depending 
on the choice of the "tilt function" t,b(t,x) and, in the particu
lar case when t,b = 0, i.e., when ua is comoving, the viscous 
fluid solution degenerates into the anisotropic solution given 
by (4.34) or (4.39). 

We now investigate those members of the set of space
times with the metric (4.17), if any, which satisfy the field 
equations for an anisotropic fluid. Since the rhs of ( 1.2) is 
obviously diagonalizable, those solutions for which Tab is of 
the type {2 ( 11 )} cannot represent an anisotropic fluid since 
a Tub of this Segre type is not diagonalizable. Hence, the only 
possibility for a SCKV space-time to satisfy the field equa
tions with Tub given by (1.2) is for the energy-momentum 
tensor to be of the form (4.29), i.e., we must have 

fLUaU b +Pllnanb +Pl(xaXbYaYb) = -~R(kafb +kbfa) ' 
(4.42 ) 

where Xa , Ya are two mutually orthogonal spacelike unit 
vectors in the two-space orthogonal to that of Ua and nu' 

Contracting (4.42) with fb U U we obtain 

-fLUbfb= -~Ruafu 

and since Ua is timelike and fa is null, uafa #0, so that 

fL = ~R. (4.43) 

Contracting in turn with Ib na and k bnu we obtain 

Pili bnb = - ~Rfana, PII k bnb = - !RkanU , 

so that either PII = - ~R or fb nb = k bnb = 0. However, if 
we contract (4.42) with na nb we obtain 
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PII = - Rkanafbnb , 

so that fbnb = k bnb = ° implies that PII = O. Hence, we 
have two possibilities, namely 

or 

(ii) PII = 0, fbnb = kbnb = 0. 

These are two distinct possibilities since we discard the case 
when R = 0, which implies a vacuum solution. 

Noting that the contraction of (4.42) with g"b yields 

(4.44) 

and taking into account (4.43), possibility (i) leads to 
Pl = 0, while (ii) implies that Pl = - !R. Contracting 
(4.42) with kbxu we obtainp1k bXb = - !R~ XU and since 
Pl = -!R is not a possibility, it follows that k aXa = 0. Sim
ilarly, we can show that k uYu = faxa = fa Ya = 0, so that ka, 
fa lie entirely in the two-plane of ua and n°. Since k a and fa 

are null vectors this implies that k ana and I ana cannot be 
zero, so that (i) is the only possibility. Hence, we have 
proved the following theorem. 

Theorem 9: If a space-time satisfies the field equations 
for an anisotropic fluid, with Tab given by (1.2), and also 
admits a SCKV, then, necessarily, 

fL = - PII = !R, P1 = ° , ( 4.45) 

i.e., the energy-momentum tensor is of the form 

(4.46) 

As we have seen, the assumption fL + PII # ° cannot hold 
for an anisotropic fluid admitting a SCKV and thus 
Theorem 9 invalidates some of the results given in Ref. 7, in 
which this specific assumption was made. 

We now show that the general class of metrics (4.17), 
satisfying conditions (4.23) for the existence of a SCKV, 
does indeed contain space-times with energy-momentum 
tensors of the forms (1.1) and (1.2). In the case of the vis
cous fluid, it is known that the conformally flat null electro
vac space-time, which is a special case of the simpler metric 
(4.19) with H =f(u) (X2 + r), where f is an arbitrary 
function of u, can be interpreted as representing a viscous 
fluid. I? Here we note that the space-time (4.17), with 

(4.47) 

admits the timelike SCKV 5' = ( - u2
, u2

, 0, 0) and satis
fies the viscous fluid field equations, with Tab given by ( 1.1 ), 
with 

fL = 4p 2(P 2 + 1) -I [1 + 2p2(1 + X2 + y2)] , 

P=jp2(p2+ 1)-1[2p2(x2+r) -1], 

1] = 3X21/2 (p2 + 1)1/2[2p2(x2 + y2) - l]u, (4.48) 

Q= 4p4(p2 + 1)-1(1 + 2X2 + 2r), 

ua = [2 -1/2(p2 + 1) -1/2,0,0,0] , 

qa = Q [O,r 1I2(p2 + 1) -1/2,0,0] , 
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where, in order that 'Tj>0, the solution is confined to that 
region of space-time for which 2p2(X2 + .1»1, i.e., 
2(X2 + y2)e2

(X
2 
+.v') >u2. Note that this restriction also en

suresp>O. 
To represent an anisotropic fluid, Tab must be ofSegre 

type {( 1,1 ) ( 11 )}; this will be the case for the metric (4.17) 
if the following contribution holds: 

RRoo = 2p2(R 62 + R 63)' R #0, (4.49) 

where the Ricci tensor components are given by (4.20). As 
an example, condition (4.49) is satisfied, with 
Roo = R02 = R03 = 0, by 

P=u-IeX'+.v', m=O, Hxx+Hyy=O; (4.50) 

and the space-time satisfies the field equations for an aniso
tropic fluid with R = 8P 2, 

ua = (2- I /2H -1/2,0,0,0), 
(4.51 ) 

na = (2-1I2H-1/2,_2112H1I2,0,0) , 

andJ.l,PII' andpl given by Eq. (4.45). It is interesting to note 
that among this class of solutions given by Eq. (4.50), there 
are several possible behaviors for the SCKV 5'. For exam
ple, the following three choices for H satisfying (4.50): 

(i) H = In(x2 + y2) , (4.52) 

(ii) H = u-2 In(x2 + y2) , 

(iii) H = u- 2
, 

lead to the following SCKV: 

(i) sa = [ - u2,u2 In(x2 + .1),0,0] , 

(ii) sa = ( - u2,0,0,0) , 

(iii) Sa = ( - u2 ,2,0,0) , 

(4.53 ) 

(4.54) 

(4.55 ) 

(4.56) 

(4.57) 

respectively. In case (i), 5' is null; in case (ii), 5' is timelike 
and parallel to ua 

; and in case (iii), 5' is spacelike and paral
lel to na. Note that these space-times also admit a viscous 
fluid interpretation with a noncomoving velocity, as in the 
case of solutions (4.11) and (4.14). 

Finally, we note that the space-times (4.11) and (4.14) 
contain no nontrivial vacuum solutions since when Rab = 0, 
the space-times are flat. However, the metric (4.19) does 
contain vacuum space-times, namely the vacuum pp-wave 
solutions which satisfy the condition 

(4.58) 

Thus we have the following theorem. 
Theorem 10: The only vacuum space-times admitting a 

proper SCKV are thepp-wave solutions of the form (4.19) 
with (4.58), which also satisfy condition (4.25). 

v. EXAMPLES OF INHERITANCE PROPERTIES 

Having found all space-times admitting a SCKV and 
satisfying the dominant energy condition, we now illustrate 
the theorems of Sec. III by investigating the inheritance 
properties of these solutions. 

All the SCKV space-times can be intepreted as repre
senting either viscous or anisotropic fluids, or both of these, 
except for the vacuum plane-wave solutions contained in the 
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metric (4.19). These SCKV space-times may also admit oth
er physical interpretations, such as a null electromagnetic 
field [the general null electrovac conformally flat space-time 
is contained in (4.19)] and a perfect fluid with an electro
magnetic field (it was shown in Ref. 7 that an anisotropic 
fluid may be so interpreted). However, none of the SCKV 
space-times can be interpreted as a perfect fluid solution and 
none can be interpreted as a non-null electrovac solution. We 
are concerned here only with the viscous and anisotropic 
fluid interpretations; possible electromagnetic interpreta
tions and their properties will be investigated elsewhere. We 
note that all spacetimes admitting a SCK V admit at least one 
null eigenvector, so that they form a very restricted set when 
interpreted as fluid space-times since, in general, neither the 
viscous fluid energy-momentum tensor ( 1.1) nor the aniso
tropic fluid energy-momentum tensor ( 1.2) admit a null ei
genvector. For example, the FRW models, which have been 
shown to be solutions of the viscous fluid field equations, 18 
do not admit a null eigenvector, in general. Furthermore, 
while the FRW models do not admit a SCKV, the k = 0 
models with the scale factor R (t) = ~ admit a HV and thus 
will provide us further illustrative examples of the inheri
tance theorems. 

We first consider the viscous fluid solutions. The solu
tion (4.11), in its viscous fluid form given by (4.35 )-( 4.37), 
has qa = 0; thus from Eqs. (2.21) and (2.22) it follows that 
5t'sJ.l + 2t/JJ.l = 0 and 5t'sP + 2t/Jp = 0, a fact that is easily 
confirmed by calculating 5t' sJ.l and 5t't;P with respect to the 
SCKV (4.12). Upon calculating 5t't; uQ and 5t't; ('Tj(7ab ) we 
find that 

va = V( sinh <,6,cosh <,6,0,0) , (5.1) 

5t's ('TjO"oo) = j Vx- 2 sinh 2<,6 ( 1 + j-IJ;,y) , 

5t's('Tj(701) = -jVx- 2 cosh 2<,6(1 +j-IJ;,y) , (5.2) 

5t't; ('Tj(711) = j Vx- 2 sinh 2<,60 + j-1;,y) , 

where 

V = ~(t 2 + x 2 )<,6t + tx<,6x - x (5.3 ) 

and all other components of 5t's ("Wab) = O. It follows that 
if va = 0, then V = 0 and so 5t's ('TjO"ab) = 0 and vice versa. 
Thus the SCKV symmetry is inherited if either 5t' sua 

= - t/Jua or 5t't; ('TjO"ab) = 0, in accordance with Theorems 
1-3. Note that the condition V = 0 for inheritance implies 
that only those viscous models whose tilting velocity compo
nents satisfy this condition can inherit the SCKV symmetry. 

The solution given by (4.14) and (4.39) to (4.41) be
haves in a similar fashion. On the other hand, the solution 
given by (4.17), (4.47), and (4.48) cannot inherit the sym
metry of the SCKV. 

In order to illustrate the inheritance theorems in the 
case of a viscous fluid with nonzero heat conduction we turn 
to the FRW models. These models have an energy-momen
tum tensor of the Segre type {I, (1 1 I)} and are thus com
monly regarded as perfect fluid solutions. However, they can 
satisfy Einstein's field equations with an energy-momentum 
tensor of the form (1.1).18 In such viscous fluid solutions, 
the four-velocity is necessarily tilting. While FR W models of 
any curvature can satisfy the viscous fluid field equations, we 
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will consider here only k = 0 models which admit a HV and, 
in particular, the Einstein-de Sitter model. 

The known viscous fluid solutions with the Einstein-de 
Sitter metric falls into two classes. One class, known as radi
al solutions, is obtained by writing the metric in spherical 
polar coordinates and taking the four-velocity to have a non
zero radial component, while the second class, known as 
axial solutions, is obtained by using cylindrical polar coordi
nates and taking the four-velocity to have an axial compo
nent in the z direction. For our example we shall consider 
only the radial case in which the metric has the form 

dsz = _dtz+t4/3(d~+~dez+~sinzedct>z) (5.4) 

and the four-velocity has the components 

ua = (cosh ¢,t -Z/3 sinh ¢,O,Q) , (5.5) 

where ¢ = ¢(t,r). The field equations then give the solution 
in the form 

J-l = jt -z coshz ¢, p = ~t -z sinhz ¢, 

TJX = - it -z sinhZ ¢, 

qa = jt -z sinh ¢ cosh ¢ 

x (sinh ¢, - t Z/3 cosh ¢,O,O) , 

where 

(5.6) 

X = ¢, sinh ¢ + t -2/3¢, cosh ¢ - r-1t -Z/3 sinh ¢. (5.7) 

The metric (5.4) admits the HV 

sa = (t,jr,O,O) , (5.8) 

corresponding to .,p = 1. Calculating 2' gUa, 2' gqa, and 
2' s (TJUab) we find that 

va = A (sinh ¢,t -Z/3 cosh ¢,O,Q) , (5.9) 

wa = jAt -Z[ (2 coshz ¢ 

+ sinhz ¢)cosh ¢,tz/3(coshz ¢ 

+ 2 sinhz ¢)sinh ¢,O,O] , 

2' s (TJuoo ) = 4A coth ¢TJuoo , 

2' g(TJUo1 ) =A(3 coth ¢ + tanh ¢)TJU01 , 

2' s ( TJU II) = 2A (coth ¢ + tanh ¢ ) TJU II , 

2' s (TJU2Z ) = 2A coth ¢TJUzz , 

2' s (TJU33 ) = 2A coth ¢TJU33 , 

where 

A = t¢, + jr¢, 

(5.10) 

( 5.11) 

(5.12) 

and all other components of 2' g (TJuab ) = O. In addition, we 
find that 2' sJ-l = - 2.,pJ-l + 2AJ-l tanh ¢ and 2' sp 
= - 2.,pp + 2AJ-l coth ¢. It follows that if va = 0, i.e., 

A = 0, we have complete inheritance, in accordance with 
Theorem 3. Furthermore, in this model qa is an eigenvector 
of Uab' so that ifwa = 0, i.e., A = 0, we again have complete 
inheritance, thus illustrating Theorem 4. 

Note that the inheritance condition t¢, + jr¢, = 0 im
plies that ¢ = ¢(X' e, ct», where 

x = t l/3r- 1 (5.13 ) 

is the self-similar variable associated with the space-time 
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(5.4). In fact, any viscous fluid k = 0 FRW model with 
R(t) = ~ will inherit the symmetry of the HV admitted by 
such space-times if and only if the local Minkowskian com
ponents of the four-velocity are functions of the self-similar 
variable associated with the HV (as well as other coordi
nates not appearing in the self-similar variable), i.e., if and 
only if they are self-similar solutions. The perfect fluid solu
tions, which have comoving four-velocity, i.e., ¢ = 0, are 
trivially self-similar and so inherit the symmetry. 

Turning now to anisotropic fluid solutions, we first con
sider the solution (4.11) and its anisotropic fluid form given 
by (4.34). Using the SCKV sa given by (4.12) we find 

2' gUa = - .,pua + va, va = (O,X,O,O) , 

2' gna = - .,pna = rna, rna = (X,O,O,O) . 
(5.14 ) 

Note that ua and na do not inherit the SCKV symmetry and 
that, in accordance with (2.30), va and rna are indeed paral
lel to na and ua

, respectively, thus illustrating the apparent 
contradiction, mentioned earlier, with a result of Ref. 7. 

The solution (4.14), in the form (4.39), and with the 
SCKV sa given by (4.16), leads to expressions (5.15), but 
with va and rna given by va = (0, - t, 0, 0) and rna = ( - t, 
0,0,0). 

The inheritance behavior of the solutions given by the 
metric (4.17) and Eqs. (4.50)-( 4.57) is as follows: Solution 
(i) is noninheriting with va = una and rna = uua; solution 
(ii), in which S a is parallel to ua ,obviously must inherit, i.e., 
va = wa = 0; and solution (iii), in which S a is orthogonal to 
ua

, is also an inheriting solution. The reason for inheritance 
incase (iii) isthatsincesaua = O,a = OinEq. (3.7) and, for 
this solution, the vorticity tensor Wab = O. Hence, Eq. (3.7) 
implies that Va = 0 and, from (2.30), rna = O. 

VI. CONCLUSION 

This work consists essentially of two parts. In one part, 
namely Sec. IV, we found all space-times which admit a 
SCKV and satisfy the dominant energy condition. None of 
these space-times can represent a perfect fluid and the only 
vacuum solutions are given by the pp-wave metric. However, 
in general, these SCKV space-times can represent either vis
cous heat-conducting fluids or a special case of anisotropic 
fluids. In the second part, largely Sec. III, we derived theo
rems concerning the inheritance of the symmetries associat
ed with a SCKV sa by the physical components of a viscous 
imperfect fluid and also by those of the only type of aniso
tropic fluid that can admit a SCKV. The main results of Sec. 
III show that in the viscous fluid case, the SCKV symmetries 
are completely inherited if and only if either ofthe equivalent 
statements 2' s (TJUab ) = 0 or 2' gUa = - .,pua (i.e., fluid 
flow lines are mapped conformally) is true. These results 
also apply to the symmetries associated with HV's and KV's. 

Various subcases of the general imperfect fluid source 
are also covered by these results. Apart from an imperfect 
fluid (TJ = qa = 0), which cannot admit a SCKV and for 
which the results are already known for HV's and KV's, 
these include a viscous fluid with no heat conduction 
(qa = 0), the results for which are already known?; the 
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models (4.11) and (4.14) are examples of such fluid space
times admitting a SCKV. Another subcase is that of a heat
conducting perfect fluid (rWab = 0) which will always in
herit the symmetry; this result is the generalization to 
nonzero heat conduction of a known result.7 

The inheritance of symmetry results presented here can 
be extended to generalizations of the energy-momentum ten
sor (1.1). For example, the actions ofKV's and HV's on an 
electromagnetic field and on an electromagnetic field with 
perfect fluid are well known3

; an investigation of the effect of 
SCKV's on an electromagnetic field with imperfect fluid 
would be a logical extension. Such fields have been the sub
ject of a number of cosmological investigations l8,19 and, in 
the same way as it has been shown that FR W models can be 
interpreted as electromagnetic field plus imperfect fluid 
models,18 so, also, can some of the SCKV models found in 
Sec. IV be interpreted as such models. 

Another possible extension is to multifluid models and, 
in particular, to two-fluid models. Models in which one fluid 
is a radiation perfect fluid, representing the cosmic micro
wave background, and the second fluid is either a perfect or 
an imperfect fluid, representing the galactic matter, have 
been studied extensively.20 Again, as in the case of FRW 
models, the SCKV models of Sec. IV can also be interpreted 
as two-fluid models. However, whether we consider the case 
when one fluid is a radiation perfect fluid or the case of two 
general imperfect fluids, the expression for Tab contains too 
many physical variables for the field equations to provide 
information on the inheritance properties of the separate 
physical quantities, although the inheritance theorems of 
Sec. III can be applied formally to suitable summed quanti
ties. In the case when the four-velocities of the separate fluids 
are not parallel, the question of the symmetry inheritance is 
not well posed. 

As stated earlier, our intended goal is the study of prop
er CKV's. Such a study is the natural mathematical general
ization of work that has been done previously. Also, CKV's 
are of more physical interest than SCKV's. The results in 
this work will be useful in the proposed investigation. More
over, some of the points made in this article serve to motivate 
the further study of CKV's and illustrate the potential prob
lems inherent in such an investigation. 

We have shown that there are very few space-times ad
mitting SCKV's. In particular, there exist no SCKV's in 
FRW space-times. However, it is known that there do exist 
properCKV's in FRW models21 (ninein general) including 
the simple timelike CK V 5' = R (a / at). This indicate the 
greater physical significance in the study of proper CKV's. 
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In the case of a proper CKV with tP;ab =I 0, it can be seen 
from Eqs. (2.19) that .!f s Tab is no longer zero. By studying 
the analog of Eq. (2.24), it can be shown that the equation 
for .!f s ("Wab) now includes the term tP;ab on the rhs and 
cannot be shown to be zero when tP;ab =I O. Thus in the case, it 
is impossible for the physical quantities to satisfy (3.1); con
sequently, the symmetries cannot be inherited in the sense 
defined in Sec. III. In particular, it can be shown that even in 
the case of a perfect fluid source, a conformal motion will 
not, in general, map fluid flow conformally (i.e., 
.!f sua=l - ¢ua). Clearly, one of the starting points offuture 
research is a notion of what is actually meant by symmetry 
inheritance in space-times admitting CKV's and what modi
fications are required to equations such as (3,1) for proper 
CKV's. 

ACKNOWLEDGMENTS 

We would like to thank Jack Gegenberg and Bob 
McKellar for helpful comments on Sec. IV. We are particu
larly grateful to Graham Hall for his interest in this work. 

This research was supported in part by the Natural Sci
ences and Engineering Research Council of Canada through 
operating grants to each author. 

'M. E. Cahill and A. H. Taub, Commun. Math. Phys. 21,1 (1971). 
2 A. H. Taub, in General Relativity: Papers in Honour of J. L. Synge, edited 
by L. O'Raifeartaigh (Oxford U.P., London, 1972). 

3J. Wainwright and P. E. A. Yaremovich, Gen. Relativ. Gravit. 7, 345, 596 
(1976). 

4C. B. G. McIntosh, Gen. Relativ. Gravit. 7,199 (1976). 
5L. Herrera, J. Jimenez, L. Leal, J. Ponce de Leon, M. Esculpi, and V. 
Galina, J. Math. Phys. 25, 3274 (1984). 

6D. P. Mason and M. Tsamparlis, J. Math. Phys. 26, 2881 (1985). 
7R. Maartens, D. P. Mason, and M. Tsamparlis, J. Math. Phys. 27, 2987 
(1986). 

"G. S. Hall and D. A. Negm, lnt. J. Theor. Phys. 25,405 (1986). 
9D. M. Eardley, Commun. Math. Phys. 37,287 (1974). 
10K. Yano, The Theory of Lie Derivatives and its Applications (North-Hol

land, Amsterdam, 1955). 
I 'c. A. Kolassis, N. O. Santos, and D. Tsoubelis, Class. Quantum Grav. 5, 

1329 (1988). 
I2H. Stephani, General Relativity (Cambridge U.P., Cambridge, 1982). 
"A. Z. Petrov, Einstein Spaces (Pergamon, Oxford, 1969). 
14N. S. Sinyukov, Scientific Annual, Odessa University (1957). 
15D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of 

Einstein's Field Equations (Cambridge, U.P., Cambridge, 1980). 
16G. S. Hall, Arabian J. Sci. Eng. 9, 88 (1984). 
J7B. O. J. Tupper, J. Math. Phys. 22, 2666 (1981). 
ISA. A. Coley and B. O. J. Tupper, Astrophys. J. 280, 26 (1984). 
19J. B. Benton and B. O. J. Tupper, Phys. Rev. D 33,3534 (1986). 
2°A. A. Coley and B. O. J. Tupper, J. Math. Phys. 27,406 (1986). 
21R. Maartens and S. D. Maharaj, Class. Quantum Grav. 3, 1005 (1986). 

A. A. Coley and B. O. J. Tupper 2625 



                                                                                                                                    

Linear perturbations of plane polarized plane waves. I. The absence of purely 
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The linearized perturbations of plane polarized plane gravitational waves coupled with 
electromagnetic waves are studied. The dependence of the perturbations on the two spatial 
directions spanning the planar wave fronts and on advanced time is analyzed in normal modes 
(since the background depends only on retarded time). The linearized Newman-Penrose 
equations (Ricci and Bianchi identities, commutation relations, and Maxwell equations) are 
written explicitly for the general perturbations and without imposing any gauge condition. 
Then, making the assumption that there are no outgoing perturbations-i.e., that the 
perturbations do not depend on advanced time-the surprising result that there are no 
nontrivial purely incoming perturbations is obtained. 

I. INTRODUCTION 
In our studies, in collaboration with Chandrasekhar, of 

collisions of plane gravitational waves,l-4 possibly coupled 
with electromagnetic or hydrodynamic waves, we have es
tablished some interesting results predicted by general rela
tivity: impulsive plane gravitational waves could be coupled 
only with shock electromagnetic waves2

; the collision of 
plane symmetric null dust might result in the formation of a 
massive fluid with a stiff equation of state3

; and the collision 
of plane gravitational and lor electromagnetic waves might 
result in the formation of a Cauchy horizon-as opposed to 
the formation of a three-dimensional spacelike curvature 
singularity-to the future of which timelike or spacelike, 
two-dimensional or three-dimensional curvature singulari
ties,4.5 or even no curvature singularities at all,6 may devel
op. 

All these conclusions were obtained under the assump
tion of exact plane symmetry and they are supported by ex
act solutions of the field equations describing them. How
ever, one is left wondering whether and which of these 
conclusions will continue to hold under the weaker, and 
closer to reality, assumption of almost plane symmetry. 

Yurtsever7
•
8 has already undertaken an investigation of 

the stability of the formation of Cauchy horizons in the colli
sions of plane gravitational waves. By considering only per
turbations that preserve the planar symmetry and by allow
ing for arbitrary initial data in the characteristic surfaces 
emanating from the collision he has shown that near the 
Cauchy horizon (of the background) the space-time resem
bles a Kasner space-time and that in the generic case the 
Cauchy horizon is transformed to a three-dimensional 
spacelike curvature singularity. 

Yurtsever's analysis is restricted in two respects. First, 
he perturbs the plane waves with plane symmetric perturba
tions. Thus, in particular, the unsatisfactory property of the 
plane waves that they have infinite extent (and, therefore, 
that they carry infinite energy) is preserved. Were the per
turbations nonplanar, one could envision constructing, by a 
suitable superposition of their normal modes, perturbations 
of compact spatial support corresponding to finite total ener-

gy. And, second, Yurtsever assumes arbitrary characteristic 
initial data for the interaction region of the collision, without 
considering whether all of them are compatible with the in
coming waves, prior to the collision. However, our analysis,9 

with Chandrasekhar, of the perturbations of the Bell-Sze
keres \0 space-time has demonstrated that this may well be a 
very tricky issue. In our analysis we found that in region II of 
the space-time (see, for instance, Fig. 1 of Ref. 2 for the 
standard picture of the space-times describing collisions of 
plane waves), which describes one of the waves bound for 
the collision, there are no nonplanar perturbations that do 
not depend on advanced time and that the general perturba
tions-i.e., those consisting of a mixture of incoming and 
outgoing waves-become singular even before the collision. 
This analysis suggested that9 "any formulation of the prob
lem of the future time-development of pre-assigned initial 
values on the null boundary at u = 0, without an adequate 
assessment of the implications of the space-time in Region II 
of the postulated waves in this region, should be viewed with 
skepticism. " 

The present investigation was motivated by the impasse 
we reached in Ref. 9 when matching the perturbations of the 
Bell-Szekeres space-time in the two regions, before and after 
the collision. Soon it became clear that perturbations of (sin
gle) plane gravitational waves might have interesting (and 
surprising) properties. In this paper we show that the "pecu
liarity" of the Bell-Szekeres space-time, i.e., the absence of 
purely incoming linear perturbations, is a property of the 
most general space-time representing plane polarized plane 
gravitational and electromagnetic waves. It should be clari
fied that it is crucial for our reductions that the perturbations 
we are considering do not respect the planar symmetry, and 
that they are squared integrable. There are nontrivial plane 
symmetric perturbations of plane waves and their complete 
determination will be the subject of a future communication. 

In the first sections of the paper we formulate the prob
lem and we derive the linearized Newman-Penrose equa
tions for the general perturbations of plane polarized plane 
waves in a framework more general than that required for 
obtaining the conclusion of Sec. VI. More particularly, in the 
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analysis ofSecs. III-V we include dependence of the pertur
bations on advanced time as well, to avoid the repetition of 
rederiving such large sets of equations for the most general 
perturbations we shall be considering in subsequent commu
nications. In addition, the linearized equations have been 
obtained without the imposition of any gauge condition, tet
rad or coordinate. Because of the high symmetry of the back
ground (it admits five Killing fields), all but three of the spin 
coefficients (A, J.l, y) and all but two of the Weyl and Max
well scalars ('1'4' ¢J2) vanish in the background. Thus the 
possible choices of gauge conditions are rather restrictive 
(see Sec. V) and the choices of gauge that can be imposed for 
different kinds of perturbations (independent of advanced 
time, plane symmetric, general) do not coincide. 

Finally, throughout the paper we consider the perturba
tions of plane gravitational waves coupled with electromag
netic waves. Since it is the custom in the literature to give 
only the plane pure gravitational waves, in Appendix A we 
compare the different expressions for the space-time metric 
without the imposition of the Einstein vacuum equations, for 
the Einstein-Maxwell waves. In Appendix B we solve the 
perturbation equations of the Bell-Szekeres space-time in a 
gauge invariant manner. 

II. THE UNPERTURBED SPACE-TIME 

The background space-time, whose perturbations we 
shall be considering, will be the space-time of region II (or 
III) in the standard picture for colliding plane waves. It de
scribes one of the plane gravitational waves (possibly cou
pled with an electromagnetic wave or with null dust) bound 
for the collision. We shall be making the assumption that the 
two spaceUke Killing fields (a/ax 1) and (a/ax 2

), which span 
the wave front of the propagating waves, are hypersurface or

thogonal. Those space-times are described by a metric of the 
form (Ref. 2, Sec. 8, Eq. 150) 

ds2 = U 2[ (dXO)2 _ (dX3)2] 

- (1- V2 )[X-I(dxl )2 + X(dX2)2] 

= U 2(du)(dv) - (1 - V2)[X-I(dx l )2 + X(dX2)2], 
(2.1) 

where 

v = XO - x 3
, U = XO + x 3 

are retarded and advanced time, respectively, and 

U = U(v), X = XCv). 

(2.2) 

(2.3 ) 

(For comparison with the notation of Sec. 8 of Ref. 2 note 
that U= eV

.) 

A suitable Newman-Penrose null tetrad for the metric 
(2.1) is 

XO x 3 Xl x 2 

1 
(U -U 0), [.=- 0 

I ~ 

1 
(U U 0 0), n·=-

I ~ 
(2.4) 

m;= -
[f-=uz 

(0 0 X- 1/2 _ iXI/2), 

~ 
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(0 o 

In addition we shall be using the contravariant components 
of this null tetrad in the null coordinates (u, V, Xl, x 2 ). They 
are 

u V Xl x 2 
- -

1;=~U-l (1 0 0 0), 

ni=~U-l (0 0 '0), 

mi= I (0 0 Xl/2 -IX- I12 ), 
(2.5) 

~[f-=uz 

-; 1 (0 0 1/2 . 1/2) m = X IX . 
~ff=ll 

The directional derivative operators associated with this tet
rad are 

D= (/) = ~ ~ Ii = (n) = ~ ~ 
U au' U av' 

8=(m)= 1 (x'/2~ _iX-I12~) (2.6) 
~ff=ll ax' ax2 ' 

8*=(m)= 1 (XI/2~+iX-I/2~). 
~,Jl=I1 ax I ax2 

It is straightforward to calculate the spin coefficients and the 
curvature scalars of this tetrad (Ref. 2, Sec. 8). One finds 
that 

(a) the only nonvanishing spin coefficients are 

1 X' ~ v U' 
A= - ---, J.l= - ----, y= - --, 

U ~ X U 1 - v2 ~U2 
(2.7) 

where the prime denotes differentiation with respect to v; 
and 

(b) the curvature of the metric (2.1) has two degrees of 
freedom. The two independent, non vanishing curvature sca
lars are described by 

1 [ 2 4v U' X,2 ] 
M+L= U2 - (l_v2)2 + I-v2 U + 2X2 ' 

(2.8) 

M-L =u-2[(lnX)"-2(lnX)'(~ + l~v2)] 

= 1 [(1 - V
2

)X'] '. (2.9) 
(1 - v2

) xU 2 

Note that M - Land M + L provide all the information 
about the Weyl and the Ricci curvature, respectively. In the 
standard Newman-Penrose notation and for the null tetrad 
(2.4) 

'1'4 = M - L, (2.10) 

while all the remaining Weyl scalars vanish. Thus, in partic
ular, all space-times described by the metric (2.1) are of 
Petrov type N. Moreover 

(i) when M + L = 0, the Ricci curvature vanishes and 
the metric (2.1) is a solution of the vacuum Einstein equa
tions; 

(ii) when M + L < 0, the metric (2.1) is a solution the 
Einstein-Maxwell (electrovacuum) equations and the only 
non vanishing Maxwell scalar is 

cf>22= ¢J2¢J! = -(M+L). (2.11) 
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The case M + L < ° can equally well be interpreted as a solu
tion of the Einstein equations coupled with null dust [ener
gy-momentum tensor Tab = EUaUb, u6 - u~ = 0, and 
2EU6 = - (M + L), see Ref. 3, Sec. 12, but for a different 
convention]. 

(iii) When M + L > 0, the metric (2.1) does not satisfy 
a physically acceptable energy condition. 

In summary, the metric (2.1) describes plane polarized 
plane waves that are purely gravitational when L + M = 0, 
gravitational waves coupled with electromagnetic waves or 
with null dust when L + M < 0, and it is physically unaccep
table when L + M> 0. 

In linearizing the Newman-Penrose equations in Sec. 
IV we shall need the action of the derivative operator a on 
the nonvanishing spin coefficients. We readily find that 

aA = U- 2
[ On U)'(ln X)' - (In X)"], 

a = 2U-2 [ -v-(lnU)' _ 1 + v
2

], (2.12) 
p 1 - v2 (1 _ v2 ) 2 

2u,2 UtI 
ay= U-I(U- I )" = -- --. 

U4 U3 

Before closing this section we would like to mention that 
the tetrad (2.4) we shall be using in the present paper is 
slightly different from the null tetrad used (in region II) in 
our previous studies, with Chandrasekhar, of collisions of 
plane waves. A characteristic of the tetrad (2.4) is that it is 
symmetrical in I and n and in the null coordinates U and v. 
On the other hand, the tetrad used in Refs. 2-5, and 9 is 
obtained from the symmetrical tetrad by rescaling the vector 
I by a suitable scalar factor and the vector n by the inverse 
factor (so that l-n = 1 is preserved). The asymmetrical tet
rad was adopted in Refs. 2-5 because it leads to a continuous 
matching of the obtained curvature scalars IIJ 4 and tl>22 of 
region II with their values obtained in the interaction region 
I. The same asymmetrical null tetrad was adopted in the 
study of the perturbations of the Bell-Szekeres space-time 
(Ref. 9) because it implies, in addition to the continuity of 
IIJ 4 and tl>22' that the only non vanishing spin coefficient in the 
background is p. It turns out that this particularly nice prop
erty of the Bell-Szekeres space-time does not generalize to 
all the metrics of the form (2.1) and there is no advantage 
whatever to choosing the asymmetrical null tetrad. In this 
paper we shall be using the symmetrical null tetrad given by 
Eqs. (2.4) or (2.5) exclusively. 

III. PERTURBATIONS: THE SETUP 

The perturbation analysis of the plane polarized plane 
waves will be performed by using the Newman-Penrose for
malism (for a review, see Ref. 11, Sec. 8; this book will be 
referred to hereafter as M. T.) In this formalism the un
knowns are (a) the spin coefficientsK, a, A, v,p, fl, 1", 1T, E, y, 
a, and,8; (b) the Weyl and the Maxwell scalars IIJ 0' IIJ I' IIJ 2' 

IIJ 3' IIJ 4 and <Po, <P I' <P2; and (c) the null vectors I, n, m, and m. 
For the perturbed quantities, (a') we shall denote by 

fl(\), tl), and A (I) the perturbations of the spin coefficients 
that do not vanish in the background, while keeping the 
same symbol K, a, v, p, 1", 1T, E, a, and,8 for the perturbations 
of those that do vanish in the background; (b') we shall 
denote, similarly, by lIJi I) and <Pi I ) the perturbations of those 
Weyl and Maxwell scalars that do not vanish in the back
ground and by 1IJ0 , IIJ I' 1IJ2 , 1IJ3 , <Po, and <PI the perturbations of 
those that vanish in the background; and (c') the perturba
tions of the null vectors I, n, m, and m will be projected in the 
unperturbed tetrad according to 

I (1) = A :I + A ~ n + A ~ m + A ! m, 

n(1) =A if +A ~n +A ~m +A ~m, 

m(1)=AU+A~n+A~m+A!m, 

m(1) =Ail+A;n +Ajm +A!m, 

(3.1 ) 

and they are described by the 4 X 4 matrix (A 5). Obviously, 
complex conjugation in A J would interchange the indices 3 
and 4. 

By linearizing the relation 

(3.2) 

it is straightforward to find the perturbation of the metric 
itself: 

g~i) = 2A i la1b + 2A inanb + 2(A : + A ~ )/(anb) 

-2(Aj +A!)m(amb) -2Ajmamb -2A!mamb 

+ 2(A ~ - Ai )l(amb) + 2(A ~ - Ai )l(amb) 

+ 2(A ~ - A; )n(amb) + 2(A! - A ~ )n(amb)" 
(3.3) 

The associated perturbations of the metric coefficients are given explictly by 

gUU(1) = 4U- 2A L gVV(1) = 4U-2A~, guv(l) = 2U- 2 (A: +A ~), 

g<'X'(1) = _ ~(Aj+A!+A!+Aj), g<'x'(1)= 1 2 (A!+Aj-Aj-A!), 
1 - v X( 1 - v ) 

gUX'(I) = i (A~-A~+Ai-Ai), 
UX 1/2..JT=VI 

1/2 

gux'(1)= X (A~+A~-Ai-Ai), 
U..JT=VI 

(3.4 ) 

g<'X'(1) = i(Aj -A!), 
1 - v2 

1/2 

X (A I + A I _ A 3 _ A 4 ) 
~ 3 4 2 2' 

U v l- v 

gVX'(1) = i (A I A I + A 4 _ A 3 ) 
4 - 3 2 2' 

Ux1/2..JT=VI 
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Because the background space-time (2.1) admits the 
three commuting Killing vectors (a I ax I ), (a I ax2), and 
(a lau), we Fourier analyze the Xl, x 2, and u dependence of 
the perturbations. Thus for all the perturbed quantities we 
assume that the x I, x 2

, and u dependences are of the form 

(3.5 ) 

where kl' k2' and k3 are real constants. In what follows we 
shall suppress the common phase factor (3.5) from all the 
perturbed quantities while keeping the same symbols-in
troduced in (a' ), (b' ), and (c' ) above-to describe the am
plitudes of the perturbations. Obviously, these amplitudes 
would depend on the coordinate v and the parameters k I' k2' 
and k3 which characterize the different modes. 

Because all the perturbations have the dependence 
(3.5) on xl, x 2

, and u, the directional derivatives (2.6) act
ing on all perturbed quantities become 

8-> (l/J2~) (ik1X1/2 + k2X- 1/2 ), 

8*-> (1/J2~)(ikIXI/2 - k2X- 1/2 ). 

( 3.6) 

Expressions (3.6) should be contrasted with the same 
directional derivatives acting on background quantities, in 
which case they read 

D=O, Ll = J2~, 8 = 8* = O. 
U dv 

(3.7) 

Finally we shall add some clarifying remarks about the 
"nonstandard" notion of complex conjugation we shall be 
using in our analysis. The same notion of complex conjuga
tion was invoked in M.T., Chap. 9, in the treatment of the 
perturbations of the Kerr space-time, and, more recently in 
Ref. 9, in the treatment of the perturbations of the Bell
Szekeres space-time. However, although extensively used, 
this "nonstandard" notion of complex conjugation has never 
been elucidated in writing. 

Let Band r stand for two typical Newman-Penrose 
perturbed quantities that generally will be complex. The 
Newman-Penrose formalism will provide for them linear 
differential equations, some involving Band r and some B 
and r*. Then Band r will be Fourier analyzed, picking the 
phase factors (3.5). For the phase factors to drop out of the 
equations involving B, rand B, r* we have to assume that 

r(v,xl,x2,u) = r(v,kl,k2,k3)ei(k,.x' + k,x' + k,u) 

and (3.8) 

r*(v,XI,X2,U) = r*(v,kl,k2,k3)ei(k,.x' + k,x' + k,u). 

Therefore, the complex conjugation in the amplitudes would 
require that 

(3.9) 

this is what Chandrasekhar privately refers to as the dishon
est complex conjugation. In some of the Newman-Penrose 
equations, however, Band r will be acted on by the complex 
differential operators 8 and 8* [( 2.6) ]. The conjugation 
between 8 and 8* is an honest complex conjugation, and it is 
effective by the change i ..... - i. Since x I and x 2 dependence 
appears only in the phase factors (3.5) we shall have 
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" ( 1/2 a . -1/2 a ) - x+ u- X --IX - - , 
axl ax2 

(3.10) 

8*-( 1/2~ + i -1/2~) = x-
X axl x ax2 ' 

where we have introduced the notation 

X+ = (ik1X1/2 + k2X- 1/2 ), x- = (ik JX
I/2 - k2X- I

/
2

). 

( 3.11) 

Hence, in all the equations, complex conjugation on kl 
will always be dishonest while on k2 there will be a combina
tion of an honest and a dishonest conjugation. Similarly, be
cause the operator D, Eq. (2.6), is real, the conjugation on k3 
will always be dishonest. 

The upshot of the previous remarks is that complex con
jugation on the amplitUdes of the perturbed quantities will be 
effected by the changes 

(3.12) 

IV. THE LINEARIZED NEWMAN-PENROSE EQUATIONS 

We have already mentioned that the space-time (2.1) 
we shall be considering describes plane polarized plane grav
itational waves, possibly coupled with electromagnetic 
waves or with null dust. We shall analyze the perturbations 
only in the Einstein-Maxwell case, i.e., when L + M < O. 
Then the pure gravitational case follows as a particular case 
while the case of null dust can be obtained similiarly. 

The set of the Newman-Penrose equations that ought to 
be considered are the 36 Ricci identities, the 16 Bianchi iden
tities, the 8 Maxwell equations, and the 24 commutation 
relations, i.e., 84 equations altogether, when we are counting 
real equations as one and complex equations as two. These 
equations (before the linearization) can be obtained, for in
stance, from M. T., pp. 46 and 47, Eqs. (310) for the Ricci 
identities, pp. 49 and 50, Eqs. (321) and (321 ') for the Bian
chi identities, and p. 52, Eqs. (330)-( 333) for the Maxwell 
equations. For the linearization of the commutation rela
tions [M.T., p. 45, Eqs. (303)-(306)], which is more in
volved, we adopt the procedure described in M. T., Sec. 84, 
pp. 448-450, Eqs. (112)-(115), where we enumerate the 
null vectors as i = 1,2,3,4 in the order /, n, m, m, respective
ly. 

For the background value of the Maxwell scalar 1;2 we 
shall ignore a physically irrelevant phase factor (which 
could depend on v) and we shall choose 

(4.1 ) 

Since <I> mn = 1; m 1;~ and since 1;0 and 1; I vanish in the back
ground we readily find that <1>00' <1>01' <1>1' will continue to 
vanish to first order, 

<I>~/ = <1>6:) = <1>\:) = 0, 

while 

<l>6~) = H1;o, <l>i6) = H1;~, <l>g) = H1;" 

<l>i:) = H1;f, <l>g) = H(1;i l
) + 1;!(1). 

( 4.2) 

(4.3) 

By using Eqs. (2.12) as well it is straightforward to ob-
tain the following linearized equations: Linearized Ricci 
identities, 
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(a) 2ik3P/l=ll- UKX- = 0, 

(b) 2ikp - U KX+ = []\Voji, 
/l=ll 

(c) 2U- 2 (U 2k)' - 2ik37 + IJIluji = 0, 

(d) 2ikp - U eX - - K(In X)' - K* (In U)' = 0, 
/l=ll 

(e) -2ikJ3+ U eX+ +K[ln(~)]' +lJIluji=O, 
/l=ll 1- v 

(f) 2U-3/2
( U 3

/
2e)' + e*(In U)' - 2ik3yl) -A ~ji( U- I)" + []\V2ji = 0, 

(g) U1TX- + 2ik3A (I) _ 0-* [In(1 - v2)]' + (p + e* - 3e) (In X)' - HUifJtiji - jiA ~ (L)' = 0, 
/l=ll XU 

U1TX+ . (I) 2v 
--- + 21k:# + o-(ln X)' + --2 (p* - e - e*) 
/l=ll 1- v 

(h) 

_ []\V ji+ __ 2 _v_(In U)' _ 1 + v =0 2.,(2A I [ 2 ] 

2 U 1 _ v2 (1 _ v2 ) 2 ' 

(i) 2 (1T/l=ll)' - ~7* - (1T* + 7) (In X)' - 2ik3V + 1J13 U ji + HUifJrji = 0, 
/l=ll 1- v-

(j) ~[(1 - v2 ) U-1A (I)]' - (f1(1) + f1(1)* + 3yl) - yl)*)(lnx)' - jiA ~(L)' - vUX- + lJIil)uji = 0, 
I-v Ux /l=ll 

(k) pX+ - o-X- + IJllji/l=ll = 0, 

(I) U (aX+ - (3X-) + ~p - o-(lnx)' + (p - p*) (In U)' + []\V2ji = 0, 
/l=ll 1- v 

(R) 

(m) U (A (I)X+ - f1(1)X-) - jiA ~ (L)' + ~(a + (3 *) + (a* - 3(3) (In X)' 
/l=ll Ux I-v 

+ IJI U ji _ HUifJ*ji _ 2jiA i [-v-(In U)' _ 1 + v
2 

] = 0, 
3 I U I-v2 (l_v2)2 

(n) - ~[(1_V2)U-If1(1)]'+ vUX+ + (A(I)+A(I)*)(InX)' 
1 - v2 /l=ll 

2jiA 2 [ 1 2] 
+ 1 ~ v2 (yl) + yl)*) - Huji(ifJi

l
) + ifJi

l
)*) - T 1 ~ v2 (In U)' - -(-1-~-~-::-2)-::-2 = 0, 

UyI)X+ 2v 
(0) - 2(3' + --«(3 + 7) + (7 - a* - (3) (In U)' + a (In X)' 

/l=ll 1 - v2 

+A~ji(U-I)" -HUifJlji=O, 

Linearized Bianchi identities, 

(a) 2ik31J1 1/l=ll-lJIoUX- = 0, 

(b) lJIo(InX)' + []\VI X - - 2ik31J12 = 0, 

/l=ll 

(c) -21J1 1(In X)'+ U (HifJtiX +-1JI2X-)+KU(M-L)ji 
/l=ll 

+ 2ik3(1JI3 - HifJf) - K*UH 2ji = 0, 
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(d) 

- 2ik3'1'il) + U~[H2a* - 4€(M -L) -A ~(a(M -L»] =0, 

(e) 2U- 2(1- V2)-1/2['I'oU\!T--=--il]' + 2ik3HifJO - 'l'IUX+ = 0, 
[f-=-i1 

(f) 2U -2(1 - v2
) -1/2['1' I U(1 - v2) l' + HifJoX- - 'l'2X+ = 0, 

(g) - 2(1 - v2) -3/2[ (1 - V2)3/2'1'2l' - 2ik3H(ifJi l ) + ifJi1)*) + H(ln x)'ifJ~ 

+ U ('1'3 + HifJf)X+ + U ~[H2(p* - 2€ - 2€*) - A ~ (AH2) + a(M - L)] = 0, 
[f-=-i1 

(h) _2_[ (1 - v2)HU- lifJf]' - 2 2 2[ (1 - V2)2'1'3U -I l' + (4{3 - r)(M - L)~ 
I-v2 (1-v) 

+ (r* - 2a - 2{3*)H2~ + ~A i(a(M - L» 

- ~A; (,:~.H2) - 2HU- lifJI(lnx)' + ~ ['I'il)x+ - H(ifJi l ) + ifJil)*)x-] = 0, 
1- v 

where M - L = '1'4 (for the background) is given by Eq. (2.9); 
Linearized Maxwell equations, 

(a) 2ik3ifJI - UifJoX- + HUK~ = 0, 
[f-=-i1 

(b) 2ik3ifJi l ) + (2€-p)HU~-ifJo(lnx)' + UAi(aH)~- ifJIUX- =0, 
[f-=-i1 

(c) - 2U-2(ifJou[f-=-i1)' + ifJIX+ + aH~[f-=-i1 = 0, 

ifJ(1)X+ 
(d) - 2 2 [(1-v2)ifJ,1'+ 2 +(2{3-r)H~+Ai(aH)~=0. 

U(1 - v ) [f-=-i1 

(B) 

(M) 

Recall that A, J-l, and r are the only non vanishing spin coefficients in the background, given by Eqs. (2.7) (note they are all 
reall). By using Eqs. (109) from M. T., p. 449, we find that the only nonvanishing structure constants ez in the background 
are 

e32 = e42 = _ ~ _U_ e21 = _ U'~ e32 = e42 = __ 1_ (lnx)' 
3 4 U 1 _ v2 'I U2' 4 3 U ~ , (4.4 ) 

together with those obtained from the antisymmetry of e Z in the two upper indices. As in M. T., the different equations will be 
characterized by the triplet of indices (Z). When pairs of complex conjugate equations arise, only one equation will be 
included. We obtain for the 
linearized commutation relations, 

nl), 

(i3) , 

(;3), 

(i I), 

(! I), 

n2
), 

(!2), 

(il ), 

(~I ), 

2631 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

2U- I[f-=-i1 3 +A!(lnx)'-2ik3A~+('T*+1T)U~=0, ( 
UA I )' 

. [f-=-i1 

X-A i - X+ Ai = (J-l(1)* - J-l(1» ~ [f-=-i1 , 

X-Ai - X+ A; = (p* - p) ~ [f-=-i1 , 

X + A ~ - 2U -1[f-=-i1ik3A i = K ~ [f-=-i1 , 

UX+ A! - 2ik3A! [f-=-i1 = Ai (In X)'[f-=-i1- aU ~ [f-=-i1 , 

2U(A i u- I[f-=-i1)' = UX+ A ~ + A i (lnx)'[f-=-i1 + v*U ~ [f-=-i1 , 

UX+A 2 
2(A!)'+(A~ +A~ -A!)(lnx)'- 4 +A(I)*U~=O, 

[f-=-i1 

(A:)'-ik3A~-A~(lnU)'= ; (y(1)+yI)*) , 

U-I(UA I)' _ ik A 2 -~ (€+ €*) 
2 32-~ , 
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(j3), (j) U (X-Aj -X+Aj) =A~(lnx)'-~Ai + (a-[3*)U{j., 
{f=I1 1- v 

nl) + (i2
), (k) 2 (AiuJI=ll)'+Ai(lnx)'-2iky4t + UX+ (A: +A~) 

U JI=ll {f=I1 
= (7-'lT*)U{j., 

(jl) + (11), (1) U (A~X+ +A!X-) -2ik3(Aj +A1) + (p+p*)U{j.=~A~, 
JI=ll I-v 

(j2) + (12), (m) ~ (A ~X+ +A ~X-) - 2(A ~ +A 1)' - AA ~ = (f-l(1) +f-l(l)*)U {j., 
I-v -v 

nl) - (i2), (n) 2U (A i u- I{f=I1)' + UX+ (A: - A ~) - 2ik3A ~ - Ai (lnx)' 
{f=I1 JI=ll 

= [2(a* + [3) - (7 + 'IT*)] U {j. , 

(11) - (jl), (0) U (A!X- -A~X+) +2ik3(Aj -A1) = [2(E-E*) - (p-p*)]U{j., 
{f=I1 

(12) - (j2), (p) U (A ~X- -A ~X+) + 2(A ~ -A 1)' + 2(A! -A j)(lnx), 
{f=I1 

= [2(1'°_1'1)*) - (f-l(l)-f-l(I)*)]U{j.. 

In the following, the different linearized equations will be 
characterized by (R. ), (B. ), (M. ), and (C. ) standing, 
respectively, for the Ricci, the Bianchi, the Maxwell, and the 
commutation relation equations, where after the period a 
latin letter specifies the particular equation. 

v. GAUGE CONDITIONS 

In investigations of perturbations via the Newman-Pen
rose formalism one must be aware of, and take advantage of, 
the ten degrees of the available gauge freedom. The six (real) 
degrees of tetrad gauge freedom have their origin in the null 
tetrad rotations of types I, II, and III, which preserve the 
Newman-Penrose equations (see M.T., Sec. 8g, p. 53). On 
the other hand, the four (real) degrees of the coordinate 
gauge arise from the freedom in identifying the points of the 
unperturbed and the perturbed manifolds. 

The (finite) changes of the Newman-Penrose scalars 
under the tetrad rotations are given in M.T., Sec. 8g, Eqs. 
(342)-(347). The rotations are "measured" by the complex 
scalars a and b and the real scalars A and e. The absence of 
any rotation is given by the choice 

a = b = e = 0, A = 1 . (5.1 ) 

f-l(I)-+f-l(l) + (ja*, 

V-+V + aA + a*(f-l + 2y) + l1a*; 

for type II, 

'IT-+'IT + b *f-l + bA , 

7-+7 + 2by -l1b, 

[3 -+[3 + b(f-l + y) , 

a-+a + b *y + M, 

u-+u - (jb, 

p-+p - (j*b, 

K-+K-Db; 

and for type III, 

A (I)-+A (I) + (d - 2ie)A, 

f-l(1) -+f-l(\) + d f-l , 

1'1)-+1'1) + dy -! I1d + (i12)l1e, 

E-+E -! Dd + (i12)De, 

a-+a + (i12)(j*e -! (j* d , 

[3 -+[3 + (i12 )(je - ! (jd . 

(C) 

(5.2) 

We shall be interested in infinitesimal tetrad rotations. 
In accordance with the rotation conventions adopted in Sec. 
III, we shall describe by a, b, e, and d the linearized changes 
of a, b, e, and A, respectively, where A = 1 + d. Next we 
linearize the relevant equations [M.T., Sec. 8g, Eqs. (343), 
(345), and (347)] around the "background" values (5.1) 
and use that the only non vanishing spin coefficients in the 
unperturbed space-timeareA,f-l, and y. We find that the only 
spin coefficients subject to nonzero changes are, for type I, 

(The spin coefficients not included in the above transforma
tions remain invariant to the respective infinitesimal tetrad 
rotations. ) 

'IT-+ 'IT + Da* , 

A(\) -+A (I) + (j*a* , 
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In the next section we shall be considering the u-inde
pendent perturbations. Therefore, the available tetrad rota
tions should be restricted to be independent of u as well: 

Da = Db = Dd = De = ° . (5.3 ) 

Hence, in addition to the spin coefficients omitted from Eqs. 
(5.2), now 'IT, K, and E also remain invariant to rotations of 
types I, II, and III, respectively. 

In considering which gauge conditions to impose on the 
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perturbations of the spin coefficients, our guiding principle 
is to seek conditions that can be imposed independently of 
the order in which the different rotations are performed. 
Such conditions take advantage of one of the rotations and 
they are not affected by the other two rotations. In particu
lar, we shall impose the tetrad gauge conditions 

v = 0, p = 0, ,yl) = 0, (5.4 ) 

by making rotations of types I, II, and III, respectively. (The 
only other possible choices could have been 7' = 0 or (T = 0, 
instead of p = 0, again by suitable rotations of type II.) 

VI. THE u-INDEPENDENT PERTURBATIONS 

In this section we shall establish the main result of the 
paper; that is, there are no nontrivial u-independent pertur
bations of the metric (2.1) that do not respect the plane 
symmetry. 

That the perturbations are u independent means that 

k3 = 0 (6.1) 

in the equations of Sec. IV. That the perturbations are not 
plane symmetric means that at least one of k 1 and k2 in Eq. 
(3.5) is nonzero: 

k~ +k~#O. (6.2) 

In addition, as we have explained in Sec. V, we shall impose 
the gauge conditions 

v=p=,yI)=O. (6.3) 

Our objective is to solve the system of equations (R), 
(B), (M), and (C) of Sec. IV, subject to the conditions 
(6.1)-(6.3). 

The first step in the solution is easy. By using successive
ly Eqs. (R.a), (R.b), (R.c), (R.d), (R.k), (M.a), (M.c), 
(R.p), (R.q), (R.f), (R.g), (R.i), and (C.e) we obtain, in 
this order, that 

K = 0, IJ1 0 = 0, 1J1 1 = 0, E = 0, (J = 0, tPo = 0 , 

tPl = 0, 7' = 0, 1J12 = 0, A ~ = 0, 1T = 0, 

1J13 = 0, A! = 0 (hence also A ~ = 0) , 

while Eqs. (R.e), (B.a), (B.b), (B.e), (R.h), (B.c), (B.d), 
(B.f), (B.g), (M.b), (C.a), (C.d), (C.i), (C.l), and (C.o) 
are identically satisfied. The easy step has revealed, there
fore, that 

v = p =,yl) = K = E = (T = 7' = 1T = 0, 

1J10 = 1J1\ = 1J12 = 1J13 = 0, tPo = tPl = 0, (6.4) 

A~ =A~ =A! =0. 

Next, we proceed with the more involved part of the 
solution in which, gradually, we shall be imposing additional 
gauge conditions compatibly with the four (real) degrees of 
coordinate gauge freedom. 

A coordinate gauge invariant treatment of the problem 
would involve solving the remaining of Eqs. (R), (B), (M), 
and (C) under the conditions (6.4). The solution is expected 
to involve four (real) arbitrary functions, which could be 
consistently chosen to be zero. The absence of nontrivial u
independent perturbations then would mean that all the per
turbations should vanish when the four arbitrary functions 
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are chosen to be zero. Since, however, the system of equa
tions under consideration remains formidable even after the 
conditions (6.4), gradually we shall be imposing coordinate 
gauge conditions compatibly with the equations of the sys
tem. 

First, we shall impose 

A!=Aj=O 

and 

(6.5) 

Ai =Ai =0. (6.6) 

Since A ! is complex (and A j is its complex conjugate), the 
condition (6.5) takes care of two degrees of gauge freedom. 
On the other hand, Eq. (C.c) gives 

(6.7) 

which implies that A i is real and, therefore, the condition 
( 6.6) takes care of only one degree of gauge freedom. 

Equation (R.l) gives aX+ = /3X- from which we ob
tain that 

(a* + /3)X- = (a + /3*)X+ , 
( 6.8) 

(a* - {J)X- = - (a - /3*)X+ . 

By adding and subtracting Eq. (R.o) to the complex conju
gate ofEq. (R.r) we obtain 

2(a* - (J)' - [2v/(l - v2
) Ha* - /3) 

= - (a -/3*)(lnx)', 
(6.9) 

2(a* + /3)' + 2(a* + /3) (In U)' 

- [2v/(l - v2
) Ha* + /3) = (a + /3 *) (In X)' . 

By combining Eqs. (6.8) and (6.9), and using that 

(In X ± )' = (X + /2X ± ) (In X)' , ( 6.10 ) 

we find that Eqs. (6.9) can be integrated. They give 

a* +/3= BX+/U~, a* -/3= irX+/~, 
(6.11 ) 

where Band r are integration constants. In fact, by compar
ing Eqs. (6.8) and (6.11) we conclude that Band r are real 
constants. Hence 

a= X- (B-irU), 
2U~ 

X+ . 
/3 = (B - lrU) . 
2U~ 

( 6.12) 

We should remark that with the gauge conditions (6.5) and 
(6.6) and the solutions (6.12) we have taken care of Eqs. 
(C.c), (R.l), (R.o), and (R.r). 

To proceed further, we shall use at this point the residu
al (tetrad) gauge freedom that remains after the imposition 
of the gauge conditions 

v = p = ,yl) = 0 , ( 6.13 ) 

imposed by making tetrad rotations of types I, II, and III, 
respectively. We shall explain the ideas in some detail for 
rotations of type III. 

With a view to the transformations (5.2) we wonder 
whether we can make, for instance, a and /3 vanish by the 
allowed rotations of type III, i.e., by those rotations that 
preserve the solution obtained up to the present stage. Since 
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A (I) and /-to) have not been determined so far, they remain 
outside of these considerations. 

The vanishing of ~l) is preserved by those infinitesimal 
rotations of type III that satisfy 

dr-!~d + (i/2)~()=0. (6.14) 

By using Eqs. (2.7) and (3.6), this condition reads 

i. (d - i() = - d(ln U)' . (6.15) au 
The vanishing of E is automatically preserved (the rota

tions considered respect the plane symmetry!) while the re
quirement that a or (J vanish leads to the condition 

d - i() = (fi./ U)(B - ir U) . ( 6.16) 

It is remarkable that Eqs. (6.15) and (6.16) admit the solu
tion 

d = B fi./U, () = r fi. , 

for which a and {J are made zero, 

a={J=O, 

(6.17 ) 

(6.18 ) 

while preserving the vanishing of E and ~I). We adopt this 
choice. 

From Eqs. (M.d) and (B.h) we next obtain that 

¢li l
) = 0, 1JI~1) = o. (6.19) 

The fact that [see Eqs. (6.4) and (6.19)] we have estab
lished that all the perturbations of the curvature scalars van
ish to first order is a good enough argument for the u-inde
pendent perturbations to be neutral to first order. However, 
we shall complete the proof that all the perturbations are 
trivial by considering the remaining equations and using the 
remaining gauge freedom. 

From Eqs. (Cj), (Ck), and (C.n) we obtain that 

A : = A ~ = A ~ = A ! , ( 6.20) 

while Eq. (Ch) is identically satisfied. 
Equations (Cm) and (C.p) give (and they are equiva

lent to) 

/-t(1)=A;X+Ifi...JT=l1; (6.21) 

Eq. (Cg) gives 

A (I) = A ;X-Ifi...JT=l1. (6.22) 

Using the solutions (6.21) and (6.22), Eqs. (R.j) and (R.n) 
lead to 

and 

(U-lff"=ll A;)'X+ = u- l..JT=l1 A~(X-)' 
(6.23 ) 

(U -lff"=ll A ~ ),X- = U -lff"=ll A ~ (X+)' , 
(6.24) 

respectively. 
Next we take advantage ofthe residual gauge freedom of 

rotations of type I [Eqs. (5.2)]. We readily conclude that 
the vanishing of 1T is automatically preserved; that/-t(l) can be 
made zero by performing a rotation with 

a* = -A ~; (6.25 ) 

that the choice (6.25) leads to the vanishing of A (I), compati-
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bly with Eqs. (6.21) and (6.22); and that the preservation of 
the vanishing of v leads, after some computations, to the 
condition (6.23). 

The upshot of these conclusions is that by using the re
sidual gauge freedom we can perform a type I rotation with 
a = - A ~ and have 

/-t(l) = A (I) = 0 

and, therefore, 

A; =A~ =0. 

( 6.26) 

(6.27) 

There are only two equations that have not been consid
ered so far, Eqs. (C.b) and (C.£). By virtue ofEq. (6.26), 
Eq. (Cb) reads 

(AiX-)*=A~X- . (6.28) 

Equation (6.28) shows that we can choose 

Ai=Ai=O (6.29) 

by using one degree of gauge freedom, the last remaining 
degree of coordinate gauge freedom. Equation (C.£) then is 
used to show that A i = 0; and with this we have established 
the neutrality of the space-time (2.1) to the u-independent 
first-order perturbations. 

We would like to point that, contrary to the type I and 
III rotations, there is no residual gauge freedom of type II 
rotations. For instance, the preservation of the vanishing of 
l7 under type II rotations immediately gives [Eq. (5.2) ] that 
b = o. This remark shows that in order to establish the neu
trality of the u-independent perturbations (and the vanish
ing of the perturbations of all spin coefficients, Weyl and 
Maxwell scalars, and the null tetrad vectors) we have to use 
every bit of the available gauge freedom and all 84 Newman
Penrose equations! 

VII. CONCLUDING REMARKS 

The conclusion ofthe present paper took us by surprise, 
to say the least: Consider the most general metric for plane 
polarized plane gravitational and electromagnetic waves 
(the family depends on two arbitrary real functions). It is a 
pure radiative metric, of Petrov type N, and it depends only 
on retarded time u. Conside its linearized perturbations, 
which do not respect plane symmetry but do respect causal
ity, i.e., they do not depend on advanced time, but only on 
retarded time. In other words, we consider perturbations 
that destroy the planar symmetry but with no mixing of in
coming and outgoing waves. In general relativity, this situa
tion would not be accepted and the only linear perturbations 
compatible with the field equations are the trivial, pure 
gauge perturbations. It should be clarified at this point that 
nowhere in our analysis have we demanded explicitly any 
regularity conditions from the perturbations. The only re
quirement on the perturbations (in addition to the assump
tion that they do not depend on advanced time) is that their 
dependence on the two spatial directions (spanning the wave 
fronts of the waves) can be Fourier analyzed. The conver
gence of the Fourier integrals, of course, does demand im
plicitly a certain asymptotic falloff and regularity of the per
turbations. 

What does general relativity tell us? Shall we be careful 
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in using normal mode analysis in perturbation theory? Is the 
set of normal modes considered incomplete, and are physi
cally relevant perturbations lost? Are the perturbations of 
plane waves only a second-order effect? Has our surprising 
conclusion anything to do with the fact that plane waves are 
an idealization, carrying infinite energy? Was the restriction 
to consider only plane polarized plane waves too severe and 
can the conclusion, therefore, not be generalized to the gen
eral plane waves? Or, is there another "no hair" theorem 
(like the black holes or the cosmological no hair theorems) 
waiting its discovery? 

Note added in proof In collaboration with B. G. 
Schmidt, we have constructed a nontrivial, u-dependent 
vacuum linearized perturbation of plane gravitational 
waves. The perturbation is not squared integrable! It ap
pears, therefore, that the absence of purely incoming pertur
bations is due to the assumption that their u-dependence can 
be analyzed in normal modes. The implications to the cus
tomary way of studying perturbations should be obvious. In 
an alternative investigation, we have been able to determine 
the general solution of the u-dependent perturbations ofEin
stein-Maxwell plane polarized plane waves. These results 
will be reported in subsequent communications. 
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APPENDIX A: ALTERNATIVE DESCRIPTIONS OF 
PLANE POLARIZED PLANE WAVES 

The form of the metric 

ds2 = U 2(v) (du) (dv) 

- (1- V2)['I'-I(V)(dx)2 + 'I'(V)(dy)2], (AI) 

whose linear perturbations we have studied, is isometric 
with the most common expression 

ds2 = (du)(dv l ) - F 2(v l )(dx)2 - G 2 (VI)(dy)2, 
(A2) 

usually used for the description of plane polarized plane 
waves. The identification is obvious, 

F(v l ) = [(1- V2)'I'-I(V)]1/2, dV I = U 2(v)dv, 

G(v l )=[(1-v2)'I'(V)]1/2. (A3) 

Then 

where the dot and the prime denote differentiations with 
respect to VI and V, respectively. Thus the metric CA2) is 

Ca) a vacuum solution when F IF + GIG = 0; 
(b) a solution of the Einstein-Maxwell electrovacuum 

equations or a solution of the Einstein equations coupled 
with null dust when F IF + G IG<O. 

(c) By the Einstein equations, the associated energy-
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momentum tensor would not satisfy any physical energy 
condition when F IF + GIG> O. 

For the metric (A2) the only nonvanishing (tensor) 
components of the Riemann tensor are 

Rvxvx = FF, R uyuy = GG, 

of the Weyl tensor are 

(A5) 

F .. .. 
C vxvx = - 2G (FG - Gp), 

G .. .. 
C uyuy = - (FG - GF) , 

2F 
(A6) 

of the Ricci tensor is 

(A7) 

while the scalar curvature vanishes identically. 
The essential difference between expressions (Al) and 

(A2) for the line element is that the vacuum Einstein equa
tions lead to first-order differential equations for the metric 
(AI) and to second-order equations for the metric (A2). 

By making the coordinate transformation 

X y 
X=--, y=---, 

F(v l ) G(v l ) 

u = U _ X 2 F _ y2 G 
F G' 

the metric CA2) becomes 

ds2 = (dU) (dV) - (dX)2 - (dY)2 

_ (X2 ~ + y2 ~) (dV)2 . 

In the vacuum case we set 

FIF= -GIG=h(V) 

and the metric (A9) becomes 

ds2 = (dU) (dV) - (dX)2 - (dY)2 

+ h( V) (y2 - X2) (dV)2 ; 

(A8) 

(A9) 

(AW) 

(All) 

this is the standard form (Ref. 12) for plane polarized plane 
waves with amplitude h( V). 

APPENDIX B: GAUGE INVARIANT PERTURBATIONS 
OF THE BELL-SZEKERES SPACE-TIME 

In this appendix we give the complete gauge invariant 
solution of the u-independent perturbations of the plane 
wave solution of the Einstein-Maxwell equations for the 
Bell-Szekeres space-time. The background metric 

ds2 = 4(du)(dv)/fl=l1 - (1 - v2) [(dX I)2 + (dX2)2] 

(Bl) 

is a particular case ofthe metric (2.1) considered in the main 
body of the paper. It corresponds to the choices 

U=2(1-V2 )-1/4, X=l, (B2) 

and the relevant perturbation equations can be readily ob
tained from Eqs. (R), (B), (M), and (C) of Sec. IV by 
making these choices. Here we present the general solution 
of the resulting equations without imposing any gauge condi
tion. The motivation for performing the massive reductions 
involved and for including the result in an appendix was to 
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understand how the ten degrees of gauge freedom would 
appear explicitly in the solution. It is remarkable that they 
do not appear (as we were expecting) as five complex free 
functions but as six complex functions subject to two reality 
conditions! 

thus, in particular, the space-time (B 1) is conformally flat. 
We leave unspecified the spin coefficients perturbations 

f3, p, and A, (I). In addition, we set 

From Eqs. (2.8), (2.9), and (4.1) we find that 
A! = F, A j = F*, A ~ = G, 

Ai=G*, A~=J, A1=J*, 
(B4) 

M-L=O, M+L= -1I2JI=if, 

H= 1I.J2(1-V2 )'14; 
(B3) where F, G, and J are arbitrary complex functions of v. The 

obtained solution of the perturbation equations is 

'110= '11,='112 ='113 = 'IIi') =0, ifJo=O, K=E=O, 

0"= ik, + k2 p, 1T= V p* 7= JI=if [(1- V2)'/4p]' 
ik,-k2 (1-v2)'/4ik,+k2' ik,-k2 ' 

_ik,-k2 _ v(5p-p*) V= [(1_V2)5/4A,(!)]' 
a - . f3 2 '/4 .' , 

lk, + k2 4(1 - v) (lk, + k2) Uk, - k2)JI=if 

(I)=ik,+k2 A,(!)+ 2+V2 J* + v [f3 + f3* ]+ 5v
2
p+(3v

2
-4)p* , 

J.l ik, - k2 2.J2( 1 _ v2) ik, - k2 (1 - v2) '/4 ik, + k2 ik, - k2 4(k ~ + k ~)..rr=Il 
( 1 - V2)3/4 5v rr=t1 v2(5p* - 27p) + 16'P t!) = f3 I + -v 1 - U pi + _--'-__ '--_--'--
ik,+k2 4(ki+k~) 16(ki+k~)JI=if 

v [3f3 _ f3 * ] + (v
2 + 2) J 

4(1- v2)'/4 ik, + k2 ik, - k2 8 .J2(1- v2) ik, + k2' 

ifJ, = - (1 - v
2

) '/4p , ifJil) = _ 2vp _. 1 [ vJ + 2f3( 1 _ v2) '/4] , 
ik, - k2 k i + k ~ (lk, + k 2) 2 .J2 JI=if 

A: =.J2 JI=if [. f3 +. f3* ] + v.J2(21 - v2rl4 (p + p*) 
lk, + k2 lk, - k2 k, + k 2 

(B5) 

provided that 

J J * .J2 JI=if (p - p*) 

ik, + k2 ik, - k2 k i + k ~ 
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A theorem of Chung [Proc. R. Soc. Edinburgh, Sec. A LXII, 237 (1947)] suggests a possible 
generalization of the symmetry concepts in classical mechanics. It is shown that the theory of 
Kostant-Souriau-Kirillov can be adapted easily to this more general case. The theory is 
illustrated with a number of examples. 

I. INTRODUCTION 

According to a theorem of Lee Hwa Chung (see e.g., 
Refs 1-3) the natural mathematical objects that describe the 
symmetries of the symplectic manifold (X, 0.) (0. is the 
symplectic form of X), are the diffemorphisms rp:X--.X 
which verify the condition: 

rp·o.=ao.. (1.1) 

Here rp' 0. is the pullback of 0., and aER'\ {O}. In fact, this 
theorem asserts that if rp sends Hamiltonian vector fields into 
Hamiltonian vector fields, then rp verifies ( 1.1 ). The hypoth
esis of the theorem is a natural definition for the concept of 
symmetry. Moreover an analog reasoning is valid also in 
quantum mechanics (see Ref. 4, Vol. I, Sec. 8 and Vol. II, 
Sec. 3): One can say that the Chung theorem is the analog of 
the Wigner theorem in quantum mechanics, as remarked in 
Ref. 5. 

Usually, one considers only transformations with 
a = ± 1. If X = R2

n, this can be justified as follows. 5 Let 
XI'''' X2n be a system of coordinates in X. Definerpo:X~Xby 

rpo(x) =.J1{lTx and 'I1==rpo rpO-I. One can verify immediate
ly that 

'11' 0. = bo., 

where b = ± 1. If we interpret the transformation rpo as a 
convenient choice of the units of measure then one is justified 
in considering only canonical (a = 1) and anticanonical 
(a = - 1) transformation. 

A priori it is not clear if the same scaling argument goes 
in general so it would be safer to define a symmetry by ( 1.1 ). 

Another problem appears when one considers not only a 
single symmetry transformation, but a family of symmetry 
transformations which has a group structure. To be more 
specific, let G be a Lie group acting smoothly on X. If 
G3 ~g E Diff(X) is the action of G, then according to 
( 1.1) we can call G a symmetry group of (X, 0.) if for any 
g E G, one has agE R'\ {a}, such that 

( 1.2) 

Even in the case X = R2n 
, one cannot hope to eliminate 

all the a; s for any Lie group G by the scaling procedure 
mentioned above. So it is interesting to have a criterion to 
decide when the group G permits only ag = 1, V g, and in the 
opposite case to generalize the theory of Kostant, Souriau, 
and Kirillov (see, e.g., Ref. 6) as much as possible. 

Connected with the more general concept of symmetry 
( 1.2) introduced above, is the question of physical equiv
alence. Suppose that (XI' 0. 1 ) and (X2, 0.2 ) are two symp-

tectic manifolds and that G is a symmetry group in the sense 
of (1.2). We now ask in which case the two symplectic mani
folds describe the same physical situation. Guided by the 
preceding discussion, we think that a reasonable definition is 
the following: there exist a diffeomorphism rp: XI~X2' 
which is also a G-morfism, i.e., commutes with the action of 
G and there exists aE R'\ {O} such that we have 

(1.3 ) 

The concept of physical equivalence is usually considered in 
a more restricted sense, specifically with a = 1 (see, e.g., 
Ref. 7). Let us note that in quantum mechanics one has a 
concept of physical equivalence (see Ref. 8, p. 157) that is 
more in the spirit of ( 1.3). These problems are treated in Sec. 
II. 

In Sec. III we study some examples of transitive systems 
with symmetries, and in Sec. IV we draw some conclusions 
and suggest further developments. 

II. THE GENERAL THEORY 

(A) From (1.2) and the fact that ~<Pg is an action of 
G, i.e., satisfies (i) <pg 0<Pg , = <pgg , (ii) <Pe =Id, it follows 
that ~g is a one-dimensional real representation of G. 
Because <P is a smooth action, ~ag is a smooth function. 

Let Lie G == Te (G) be the Lie algebra of G. One knows 
that to ~g there corresponds a one-dimensional real rep
resentation a of Lie G, i.e., a: Lie ~R verifies: 

[a(s), a (-1]) ] = a( [5,7]]), V 5, 7] E Lie G. 

But the left-hand side is zero so we get the condition 

a( [5,7]]) = 0, V 5, 7] E Lie G. (2.1) 

We have the following. 
Theorem: Let G be a simply connected Lie group. Then 

in (1.2) we have ag = I, V g iff [Lie G, Lie G] = Lie G. 
Proof <= If we have [Lie G, Lie G] = Lie G, then (2.1) 

shows that a = 0, which implies that ag = I, V g E G. 
=? Suppose that [Lie G, Lie G] is strictly included in 

Lie G. Let 7]1"'" 7]r be a basis in Lie G such that 7]1'"'' 7]" 
(r' < r) is a basis in [Lie G, Lie G]. Then define 
a(a l 7]1 + ... + a r 7]r) = Po' + 1 a o' + 1 + '" + pr a r with 
Po' + 1" ", Pr E R; a verifies (2.1) so it is a nontrivial repre
sentation of Lie G, which gives a corresponding nontrivial 
representation of G, because G is simple connected. • 

Remarks: ( I) In the language of the theory of Lie alge
bras cohomology (see, for instance, Ref. 6), the condition 
[Lie G, Lie G] = Lie G is equivalent to H I (Lie G, R) = o. 
So HI (Lie G, R) = 0 is a sufficient condition to have 
ag = 1, V gE G. 
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A great number of groups of interest in physics verifies 
this condition: the semisimple Lie groups [the assertion that 
H I (Lie G, R) = OisoneoftheWhiteheadlemmas,seeRefs. 
6 and 9]. This is also true for the special Euclidian group and 
the proper orthochronous Poincare group (see, e.g., Refs. 3 
and 6). 

(2) If G is not simply connected it is possible that the 
only one-dimensional real representation of G is the trivial 
one, even if HI (LieGR)#O, e.g., G=U(1). From the 
proof of the theorem it follows that if G is not simply con
nected, then the condition H I (Lie G, R) #0 is only neces
sary for the existence of a nontrivial, real, one-dimensional 
representation of G. We note that there exist Lie groups that 
are not simply connected, and have nontrivial, real, one-di
mensional representations, e.g., the proper Galilei group. 

(B) Suppose now that the Lie group G is such that there 
exists a nontrivial, real, one-dimensional representation. We 
will show that the general theory of construction of transi
tive actions can be adapted to this situation. We follow the 
presentation used in Ref. 6 and indicate only the necessary 
modifications. 

( 1) If (X, n) is a symplectic manifold, and gt---+tPg is a 
symmetry of (X, n) in the sense of ( 1.2), define as in Ref. 6 
for any xEX, t/Jx: Gt----+Mby 

and let OJx be the two differential form on G, given by 

OJx =1/1': n. (2.2) 

Then one can verify immediately that OJx is closed 
(dOJx = 0) and that OJx verifies that identity 

(2.3 ) 

where 19 is the left multiplication with g in G. 
(2) Let OJ be a closed r-form on G, which satifies 

(2.4) 

First notice that OJ is completely determined by OJe • In 
fact (2.4) gives us 

OJg (51'''',5r) =agOJeUg-,.51'''·' Ir ,.5r), (2.5) 

for V gE G and V 51'"'' 5r E Tg (G). 
Let us translate the condition dOJ = 0 into an equivalent 

condition on OJe EAr Lie G. Ifxo, ... , Xr E X( G) (= the set of 
vector fields on G), one has the following formula (see, e.g., 
Ref. 10, p. 36) 

(dOJ) (Xo, XI'"'' X r ) 

1 . A 

= -- L (- 1) 'X; (OJ (Xo, ... , Xi''''' X r ) 
r + 1 O<;<r 

1" .+. +-- L (-1)' JOJ([X;,Xj]' 
r + 1 O<;<j<r 

X .. ·X .. ·X ... ·X) o I J r 

(2.6) 

(with the Bourbaki convention ~iE.p = 0). The condition 
dOJ = ° is equivalent to 

(2.7) 

V g E G, V SO'"'' 5r E Tg, (G). We denote 'TJi =lg_I.5i for 
i = 0, ... , r. Evidently 'TJi E Te (G) = Lie G for any i. If 
'TJ E Lie G, let Y7J E X (G) be defined by 

(2.8) 

Then (2.7) is equivalent with 

dOJ( Y7J , ... , Y7J) = 0, V gE G, V 'TJ0, ... , 1'1rE Lie G. 
o r g "' 

Ifwe use (2.6) this relation is equivalent with 

L (-1);Y7J ,(OJ(Y7Jo '"'' Y 7Ji , .. ·, Y 7J)+ L (-1)it+jOJ(Y[7Ji,7Jil' Y 7Jo '"'' Y7Ji , .. ·, Y7Ji'''')g =0, 
O<i<r O<i<j<r 

for V g E G, V 'TJ0,"., 'TJr E Lie G. 
But by definition 

d 
Y 7JJOJ( Y 7J , , ... , Y 7J,))g = dt OJ (exp 17Jo)g( (Y7J , ) (exp 17Jo)g'"'' (Y7J) (exp 17Jo)g) II = 0 

(2.7) d 
= dt OJ(exp I7Jo)g(/(exP I7Jo)g. 'TJ1, .. ·,/(exP I7Jo)g. 'TJr) 11=0 

= :t Ufexp
'
7Jo)g OJ)e('TJI'"'' 'TJr) 11=0 

(2.4) d 
= dt aexpI7JoagOJe('TJI'"'' 'TJr) 11=0 

Using this relation in (2.9) we get the identity 

L (- 1 )ia( 'TJi )OJe ('TJ0,"" TJi'''','TJr) 
O<.i<r 

+ L (- l)itj 
O<i<j<O 

OJe ([ 'TJ1'TJj]' 'TJ0, .. ·, TJI'"'' TJj, .. ·, 'TJr) = 0, (2.10) 
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for V 'TJI'"'' 'TJr E Lie G. 
Remark: Let us reformulate the result with the help of 

the theory of Lie algebra cohomology (see Refs. 6 and 9). 
Let L be a Lie algebra, Va vector space, and p a representa
tion of Lin V. Denote by C' (L, V) the V-valued completely 
antisymmetric r-linear forms on L (for rE IN), CO 
(L, V) = V, C - I (L, V) =0. The elements of C' (L, V) are 
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called r-cochains with values in V. Define the cobord opera
tor 8 = C' (L, V) -+ cr + 1 (L, V) by the following formula: 

De( 1/0"'" 1/r) 

= 2: p( 1/1 )c( 1/0"'" "'I"'" 1/r) 
O<i<.j<r 

+ 2: (- l)it
jc( [1/1' 1/j]' 

0< i<.j< r 

1/0"", "'I"'" "'j"'" 1/r)' (2.11 ) 

Then one can prove that tP = 0 (see Ref. 9). In cr (L, V) 

there are two remarkable subspaces: Z; (L, V) = Ker 8 
(the r-cocycles) and B; (L, V) = 1m 8 (r-cobords). Be
cause 82 = 0, one has B; (L, V) C Z; (L, V). The sub
spaces H;(L, V) =Z;(L, V)IB;(L, V) are the r-coho
mology groups of L with respect to p. If P is zero, the index p 
is omitted. So we can formulate the result above as follows: 

dUJ = 0 iff UJeE Z~ (Lie G, R). 

Let us give the formulas for two particular cases that we 
will need in the following: if C E Z ~ (L, V) we have from 
(2.11 ) 

p( 1/1)c( 1/2> 1/3) + cycl - {c( [1/1' 1/2], 1/3) + cycI} = 0 
(2.12) 

if C E B~ (L, V), i.e., C = 8b with bE cl (L, V), we have 

c( 1/1,1/2) = p( 1/1 )b( 1/2) - p( 1/2)b( 1/1) - b( [1/1,1/2])' 
(2.13 ) 

(3) From (1) and (2) it follows that we have a map 
I/ln:X -+ Z ~ (Lie G, R) given by 

I/ln(X)=(UJx)e' (2.14) 

As in Ref. 6 it can be proved that I/ln verifies 

I/ln (¢g (x» = ag Ad; I/ln (x), V g E G, (2.15 ) 

where ~Ad: if the coadjoint action of G in A2 Lie G. Let 
Hx denote the stability subgroup of the point x E X, and G a 
the stability subgroup of the point l7 E Z~ (Lie G, R) with 
respect to the action ~ag Ad; of G. Then from (2.15) it 
follows that Hx C G"'n(X) . 

(4) Let x E X. Denote l7= I/ln (x) and 

ha={SE Lie G 1l7(s, 1/) = 0, V 1/ E Lie G}. 

Then from (2.12) it follows immediatley that hu is a Lie 
subalgebra of Lie G. 

(5) Suppose that G acts transitively on X. Then one 
knows that X is a homogeneous space of the form G I H, 
where H eGis a closed subgroup of G. One can prove as in 
Ref. 6 that H ° ( = the connected component ofthe identity in 
H) is equal with Hu (=the unique connected Lie subgroup 
of G associated with the Lie subalgebra her), where 
l7 = I/ln (H). It follows that G I Ha is a covering manifold for 
X. 

(6) Suppose that l7 E Z ~ (Lie G, R) is such that Ha is a 
closed subgroup of G. Let UJ be the unique closed two-form 
on G which verifies (2.3) and UJ e = l7. Then using the reduc
tion principle (see Ref. 6, theorem 25.2) it follows that there 
exists a unique symplectic form 0. on G I H such that 
1r 0. = UJ. (Here 1T: G -+ G I H a i"s the canonical projection 
which is in this case a submersion.) 
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By a simple computation one can establish the formula 

tr*(ag- I ¢; 0.) = UJ, V g E G. 

Because 1T is a submersion, tr * is injective, and we get 
that 0. satisfies (1.2). 

(7) Let G IHI and G IH2 be two homogeneous mani
folds for the group G, 0. 1 and 0.2 the corresponding symplec
tic forms on G I HI and G / H2, respectively, and q;: G I HI ..... 
G / Hz a G-diffeomorphism which satisfies (1.3). Because q; 
is a G-morphism it can be proved that HI and H2 are conju
gated subgroups ofG, and q; is of the form q;(gHl ) = ggoH2' 
Then one gets easily: 

al/ln, (HI) = ago Ad;" I/ln, (Hz). (2.16) 

(8) One knows that if V is a vector space and T a linear 
representation of a Lie group in V, then T factorize to the 
projective space of V. Let us denote by P(Z ~ (Lie G, R) ) the 
projectivespaceofZ~ (Lie G, R) and by ~Ad; thefactor
ized of the action ~ag Ad; of G in Z ~ (Lie G, R). Then 

(2.16~ ....-....... 

I/ln, (HI) = Ad;" I/ln, (H2), (2.17) 

where UE PZ~ (Lie G, R) is the equivalence class of l7E Z ~ 
(Lie G, R). 

(9) Let (1 E PZ ~ (Lie G, R) be an orbit with respect to 
the action ~Ad; of G. We say that (1 is a regular orbit if 
there exists ~ E (1 and l7 E ~ such that Ha is a closed sub
group of G. [Because of (7), it follows that V ~ E (1, 

V l7 E ~, Ha is a closed subgroup of G. J 
Summing up the preceding line of arguments, we can 

formulate the main result of this paper. 
Theorem: Let G be a Lie group. Then, up to covering, 

the transitive nontrivial symplectic manifolds on which G 
acts according to (1.2) are parametrized by the regular or
bits of(PZ~ (Lie G, R». 

(10) From (3) and (5) we can see that the transitive 
symplectic manifolds on which G acts according to ( 1.2) are 
of the form G / H, where the closed subgroup H verifies that: 
(i) there exists l7 E Z ~ (Lie G, R), such that H a is a closed 
subgroup of G; (ii) HO = H(T; (iii) He Ga. 

We have now the following useful corollary. 
Corollary: Suppose that the Lie group G satisfies the 

following condition: if H eGis a closed subgroup of G 
which satisfies (i)-(iii), then H = Ha. Then all the transi
tivesymplectic manifolds ofGare of the form G IHa' where 
U belongs to a regular orbit in (PZ ~ (Lie G, R». 

Remark: One can prove that, in general, all the transi
tive symplectic manifolds on which G acts according to 
~ 1.2) are of the form G / H where the closed subgroup H 
verifies (i )-(iii). In the examples in Sec. III we will give only 
the maximal manifolds G / H a' 

III. EXAMPLES 

We illustrate the theory developed in Sec. II with some 
examples. 

A. The one-dimensional Newton group11 

We identify this group with real 3 X 3 matrices of the 
form 
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(~.a.")~(:~: ~: D ~a."ER. 
with the law of composition induced by the matrix multipli
cation. The Lie algebra of this group can be identified with 
the real linear space of 3 X 3 real matrices of the form: 

(t.x.U)~(: ~ D. t.X.UE~ 
with the Lie bracket 

[(t, x, u), (t', x', u')] = (0, ut' - u't, xt' - x't). 

The real one-dimensional representation of this Lie algebra 
are of the form 

iJ(t,x,u)=pt, pER'\{O}, 

and they induce representations of the group. 
I. We take the following basis in Lie G. 

h~G ~ D p~G ~ n 
k~G ~ D 
Then the cocycle condition (2.12) DC (h,p,k) =0, 

gives c(p, k) = 0, so the most general element in Z~ 
(Lie G, R) is of the form: A. Cl + (Te2, where 

cl«(t, x, u), (t', x', u'» = xt' - x't, 

c2«t, x, u), (t', x', u'» = ut' - u't. 

It follows that the projective space (PZ~ (Lie G, R» is 
formed by the elements: 

(a)~;l) ={,u(c l + E c2 ) l,u E R'\ {On, lEI < 1, 

(b)~~2) ={,u(c2 + EC l ) l,u E R'\ {on, lEI < 1, 

(C)~(3). (4)={,u(C I ± c2) l,u E R'\ {on. 

II. By a simple computation one gets 
Ad~ ~(l). (2) _ ~(l), (2) 

1/,a,v E - (E+th1/)!(l+Eth1/)' 

so, choosing 1] conveniently we can arrange it so that 

Ad~, a. v ~;l), (2) = ~61), (2). So, {~;l), (2) IIEI < n, are two 

distinct orbits. Also ~(3).(4) are left invariant by Ad~. 
III. (a) he, = {CO, 0, u) lu E R} 

~ He, ={(O,O,v)lvER} 
is a closed subgroup. 

(b) he, = {CO, x, 0) Ix E R}~ He, = {CO, a, 0) la E R} 

is a closed subgroup. 

(c) he, ±e, = {(O,X,+X)}~ He, ±e, = {(O,a, +a)} 

is a closed subgroup. 
IV. (a) From (2.5) we get 
UJ1/, a. v = eP1/ da 1\ d1]. 

If we identify X with the set {( 1], a, 0) 11], a E R} then by the 
reduction principle the symplectic form is 

01/.a = eP1/ da 1\ d1]. 
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The action of the group is 

rP1/',a',v' (1], a) = (1] + 1]', a + v' ch 1] + a' sh 1]). 

(b) From (2.5) we get 

UJ1/. a, v = eP 1/ dv 1\ d1]. 

We identify X with the set {(1], 0, v)I1], VE IR}. Then the 
symplectic form is 

0, = eP 1/ d v 1\ d1] 
1/,V 

and the action of the groups is 

rP1/'. 0', v' (1], v) = (1] + 1]', a' sh 1] + v' ch 1] + v). 

(c), (d) The form is 

UJ1/, a, v = eP 1/(da ± dv) 1\ d1]. 

We identify the space X with the set {( t,a, ± a)}. Then, 
the action of the group is 

rP1/, a, v (t, a) 

= (1] + I,a + e± '(a ± v», 

and the symplectic form is 

O"a = eP'da 1\ d1]. 

B. The one-dimensional Poincare group11 

This group can be identified with 3 X 3 real matrices of 
the form 

shx 
thX 
o 

with the composition law induced by matrix multiplication. 
The Lie algebra of this group can be identified with the real 
linear space of 3 X 3 matrices of the form: 

(V't,X)=(~ ~ ~), v,t,xER 
000 

with the Lie bracket 
[(v, t, x), (v', t', x')] = (0, vx' - v'x, vI' - v't). 

The real one-dimensional representations of this Lie al
gebra are of the form: 

iJ(v, t, x) = p v, P E R'\ {O}. 

and they induce representations of the group. 
I. We take the following basis in the Lie algebra: 

h ~ G ~ ~). p ~ G ~ D· k ~ G ~ D 
Then the two-cocycle condition (2.12) &(h,p,k) = 0 

gives c(h,p) = 0, so the most general two-cocycle is of the 
form HC l + Pc2 , where 

cl«v,t,x),(v',t ',x'» = xv' - x'v, 

c2«v,t,x),(v',t ',x'» = v't - vt '. 

It follows that the projective space P(Z ~ (Lie G,» is 
formed from elements of the form 

(a) ~;l)={,u(CI + EC2 ) 1,uE/{On, 101 < 1, 
(b) ~;2)={,u(C2 + EC l ) I,uE/{On, 101 < 1, 
(c) ~(3).(4) ={,u(cl + c2) I,uE/{On, 101. 
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II. By a simple computation one finds that 

Ad q ~(I),(2) _ ~(l),(Z) 
)(,T/,a ~E - ~(E-th)()/(I +.-thx) , 

Foraconvenientx wehaveAdq 1,(1),(2) = 1,(1),(2) so 
, X,17,a £ 0 

that {1,;l),(2) 1[£[ < 1} are two distinct orbits. 

Also 1,(3) and 1,(4) are left invariant by Adq• 

III, (a) he, = {(O,t,O) [tER}; then He, 
= {CO,1],O) [1]ER} is a closed subgroup. 

Cb) he, = {CO,O,x) [xER}; then He, = {CO,O,a) [aER} is 
a closed subgroup, 

(c),(d) heo±e2 = {(O,t, + t)}; then Heo±e2 
= {(0,1], ± 1])} is a closed subgroup. 

It follows that all four orbits are regular. 
IV. (a) From (2.5) we find the form (i) on the group 

(i))(;rl,a = e"X( ch X da - sh X d1]) /\ dX. 

From the composition law we get that 

(X,1],a) = (x,O,a') (0,1]',0) 

with a' = a - X th X, 1]' = 1]lch X· Ifwe take as coordinates 
X, a', rl', then (i) becomes 

(i)x,T/',a' = ch Xe"x da' /\ dX. 

We can identify X with the set {(x,O,a) [x,aER}, and the 
reduction principle gives the symplectic form 

O)(,a = ch Xe"x da /\ dX. 

After some computations we find the action of the group to 
be 

¢)(',T/',a' (x,a) 

= ex + x',a' + a chX' - (1]' + shx'a)th(x + x'H. 

(b) From (2.5) the form (i) on the group is 

(i)X,T/,a = e"X C ch X d1] - sh X da) /\ dx. 

As in case (a), we observe first that from the composition 
law of the group we have 

(X,1],a) = CX,1]',O) (O,O,a') 

with 1]' = 1] - a th X, a' = alch X· Ifwe take as coordinates 
X, 1]', a' then (i) becomes 

(i)XC'1',a' = e"X ch X d1]' /\ dX· 

We identify X with the set{ (X,1],O) [X,1],ER}, and the reduc
tion principle gives the following symplectic form: 

OM = e"X ch X d1] /\ dx. 

As in case (a) we find easily the action of the group: 

¢xA,a' (X,1]) 

= ex + X',1]' + 1] chX' - (a' + shX'1J)th(X + X'» 

(c),(d) The form (i) is 

(i) = ± e(P+ OX(d1] ± da) /\dX' 

We identify X = {( v,a, ± a)}. Then, the action of the group 
is 

¢X;'1,a (v,a) = (X + v,1] ± a + e ± Xa) 

and the asymptotic form 

Ov,a = ± e(P+ l)xda /\dX' 
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c. The one-dimensional Galilei group11 

We identify this group with 3 X 3 real matrices of the 
form 

(

1 v 

(v,1],a)=. ° 1 

° ° with the matrix multiplication as the composition law. 
The Lie algebra of the group can be identified with the 

linear space of 3 X 3 real matrices of the form: 

u 

° 
° with the Lie bracket 

J u,t~eR 
[(u,t,x),(u',t',x')] = (O,O,ut' - u't). 

The real one-dimensional representations of this Lie al
gebra are of the form: 

a(u,t,x) = su + pt, S Z + p2#0, s,pER 

and give the one-dimensional real representation of the 
group. 

I. We take the following basis in the Lie algebra: 

h=(~ ~ ~), p=(~ ~ ~), g=(~ ~ ~). 
° ° ° ° ° ° ° ° ° Then the two-cocycle identity (2.12) 8c(h,p,g) = ° gives 

pC (p,g ) + sc( h,p) = 0. It follows that there exists AER such 
that c(p,g) = As and c(h,p) = - Ap. So, the most general 
element of Z~ (Lie G,R) is of the form ACl + uCz, where 

cl«u,t,x),(u',t ',x'» = S(xu' - x'u) - pCtx' - t'x), 

cz«u,t,x),(u',t',x'» = tu' - t'u. 

The elements of P(Z~ (Lie G,R» are then 
(a) 1,(1) = {ucz[OER\ {O}}, 
(b) 1,;2) = {A.(c1 + £CZ ) [AER\{O}}. 

11.1,0) is invariant with respect to the Adq action, and 

Adq 1,(2) _1,(2) v;'1,a .- - E- (~V+PT/) 

For a convenient choice of v and 1] we have Ad~'T/,a 1,;2) 

= l,hZ), so {1,;2) [£ER} is a whole orbit. 
III. (a) he, = {(O,O,x) [xER}; then He, 

= {(O,O,a) [aER} is a closed subgroup. 
(b) he, = {(u,t,O) [}u + pt = a}:::} 

He, = {(v,1],O) [}v + P1] = O}, a closed subgroup. 
IV. (a) From (2.5) (i) is 

(i) = e~v + PT/ d'YIAdv, 
V.11. a ./ 

We identify Xwith {(v,1],O) [v,1]ER}. The symplectic form is 

° = e~v+PT/ d'YIAdv V.71 ./ 

and the action of the group is 

¢v',T/',a' (v,1]) = (v + V',1] + 1]'). 

It is convenient to work in new variables: 

{
a=.sv + P1], 
{J=,S1] - pv. 

Then, the form (i) is 
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OJa,f3,a = ea(da/\da + [(~a - p/3)/(~2 + p2) ]da /\d/3), 

In these new coordinates He = {( 0,/3,0)} so we can identify 
X ~ {( r,O,b)}. The symple~tic form on X is then 

D.r,b = erdb/\dr· 

The action of the group on X is 

¢a,f3,a (r,b) = (a + r,a + b - r/3 1(~2 + p2) 

+ ;a(pr - ;/3)/(;2 + p2)2). 

D. The special Galilei group 

As in Ref, 6 we realize the special Galilei ~ t+ group as 
5 X 5 real matrices of the form 

(R,v,~,a) =G v 

~). ReSO(3), 
o 

v,aER, 1]ER, 

with the matrix multiplication as the composition law. 
The Lie algebra Lie ~: can be thought of as the linear 

space of 5 X 5 matrices of the form 

(a,u,t~) ~ G ~ ~). 
where a is a real antisymmetric 3 X 3 matrix, u,xER3

, tER, 
The Lie bracket is 

[(a,u,t,x), (a'u',t ',x')] 

= ([a,a'],au' - a'u,O,ax' - a'x + t'u - tu'). 

The real one-dimensional representations of Lie ~: are of 
the form 

a (a,u,t,x) = pt, pER'\ {O} 

and give one-dimensional real representations of ~:. 
I. We follow closely the line of argument from Ref. 3. 

First we take the following basis in Lie ~: : 

C 
0 

~). p'~G 
0 

e') 
i = ~ 0 0 o , 

0 0 0 

g'~G 
ei 

~) h~G 
0 

!). 0 0 

0 0 

where i = 1,2,3, {e i } ~ t = I is the natural orthonormal basis 
in R3, and Ii are the 3 X 3 matrices given by (Ii) jk == - € ijk' 
(€ ijk is the completely antisymmetric tensor of rank 3, de
fined with the convention € 123 = 1.) 

We divide the study into seven steps. 
(i) Denote Cik = c( ji,jk)' Cis a 3 X 3 real antisymme

tric matrix. Define BEC I (Lie ~ t ,R) by b(a,u,t,x) 
=! Tr aC, and CIEZ~ (Lie ~: ,R) by+c l = c + Db. Then it 

is easy to establish that c l (jojk) = O. 
(ii) Denote ct = CIVi,Pj)' From the cocycle identity 

&1(Ljj,Pk) = 0 one gets ct = - Cji' Now we can define 
B IER3 by B: =! 21k = I €ijk,Cjk' b IEC I (Lie ~: ,R) by 
b(a,u,t,x)=x'B I

, and c2EZ~(Lie~+,R) by 
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c2 = c l + Db I. Then it is easy to verify that c2 (ji ,Pj) = 0 and 
c2(i,jk) =0. 

(iii) From the cocycle identity &2 (POPj,jk ) = 0, one 
gets also C2(Pi,pj) = O. 

(iv) Denote C t = C 2 ( i ,gj ). From the cocycle identity 
&2(Ljj ,gk) = 0 one gets, ct = - C;. As before, define 
B2ER3 by B7==!21k=l€ijkC]k' b 2E,C I (Lie ~:,R) by 
b 2(a,u,t,x) = u'B 3

, and c3EZ~ (Lie ~t+ ,R) by 
c3 = c2 + Db 2. 

Then one can verify that c3(jojj) = 0, c3(joPj) = 0, 
C3(Pi,pj) = 0, and C\ji,gj) = O. 

(v) By some computation it can be established that 

&3(gogk,jk) = 0~C3(gogj) + 0, 

&3(ji,gj,h) = ~C3(ji,h) = 0, 

&3(ji,pj,h) = 0~c3(Poh) = O. 

(vi) Denote C~ = C3(gi'P), Then from 
&3 (ji,gj'Pk ) = 0 it follows that there exists mER such that 

C~ = mDij' 
(vii) From &3 (h,gi,pj ) = 0 and the fact that p=/=O, it 

follows now that m = O. 
In conclusion we have proved that c3 = O. It follows that 

c = Dd, where dEC I(Lie ~: ,R), i.e., CEB~ (Lie ~: ,R). 
Remark: In the language of Lie algebra cohomology we 

have proved that H ~ (Lie ~ t ,R) = O. This can be contrast
ed with H 2 (Lie ~ t ,R) =/= O. Indeed for a = 0, 
&3 (h,gi,pj ) = 0 is triviaily satisfied and we get from (vi): 

c3«(a,u,t,x),(a',u',t',x'» = m(u'x' - u"x), (3.1) 

i.e., the result first obtained by Bargmann. 12 Now, the most 
general element dEC I (Lie ~ : ,R) = (Lie ~ t+ ) * is of the 
form: (7,P,G,H) with 7 real antisymmetric 3 X 3 matrix, 
P,G,ER3, HER, and is given by 

(7,P,G,H) (a,u,t,x) ==! Tr 70 + p·x + G·u + Ht. (3.2) 

Using (3.2) one can see easily that if Cr,P,G,H = D( 7,P,G,H) 
then we have 

Cr,P,G,H( (a,u,t,x), (a',u',t ',x'» 

= !Tr r(p(ta' - t 'a) - [a,a']) 

+ p. [p(tx' - t'x) - ax' + a'x + tu' - tu'] 

+ G· [tu' - t'u - au' + a'u]. 

From this relation one can see that H drops out, and that the 
elementsofZ~ (Lie ~: ,R) are indexed by 7,P,G. We denote 
by Cr,P,G the corresponding two-cocycle. The elements of 
p(Z ~ (Lie ~: ,R» are the following ones: 

(a) 2~,:) = ({sCrooo,o[sER'\{O}) 

and 70 verifies Tr ro = 2. 
In the following we identify (R3) * with R3 naturally and 

AR3 with the 3 X 3 real antisymmetric matrices by the for
mula 

A uAw == (w'v)u - (v·u)w. 

Then we have 

(b) 2~:,~=={ACr",O,G[AER'\{0}} 

and 7o, G verify: [G [ = 1, GA70 = O. 

(c) 2~,~,~ =={ACr",O,G [AER'\ {O}} 
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and r o, Gverify IG 1 = 1, GAro=l=O. 
(d) 1:~:,~,G ={"l,CTo,p,GIAER\ {on, 

where IP I = 1 and PAG = 0, 
(e) 1:~~,~,G={ACTo,P,GIAER\ {On, 

where IP I = 1 and PAG =1=0, 
II, (a) Because 

Ad~ 1:(1) = 1:(1) -, 
R,v,Tf,a Tn R'ToR 

choosing R conveniently we have Ad~,v,1],a1:~,:) = 1:),1). So 
{1:~,:)ITr r6 = 2} is an orbit. 

(b) We have 

Ad~ 1:(2) -1:(2) (33) 
R,v,1],a To,G - RTOR-'+v'RG-G'R'v,RG' . 

Choosing, R, v, and'/] conveniently we can get Ad~,v,1],a 1:~~,~ 
= 1:&~j" so {1:~,~,~ IIG 1= 1,G A To = O} is an orbit. 

(c) From (3.3) we can prove that by choosing R, v, and 

'/] conveniently we get Ad~,v,1],a 1:~:,~ = 1:~l:e, with sER+. So 
the orbits ar parametrized by sER+ 

(d) 

Ad~ 1:(4) 
R,V,71.a TwP,G 

-1:(4) (34) 
- RT"R -, + a'RP- P'R 'a + v'RG- G'R 'v,RP,R(G+ 1]P)' . 

Choosing '/], R, and a conveniently we get 
~ (4) (4) h S h b' . 

AdR .v,1],a1:To,p,G = 1:sl"."o' were SER+. 0 t e or Its are In-

dexed by SER+, 
(e) From (3.4) we can get by taking suitable R, '/], a, 

~ (5) ~(5) • h R S h b . and v, AdR,v,1],a1:To ,p,G = -"O,e"ge,' WIt gE +' 0 t e or tIs 
are indexed by gER+, 

III. (a) he,,,o.o = {(0,u,0,x)IU,XER3
}; then He,,,o.o 

= {( 1,v,0,a) la,VER3} is a closed subgroup of f§: ' 

(b) heo.o .• , = {(ai3,0,O,x)lxER3,aER}; then H eo.o .• , 
= {(R (tp,e3),O,O,a) laER3,q:>E[O,21T)}, where R(tp,v) is the 

rotation of angle tp around the vector v in the direct sense. 

H Co.O.e, is a closed subgroup of f§: ' 

(c) he = {a'I,-sa,O,x}; then He 
d"O,e, .\1,.O,e, 

= {R (tp, v), - stpv,O,a} is a closed subgroup of f§ : . 

(d)h e = ({aI3, - sp(a + /3)e3,O,/3e3)}; 
sl" e,,,. 

then 

He = {R(e3,tp), - sp(tp + v)e3,O,ve3)}. 
sl,.<' .. 0 

is a closed subgroup of ef§ 1+ . 

(e)hc = {(l,v2e2 + V3e3,O,v3(gel - (lIp)e3»}; 
0, c,. ge, 

then 

He = {(O'Y2e2 + Y3e3,O'Y3(gel - (llp)e3»} 
", e,.ge , 

is a closed subgroup of f§ 1+ . 
It follows that all the orbits are regular. 
IV. The formulas for the sympletic forms are very com

plicated and not very illuminating so will not be given. 

E. PhYSical equivalence 

For the purpose of clarifying the notion of physical 
equivalence we analyze now the transitive action of f§ 1+ in 
the case ag = 1, 'v'gE G. From (3.1) we get the most general 
element from Z2 (Lie f§ 1+ ,R) as: 
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CT , P, G, mHa, u, t, x), (a', u', t', x'» 

= m(u'x 1 - u"x)-! tr da, a'] 

- p. (ax' - a'x-tu' + t'u) - G'(au' - a'u). 

The elements in p(Z 2 (Lie G + R» are then of the following 
form: 

(a)1:~,:,)P. G = {ACTo,p,G,O IA E R\ {O}}, 

with Tr~ = 2, 

(b)1:~,~)p, G = {ACT,,,P,G,l IA E R\ {O}. 

The orbits in the first case are analyzed symilarily to the 
orbits in Sec. III D. In the second case, one can prove that 
there is an orbit generated by the element 1:~, 0, 0' and a fam
ily of orbits parametrized by SER + and generated by 
1:(2) 

sl." 0,0, l' 

Recalling that S can be interpreted as the value of the 
spin and m as the mass of the system, it follows that in classi
cal physics, the physical situations are indexed by the ratio sl 
m. 

Remark: Similar results hold for the proper orthochro
nous Poincare group. 

IV. CONCLUSIONS 

We have generalized the concept of symmetry in classi
cal mechanics in the spirit of Lee Hwa Chung theorem. If 
this theorem is the analog of the Wigner theorem in quantum 
mechanics, the analysis from this paper can be thought of as 
some generalization of the Bargmann study of projective 
representations in quantum mechanics. 12 The condition H 1 

(Lie G, R) = ° from the theorem in Sec. II is tobecompared 
with the condition of Bergmann H2 (Lie G, R) = O. 

The results from Sec. III E can be interpreted by re
marking that in classical physics one does not have a pre
ferred unit of mass. 

We lack a physical interpretations of the parameters 
characterizing the representation ~ag' It would be inter
esting to find the analog of this phenomenon in Lagrangian 
theory (which is probably connected with the fact that if L is 
a Lagrangian and a E R\ {a}, then Land aL give the same 
Euler-Lagrange equations). This will be done in a subse
quent paper. 

Also it must be noted that, although one of the motiva
tion for enlarging the concept of symmetry was a closer 
analogy with quantum mechanics, it is not evident that there 
are quantum analogs of the classical systems described in 
Secs. III A-III D. 

From the technical point of view, it would be convenient 
to have some regUlarity criteria of the type of Kostand , Sour
iau, and Chu (see Ref. 6). We make a last comment connect
ed with the existence of the momentum map. The usual de
finition6

, is the following wing. Let Xs be the vector field 
associated with sELie G. Then it is easy to prove that 

dix D. = a(s)D.. 
!: 

If a(s) = ° then there exists at least locally Is E Y (X) such 
that 

(4.1 ) 
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Then one defines the moment map ct>: X -> (Lie G)· by the 
formula 

rfJ(x)(t) =fs(x). 

We see that in the general case we cannot definefs by (4.1) 
so there is no momentum map in the general case. 
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Two familiar concepts in quantum mechanics, namely localizability and covariance, are 
investigated in the framework of classical mechanics. The analysis of such well-known 
problems in quantum mechanics as localizability of elementary relativistic particles gives the 
same result in classical mechanics as well. 

I. INTRODUCTION 

In quantum mechanics one describes localizable sys
tems in the following way. 1 Suppose the configuration space 
of the system is the manifold Q. 

In quantum mechanics an observable is a projector-val
ued measure (see Ref. 2). One supposes that Q has a natural 
Borel structure p, and one has a projection-valued measure 
p 3 EI-+P EE 9 (cW'), where cW' is the Hilbert space of the 
problem and 9 (cW') is the set of orthogonal projectors in 
cW', such that the states in the range of P E are interpreted as 
localized in E. A more interesting situation is when a sym
metry Lie group G acts on Q. Then according to the usual 
description of the symmetries in quantum mechanics one 
has a projective unitary representation of G acting in cW': 
~Ug. A natural compatibility condition is then to require 
that 'if EE(J, 'if gEG one has 

UgP E U g- 1 = P g-E • ( 1.1 ) 

Here Q3q.---..goqEQ is the action of G on Q and goE is the 
image of EE(J under g. This relation has a simple physical 
interpretation: if one has two observers connected by the 
transformation gEG, then if the first one sees the system in E, 
the second one must see the system in goE. One usually says 
in this case that the system is covariant with respect to the 
group G. The couple (U,P) satisfying to (1.1) is called a 
system ofimprimitivity. A system ofimprimitivity is called 
irreducible if the only subspace in cW'invariant with respect 
to all U' s and all P's are cW' and {O}. Two systems of imprimi
tivity (U,P) and (U',r) are called equivalent if there exists a 
unitary operator W such that U; = WUg W - 1 ('if gEG), and 
P ~ = WP E W -I ('if EE(J). There are two interesting prob
lems in quantum mechanics connected with these concepts: 
( I) Given the G-space Q, find all the associated systems of 
imprimitivity; (2) Suppose one has a unitary representation 
U of the proper Euclidian group SE (3); then find all the 
projector-valued measures Pbased on R3 such that (U,P) is 
a system of imprimitivity. In particular, U can be obtained 
by appropriately restricting an irreducible projective repre
sentation of a larger group containing SE (3) as a subgroup 
(e.g., the proper Galilei group ~ 1+ , or the proper ortho
chronous Poincare group 9 1+ ). The first problem for 
Q = Rn and G = T( n) (== the translation group in n dimen
sions acting naturally on Q) is essentially solved by the 
Stone-von Neumann theorem. 1 The second problem was 
proposed for G = 9 1+ by Newton and Wigner3 and rigor-

ously stated and proved by Wightman4 (see also Ref. I 
where the case G = ~ 1+ is treated). The results of this anal
ysis are the following: Elementary relativistic particles of 
nonzero mass are localizable; on the contrary, elementary 
relativistic particles of zero mass are localizable only for zero 
helicity. Elementary Galilean particles of nonzero mass are 
also localizable. 1 

For more recent work on this subject see Refs. 5, 6 and 
literature cited there. 

In this paper we want to investigate the similar problems 
in analytical mechanics. We adopt the following point of 
view: (i) A classical system is described by a symplectic 
manifold (M,w); (ii) for a system covariant with respect to a 
group G, the group must act on Mby canonical transforma
tions; (iii) for an elementary system, M must be homoge
neous with respect to the action of G (Refs. 7-13). 

We have to find the analogs of the concepts oflocalizabi
lity and covariance in this framework. We start from the 
observation that the basic motivation for the introduction of 
the notion of a symplectic manifold is the fact that for a given 
configuration space Q, the cotangent bundle T * (Q) has a 
natural symplectic structure such that the time evolution is a 
canonical transformation. If we do not want to lose this 
starting point we think that (i) above must be supplemented 
by the requirement that M must be fibered over a base mani
fold of the type T*(Q), together with some other natural 
compatibility conditions which will be described in detail in 
Sec. II. In this way one gets a natural notion oflocalizability, 
i.e., for every state mEM one has a configuration x(m)EQ. 

A related problem was studied in Refs. 9-11 where one 
demands essentially that for every state mEM one has an 
associated universe line, i.e., a straight line in R4( = the 
Minkowski space). Also, in Ref. 12, (i )-(iii) above are sup
plemented by demanding the existence of an evolution space, 
which is essentially a quadridimensional generalization of 
the notion of configuration space. Another related definition 
oflocalizability can be found in Ref. 14. 

In Sec. III we investigate the analogs of Stone-von Neu
mann and Wightman theorems. From the physical point of 
view it is interesting to note that in analytical mechanics the 
problem oflocalizability has the same answer as in quantum 
mechanics. The analysis produces well-known formulas 
from the physicalliterature 15

-
17 in a more systematic fash

ion, and exhibiting the underlying structure oflocalizability. 
The last section is devoted to some comments. 
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II. LOCALIZABILITY AND COVARIANCE IN 
ANALYTICAL MECHANICS I 

A. Localizabllity 

In analytical mechanics one describes a system by a 
symplectic manifold (M,m); w is the symplectic form on the 
manifold M ( == the phase space). For a particle with config
uration space Q, the usual prescription of the Hamiltonian 
formalism is to take M( Q) == T * (Q) (== the cotangent bun
dle over Q) and m(Q) given in local coordinates by 

(2.1 ) 

(qiJ Pi) is a chart around (q,p)EM(Q). Equivalently, the 
Poisson bracket { , } Q is 

(2.2) 

One can take this as a definition oflocalizability, i.e., the 
system (M,w) is called localizable ifthere exists Q such that 
M = T * (Q) and m is given by (2.1 ). We think that this point 
of view artificially excludes systems with spin, so we propose 
the following generalization. 

Definition: We call the system (M,m) localizable if there 
exists a nontrivial manifold Q such that M is a fiber bundle 
over T * (Q) and the symplectic structure verifies the follow
ing condition: Let { , } be the Poisson bracket associated 
with w, and 1T: M - T * (Q) the canonical projection of the 
bundle. If h, hEY [ T * ( Q)] [== smooth functions on 
T*(Q)] then we demand that 

{flo1T, f201T} = {h,h}Q o1T, (2.3) 

where { , }Q is given by (2.2). 
Remarks: ( 1) Q is not uniquely determined by this con

dition. 
(2) For M = T * (Q) we recover the previous definition. 
(3) In the general case, the fibers of M describe internal 

degrees offreedom. 
(4) Relation (2.3) tells, roughly speaking, that if two 

observables do not depend on the internal degrees of free
dom, then their Poisson bracket must be calculated as in the 
simple case M = T* (Q) in local coordinates. 

(5) A related definition oflocalizability can be found in 
Ref. 14, namely that Mis fibered over Q and the fibers are 
Lagrange submanifolds. 

B. Covariance 

We tum now to the notion of covariance. Suppose as in 
Sec. I that G is a Lie group which acts smoothly on Q: 
G XQ3g, ~g·qEQ. Suppose also that G is a symmetry 
group of (M,w), i.e., acts canonically onM: G3g.---+CPgE Can 
(M). Denote by 1To: T*(Q) -Q the canonical projection in 
T*(Q) and define x: M-Qby X==1To01T. Then we think that 
the proper equivalent of covariance with respect to G is to 
require that x is a G morphism, i.e., commutes with the ac
tion of the group: 

xocpg(m)=gox(m), VmEM, VgeG. (2.4) 

Because in analytical mechanics the observables are ele
ments of Y (M) (== the smooth real-valued functions de-
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fined on M), one can think of x: M - Q as a Q-valued observ
able. If mEM is a state of the system then x(m)EQ is 
interpreted as the configuration of the system in the state m. 

Definitions: If the G space Qis given we call the symplec
tic manifold (M,w) a (classical) system of imprimitivity 
based on Q with respect to G, if G acts canonically on M 
(M,w) is localizable in the sense of A, and x: M - Q verifies 
the condition (2.4). Two systems ofimprimitivity (M,w) 
and (M',w') are called equivalent if there exists a G diffeo
morphysm a: M -M' such that a*m' = w, and 1T = 1T'Oa. 

C. Localizability on Rn 

Let us study the analog of problem (1) from Sec. I, in 
the case Q = Rn, G = T(n), i.e., the condition appearing in 
the statement of the Stone-von Neumann theorem. The 
problem is to classify, up to equivalence, the systems of im
primitivity based on Rn, with respect to T(n). We indicate a 
possible solution based on an analogy with the Weyl system. 
Let { , } be the Poisson bracket on M associated with w. Let 
PI, ... ,Pn: JRn_JR be the canonical projections in Rn, and de

fine xiEY(M), i = t,n by Xi ==PiOX. Then from (2.2) and 
(2.3) it follows that 

{Xi'X) = 0, i,j = t,n. (2.5) 

We denote by til: JR-Can(M) the one-parameter group of 

canonical transformation generated by Xi (i = t,n). Be
cause of (2.5), one knows that t/J commute among them
selves. 

Let now T(n) 3~aECan(M) be the action of T(n) 
on the phase space M. From (2.4) we have 

xocpa (m) = x(m) + a, VaERn
, VmEM. (2.6) 

From this, one can prove that cP commutes with t/J for any 
i= l,n. Then 

JRnXJRn3a,~ao¢!, ° ... 0t/1,nE Can(M) (2.7) 

is a canonical action of T(2n) on M. We are reminded now 
that the Stone-von Neumann theorem is proved by showing 
that a general system of imprimitivity is a direct sum of irre
ducible ones and then classifying the irreducible systems of 
imprimitivity. Ifwe want to implement this line of argument 
in analytical mechanics we must first find the equivalent of 
irreducibility. First, we recall that the irreducibility of a sys
tem of imprimitivity is equivalent with the irreducibility of 
the corresponding projective representation of T( 2n), i.e., of 
the Weyl system associated with (U,P). Second, in Refs. 8-
12 it is argued that the concept of elementary of a classical 
system must be modeled mathematically by demanding the 
transitivity of the action of the symmetry group of the system 
on the phase space. So, in some sense, the classical counter
part of an irreducible linear representation in quantum me
chanics is the transitivity of the group action on the phase 
space in classical mechanics. 

Guided by this argument we say the (classical) system 
of imprimitivity based on JRn with respect to T(n) from 
above is irreducible if the action (2.7) is transitive. This ac
tion can be called the (classical) Weyl system of imp rim it i
vity of the system. Two systems of imprimitivity (M,m) and 
(M',w') based on JRn with respect to T(n) are equivalent if 
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there exists a diffeomorphism a: M -+ M' such that a*w' = w 
and a commutes with the action of the (classical) Weyl sys
tem. (This follows easily from the definition of equivalence 
given in Sec. II B. ) 

Unfortunately there seems to exist no natural analog to 
the notion of a direct sum of systems of imprimitivity, so in 
Sec. III we will analyze only (classical) irreducible systems 
of imprimitivity based on W with respect to T( n). 

D. Localizability for relativistic systems 

The classical counterpart of problem (2) in Sec. I is the 
following one. One has a symmetry group G which includes 
SE(3) as a subgroup and acts canonically on (M,w). By 
restriction we have a canonical action of SE( 3) on (M,w). 
Then we want to decide if the system admits a notion of 
localizability in the sense of A with Q = R3, and also is co
variant with respect to SE(3) in the sense (2.4); SE(3) is 
supposed to act naturally on R3 by the following formula: 

(R,a)q = Rq + a. (2.8) 

Here RESO(3), q,aER3
• In this case (2.4) becomes 

XO¢>R,a (m) = Rx(m) + a, 'VmEM, 'V(R,a)ESE(3). 

(2.9) 

Let us indicate now one possible way to reformulate this 
condition, which is important in practical applications. 

Because H '(Lie SE( 3» = 0 and H 2(Lie SE( 3» = 0, 
one knows (see e.g., Ref. 13) that there exists the moment 
map, i.e., for any tELie SE(3), there exists fsE.7(M) 
which is the Hamiltonian function for the one-parameter 
subgroup of canonical transformation li----rlPexp '5 . 

In particular, if I,ELie SE( 3) is the infinitesimal gener
ator of the rotation around the axis e,ER3

, andp,ELie SE(3) 
is the infinitesimal generator of the translation along e" then 
we have from (2.9) and the definition of the Poisson bracket: 

{x"p)=Oij , 
3 

{J"xj } = L €ijkXk' (i,j = 1,2,3) , (2.10) 
k~' 

where P, == 1;,i and J, == hi' Also we have as in Sec. II C, 
(2.5). 

In this infinitesimal form the problem (2) was recog
nized and solved in Ref. 16 for G = :g 1+ ' and in Ref. 17 for 
& 1+ in the hypothesis that the canonical action ?,l--+¢>g cor
responds to particles of nonzero mass. Also in Ref. 17 it is 
argued that if in M one has an action of the full Poincare 
group & (with the elements in & I realized by anticanonical 
transformation), then (2.9) must be supplemented with 

xO¢>J, = -x, xO¢>I, =X (2.11) 

(Is is the spatial inversion, and I, the temporal inversion). 
The method used in Refs. 16, 17 is to determine if there 

exist solutions for x, of the system (2.5) + (2.10), Then one 
tries to see if one can find a set of coordinates on M such that 
x and P are among them. In this case, the localizability 
emerges. On the contrary, if (2.5) + (2.10) has no solution, 
then the system is not localizable. 
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III. LOCALIZABILITY AND COVARIANCE IN 
ANALYTICAL MECHANICS II 

A. Homogeneous symplectic manifolds 

To analyze further the two problems stated in Sec. II we 
need the theory of Kostant-Souriau-Kirillov. We essential
ly follow Ref. 13. Let G be a Lie group and Lie G== Te (G) 
the associated Lie algebra. Using standard cohomological 
notations, let aEZ 2(Lie G,R). Then one knows that 
ha C Lie G given by 

ha =={tELie G I is 0' = O} 

is a Lie subalgebra of Lie G. Let Ha C G be the associated 
connected Lie subgroup of G. If Ha is a closed subgroup of 
G, then aEZ 2 (Lie G, R) is called regular. If aEZ 2 (Lie G, R) 
is a regular element, then G I H a can be given a differential 
structure. Moreover, using the so-called reduction principle, 
one can obtain an unique symplectic form on G I Ha which is 
invariant with respect to the natural action of G on G IHa. 
Let l:CZ 2(Lie G, R) be an orbit with respect to the coad
joint action of Gin A2(Lie G)*. Then if O'oEl: is regular, any 
UEl: is regular; in this case the orbit l: is called regular. 
MoreoverifO"'0'2El:,l: regular, then G IHa, and G IHa, are 
diffeomorphic symplectic manifolds. For aEZ 2(Lie G, R), 
G a C G denotes the stability subgroup of 0' with respect to 
the coadjoint action. Let Mbe a homogeneous manifold, i.e., 
M::::< G I H with H C G a closed subgroup of G. Then there 
exists a regular aEZ 2 (Lie G, R) such that HaC H C G a' and 
G I Ha is a covering of M. It follows that, up to covering, the 
symplectic homogeneous manifolds of G are parametrized 
by regular orbits of the coadjoint action of Gin A2(Lie G)*. 
Of course, it is sufficient to take a single element 0' from every 
regular orbit. 

B. Localizability on Rn 

With the theory outlined in the above subsection we can 
now easily solve the problem in Sec. II C. As found there, we 
must classify the transitive actions of the classical Weyl sys
tem, i.e., of the auxiliary T( 2n) group. First we have to study 
Z 2 (Lie T( 2n), R). We identify Lie T( 2n) with T( 2n). Then 
every two-cochain UEA2 T(2n) is a two-cocycle. The group 
T( 2n) acts trivially on A 2 T( 2n), so every two-cochain is an 
orbit. From A it follows that the homogeneous symplectic 
manifolds of T(2n) are of the form M = (T(2n)lha;u), 
where u is the factorized of 0' to the factor space T(2n )Iha 
by the reduction principle. By a simple dimensionality argu
ment we see that Mean be a fiber bundle over T* (Rn)::::< R2n 

only if 0' is nondegenerate. So, the symplectic homogenenous 
manifolds of T(2n), which are of interest for the problem 
Sec. II C, are of the form (R2n,O') where 0' is an arbitrary 
nondegenerate two-form on Rn. From (2.3) it follows that 0' 

must be equal with w(Q) given by (2.1), with q" ... ,qn' 
p" ... ,Pn as global coordinates on R2n. The canonical action of 
T(n) on R2n is 

¢>a (q,p) = (q + a,p) . 

We have also 

x(q,p) = q. 
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C. Coadjolnt orbits 

To analyze the problem in Sec. II D for G = g; T+ we 
need a particular but important case of the analysis in A, 
namely when H 1(Lie G,R) = 0 and H2(Lie G,R) = O. In 
particular, for G = g; T+ this is true, as a consequence of 
Whitehead lemmas. 13 In this case, it is known (see Ref. 13, 
Sec. 26) that there exists the moment map. Also, one knows 
(see Ref. 13, Prop. 25.2), that in this case, G 1Ha covers an 
orbit from (Lie G)* with respect to the coadjoint action of 
G. The symplectic structure on such orbits can be given as 
follows. 

Let C t be the constants of structure of the Lie group G, 
with respect to the basis {S-j}~ = 1 from Lie G. Let {Pj}~ = 1 be 
the dual basis from (Lie G) *. Then one has in (Lie G) * a 
Poisson structure, which is generally degenerate, given by 
the formula 

{FI~F2}(f3) = ± ct (3k aF
, 

aF2 . (3.1) 
j,j,k = I a(3j a(3j 

By restriction to an orbit & C (Lie G) *, this Poisson struc
ture becomes nondegenerate and gives the symplectic struc
ture of &. We denote it by { , } rf' This can be proved as 
follows. One knows (see Ref. 13, Prop. 24.1) that for 
H I (Lie G,R) = 0 and H 2 (Lie G,R), one can choose the 
Hamiltonian functions Is such that 

{/sJ,,} = fis,1J) , VS-,17ELie G. (3.2) 
Then (3.1) is valid for F, = Is and F2 = 11J , as can be shown 
by direct computation. Using now the properties of the Pois
son bracket, (3.1) is extended to polynomials from Y (& ), 
and after that to all Y ( & ) by continuity and density. So the 
Poisson bracket on & can be found as follows. If 
1"hEY(&), take any smooth extensions to (Lie G)*, F

" and F2, respectively. Then 

{II ,J2} (f3) = j. jt= I c t(3 k ~;; (f3) ~;; «(3) . ( 3.3 ) 

This form of the symplectic structure can be found also in 
Refs. 15-17. 

D. Elementary systems for &' ~ 

For G = g; T+ ' the results are the following 13,15,17: We 
identify g; T+ with 5 X 5 real matrices of the form 

A _(A a) £T 4 ( ,a) = 0 1 ' AE +, aER. 

Then Lie g; T+ can be identified with the real subspace 
of 5 X 5 real matrices ofthe form 

(A,x,u,t) =G 
U' 

A 

o 
where tER, u,xER3, and A is a real 3 X 3 antisymmetric ma
trix. We take in Lie g; T+ the following basis: 

j; == (/;.0,0,0), k j == (O,O,e;,O) , 

p;==(O,e;.O,O) , h=(O,O,O,I) , 

where (/; )jk == - €ijk and (e;)j = oij. Then (Lie &' T+ )* can 
be identified with RIO~R3XR3XR3XR because a generic 
element in (Lie g; +) * is 
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« J,P,K,H), (a-j, x,u,t» 

= J·a + POx + K·u + Ht . 

Here " • " is the Euclidian scalar product. Computing the 
coadjoint action one can prove that there are only two func
tionally independent Cazimir invariants, namely H2 _ p 2 

and W~ - W 2, where (Wo, W)ER4 is the Pauli-Liubanski 
quadrivector given by Wo==J·p, W = HJ + PAK (A is the 
vector product); for H 2>p 2

, sign H is also an invariant. 
From the physical point of view we are interested only in this 
case, when the orbits are the following. 13 

(I) & ~s =={( J,P,K,H) ER10 IH 2 
- p 2 = m2 , 

W 2 - W6 = m2s'2,He,0} . 

Here mER+ and sER+ U{O}; m is called the mass and S is 
called the spin of the system. 

(II) &c± =={( J,P,K,H)ER IO IH 2 = p2, 

W 2 - W~ = c, He,O} 

with c#O. 
Remark.·In fact c> o. 
(III) Of =={( J,P,K,H)ER I0 1H 2 = p2, 

P #0, W = hP, He,O}; 

hER is called helicity. 

In all cases the Poisson bracket is obtained according to 
(3.1) by restricting, to the desired orbit, the following de
generate Poisson structure: if F I ,F2 : RIO -> R are smooth, 
then 

{F"Fz} 

E. Localizability for Poincare covariant systems 

We turn now to the question of localizability. Up to a 
point, the analysis is identical with that in Ref. 17 and will be 
done briefly. The cases I and II can be analyzed simulta
neously. We observe first that for I and II, H #0 so we have 

J = (lIH)( W - PAK) . 

This suggests to take as independent coordinates 

(W,P,K,H)ER3 XR3 XR3 XR. 

Then we have 

(I) & ~s = {( W,P,K,H) 

XERIOIH2 _ p 2 = m2 , 

W 2 - (P·W) 2IH 2 = m2s2, He,O}. 

D. R. Grigore 
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(II) tJ c± = {( W,P,K,H) 

XEHIOIHZ = pZ, 

W Z - (poW)z/Hz = c, H<o}. 

The Poisson bracket (3.4) becomes in this new coordi
nates 

± €ij/[(HW _ POW p) aFt aFz 
i,j,l~ , H I aWi aWl 

_ ~(W-PAK)1 aFt aFz] 
H aKi aKj 

+± (H aFt aFz _ Po W aF1 aFz 
,~, aK, ap, H aw, aK, 

_p.aF,aFz)_(1~2). (3.6) 
'aH aKi 

We look now for three observables x, ,XZ,X3EY ( tJ ) 
such that (2.5) + (2.10) are fulfilled. It is sufficient to find 
three smooth functions X"Xz,X3:H 10 -+ H such that we have 

{Xi,X) = 0 , {Xi,p) = oij ; 
3 

{Ji,X) = L €ijkXk , (3.7) 
k~' 

fori,j = 1,2,3. Here Jisgiven by (3.5). IfwefindX then we 
can takex=XI",. 

The idea is to exploit first the linear relations from 
(3.7); namely the last two ones. The result is the following. '7 

From the second relation (3.7) it follows easily that 

X( W,P,K,H) = (K /H) + A( W,P,H) , (3.8) 

where A: H3 X H3 X H -+ H3 is smooth. Then one observes that 
the vectors P, Wand PA W form a basis in H3 if P and Ware 
such that ( W,P,K,H) is on tJ ';:S or tJ c± . So we can write A in 
the form: 

1 [ aA3 z aA3] U A aA I u,=-2aA3+aH--+(a +c)-- -na z--
H aH aa aa 

A(W,P,H) =Pa,(P,W,H) + Waz(P,W,H) 

+PAWa3(P,W,H) , 

where a"aZ,a3: H3XH3XH-+H are smooth. Then by a te
dious computation one can prove that the last relation (3.7) 
is equivalent with 

i,e = 1,2,3 . 

This can be shown to be equivalent with the following global 
condition: 

ai (RP,R W,H) =ai(P,W,H), RESO(3), i= 1,2,3. 

So the functions ai are constant on the orbits of SO (3) acting 
naturally on H3 X H3. But it is easy to prove that we have 
three functionally independent invariants: pZ,Wz, POW, 
which determine the orbit structure. It follows that the func
tions a i depend on P and Wonly by these invariants. But on 
the orbits tJ ';:s and tJ c± only one is independent, e.g., (PO W / 
H) =a. So we look for a A of the form 

A(P,W,H) = PA,(H,a) + WAz(H,a) 

(3.9) 

where Ai: HZ -+ R are smooth. We still have the first relation 
(3.7). One can guess rather easily a solution of this relation 
for tJ ';:s as in Ref. 17. Because we want to study also tJ c± , we 
proceed more systematically. Ifwe use (3.8), (3.9), and the 
Poisson bracket (3.6), we get after a long but straightfor
ward computation that 

3 

{X;.Xj} = L €ijk(U,P+ uzW + u3PAW)k , 
k~' 

aA aA _ (az + c)Az __ z + [aZmZ _ c(H z - mZ) ]A3 __ 3 + a(mZA3 - A ~) , 
aa aa 

1 1 [ Z Z aA3 aA3] HZ Z A aA I H'" aA z H'''z UZ= - - - - 2HA3+ (H -m )--+aH-- + ( -m) z--+a ./:1z--+ ./:1z, 
H3 H aH aa aa aa 

1 ( aA, aAz ) [z z aA I H aA z H'''] U3 = -- -- - -- +A3 (H -m )--+a --+ ./:1z . 
H aa aH aa aa 

I 
Because P, Wand PA W form a basis in H3

, the first relation 
(3.7) is equivalent with 

a HZ A aA, z H'" aA z H'" 2 0 -+a z--+ (a +c) ./:1z--+a ./:12 = , 
H3 aa aa 

U i = 0, i = 1,2,3 . (3.10) 

We want to eliminate aA 1/ aa from the equation U3 = O. 
This is possible if 

H(H z - mZ)A3# 1. 

For m#O, this is evident:A3 = (lIH(H z - mZ)) is not 
defined for H = ± m. For m = 0, we can have in principle 
A3 = (1/ H 3). Let us investigate if this solution is possible. 
The system (3.10) becomes 
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(H 
aA, aA2 A) 0 A2 --+a--+ 2 = , 
aa aa 

(3.11 ) 

a aA2 + A2 + H aA2 = 0 . 
aa aH 

We cannot haveA 2 = 0, because the first equation would be 
contradicted. So we can get from the second equation 

aA, = _ ~(a aA2 +A2). 
aa H aa 
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Inserting in the first equation (3.11) we get 

aA ~ 2a z a Z 
-= - -¢::}A z = - -+/(H) , 
aa eH 4 eH 4 

where I is a smooth real function of H. Inserting this expres
sion in the last equation (3.11) we get I(H) = (et 1Hz). So 
we have 

z 
A Z -~ _ ...!!....-

Z - HZ eH4' 

But e > 0 so we get a contradiction. We have proved that 
H(H z - mZ)A3# 1 so we can get from U3 = 0, 

aA I H Z(a(aA 2Iaa) + A Z)A3 + aAzlaH 

aa H(H 2 - mZ)A3 - 1 
(3.12) 

Inserting this formula in U I = 0 and Uz = 0 we get after 
some computations the following system: 

aJ 1 (J z HZ z - = - -( m - e + em ) 
a(J H 

[H z 2A l]aA3 F X H( - m) 3 - -- - --
a(J 2H z ' 

aJ 1 (J Z HZ Z - = - -( m - e + em ) 
aH H 

[ 
2 2 1] aA 3 G X H(H -m )A3 - -- --. 

aH H3 

Here (J=a2 and we have denoted 

J=!«(Jm2 - eH2 + em2)A ~ , 

F=m2H2(H2 - m 2)A3 - 2mHA3 - 1 , 

G=(J(m2H 4A ~ + m2HA3 + 1) 

- e[2H4(H2 - m 2)A ~ - H(H 2 + m 2)A3 - 1] . 
(3.13 ) 

A straightforward computation shows that the condi
tion of integrability of Frobenius is satisfied for this system 
for any smooth function A 3. So it remains to decide if A3 can 
be chosen such that the solution I is of the form (3.13). The 
simplest thing would be to have A2 = O. Then, from (3.12) 
we see that we can take also A I = O. For A2 = 0, the system 
(3.13) becomes 

aA 3 --= 
a(J 

aA 3 --= 
aH 

(3.14 ) - H 2X' 

Again the Forbenius condition of integrability is satisfied. It 
is easy to see that we can get two solutions independent of (J: 

(A 3)± = +(l/mH(H±m»). (3.15 ) 

These are smooth functions for H> 0 and H < 0, respective
ly, for m # O. Collecting these results we have from (3.9) the 
following solution of (3.7) for the case I: 

X ± (W,P,K,H) = K IH + (PAW ImH(H ± m»). (3.16) 

To prove the localizability in the sense of Sec. II A one must 
exhibit also the fiber bundle structure. We proceed as fol-
10ws. IS We define the orbital angular moment: 

L± =X± AP, 
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and observe that for s = 0, L ± = J. Taking as new variables 
X and P we get & ';'0 ~ R3 X R3, and by computing the Pois
son bracket we get 

{ft,h) = ± all ah - (1 ~2), 
;=1 ax; ap; 

so in this caseM = T*(Q) (see Sec. II A). Ifs>O, then we 
define the intrinsic angular moment: 

S± =J-L± . 

We get easily that Sz± =~. If we take as new independent 
coordinates X, P, and S, we have 

&';'s = {(X,P,S)ER9 IS 2 =~} , 

and the Poisson bracket is 

{ft,h} = ± aFI aFz _ (1 ~ 2) 
;=1 ax; ap; 

+ ± EijkSk aFl aFz , 
;.j,k= I as, aB; 

where Fl,Fz are two smooth extensions of ft and h, respec
tively. In this case 1T: M .... T * (Q) is simply 
1T(X,P,S) = (X,P). The formulas for the action of & 1+ on 
Min these two cases can be found, e.g., in Ref. 15. So in case 
( I ), the system is localizable. 

For the case (II), we return to the system (3.13). Put-
ting m = 0, we get 

aJ = eH(H3A _ 1) aA3 _1_ 
a(J 3 a(J + 2H 2 ' 

aJ =e H3A3-1(H3 aA3 
aH HZ aH 

+3H 3A 3 - H3A 3 - 1)_J!.... 
H H3 

We denote U= (H 3A3 - 1)2 and the system becomes 

(3.17 ) 

From the first equation we get 

J- eU + (J (H) 
- 2H2 2H Z +g , 

where g is a smooth real function of H. The second equation 
of (3.17) gives then g' = O. So, (3.17) has the solution 

eU (J 
J = 2H 2 + 2H 2 + et . 

If we use now (3.13) we get 

a 2 +ctH z = -e[(H3A3-1)2+H4AU, 

so we must have a 2 + et HZ < 0, which is absurd. So, in case 
(II), the system (3.7) has no solution and as a consequence 
is not localizable. 

It remains for us to analyze case (III). We see that 
ot "'" R3 X R3 and we can take as independent coordinates P 
and K. The Poisson bracket is then 
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{I' I'} = H '" aft ah. _ (1 +-+ 2) 
JI'J2 ~ aK ap. 

I I 

_~ ± Eijl(hP-PAK)1 all ah.. (3.18) 
H j,j,l= I aKj aKj 

We analyze again the system (3.7). From the second 
equation we get 

X(P,K) = (K /H) + A(P) , (3.19) 

Then the third equation of (3.7) gives, after a short compu
tation, 

3 aA 3 L Eilm Pm __ J = L EijIAI' i,j = 1,2,3 . 
I,m = 1 aPI 1= 1 

From this system it follows easily that A is of the form 

A(P) = pV(p2) . (3.20) 

It remains to exploit the first relation of (3.7). With the help 
of (3.19) and (3.20) we get 

3 

{Xj,xj} = - h/H3 L EijkPk; 
k=1 

so for h #0 the system is not localizable. For h = 0, we can 
take V = 0, so from (3.19) we get the solution of (3.7): 

X=K/H. (3.21) 

In independent coordinates X, P we can see that in this 
case M = T * (R3

), so the system is localizable. 
Remark: This case is the limit m -+ 0 of case I for s = O. 

The final result is the following. 
Theorem: The elementary relativistic particles of non

zero mass & ;;'s are localizable for any spin. The elementary 
relativistic particles of zero mass & c± ,& h are not localiza
ble, except no± . 

Let us note finally that recently relation (3.21) has been 
proposed as a solution for the localizability of all relativistic 
particles, including the photon5

,6 (see also Ref. 18). 

IV. CONCLUSIONS 

We have proposed definitions for covariance and locali
zability in analytical mechanics similar with the ones in 
quantum mechanics. The results obtained are in correspon
dence with those in quantum mechanics, which seems to 
indicate that the definitions proposed are realistic. We re
mark in connection with this parallelism another one. Be
cause the N ewton-Wigner concept oflocalizability excludes 
the photons, there is a definition of localizability which is 
more general, 19 and which essentially abandons the require
ment that the quantum position operators commute. In our 
scheme it would mean abandoning the requirement (2.3), 
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and consequently the relation (2.5). From our proof it fol
lows easily that, in analytical mechanics, the situation is the 
same. If we abandon (2,5) then in all cases (I), (II), (III) 
from Sec. III we have localizability. 

These are a number of problems which deserves further 
attention. First, we are reminded that in quantum mechanics 
there exists another case of a localizable system of zero mass 
besides those of zero helicity, which corresponds to a reduc
ible representation of .9 1+ (see Ref. 1, Corollary 12.17). It 
would be interesting to search for a classical analog of this 
system which would be associated with a non transitive ac
tion of .9 1+ • Second, one knows a related problem with that 
of localizability, namely the construction of an evolution 
space. 12,13 All cases (1)-(111) investigated in Sec. III admit 
such an evolution space. It would be interesting to investi
gate if there is an exact relationship between the two con
cepts, namely iflocalizability implies always the existence of 
an evolution space. Finally, it would be desirable to prove the 
theorem in Sec. III without the aid of the infinitesimal rela
tions (2.10), more in the spirit of the Mackey analysis of 
systems of imprimitivity. 
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The analysis of Levy-Leblond [Commun. Math. Phys. 12, 64 (1969)] is generalized for 
Lagrangian systems with symmetry. It is proved that this analysis goes through practically 
unchanged, and then some examples are analyzed in detail. 

I. INTRODUCTION 

The purpose of this paper is to generalize the study of 
the Lagrangian systems with a Lie group of symmetry pre
sented in Ref. 1. To be more specific we must give some 
details. We study only systems with a finite number of de
grees of freedom. Let X\'''',Xn be the real coordinates de
scribing the configuration of the system. The system is called 
Lagrangian if one has a real smooth function L on time t, x's, 
and the velocities V\'''''Vn ER, such that an evolution in time 
R3~q(t) is given by the usual Euler-Lagrange equations: 

!!..- aL (t,q,q) = aL (t,q,q), i = 1, ... ,n. (1.1) 
dt av; ax; 

To describe the notion of symmetry it is convenient to 
treat t and x on the same footing with the following trick. 
Associate with L a new Lagrangian L with n + 1 degrees of 
freedom denoted SO'''',Sn, and velocities PO"",Pn by the for
mula 

L(so"",Sn,Po,· .. ,Pn) 

=poL (so, (s\'''',Sn ),(~~ , ... , ~: )) . ( 1.2) 

Then, an evolution T i---+fJoCr), ... ,qn (T) given by the Euler
Lagrange equation of this system is nothing but an evolution 
for L given in parametrized form. 

One can define now a symmetry to be a smooth map 

'" SO'''',Sn --+5 0'''',5 ~ that maps solutions of the Euler-La-

grange equations for (1.2) into solutions of the same equa
tions. 

It is easy to prove now that q; is a symmetry if the follow
ing identity holds: 

_ A - n aA 
L (q;(s),q;(p») = aL(s,p) + ;~o a/ (s)p;· (1.3) 

Here 

A ~ aq;; 
q;(P);=/~oaSj (S)Pj' 

A", is a smooth real function depending on q;, and aER (re
mark that we must have a =1= 0, because in the opposite case L 
would give trivial equations of motion). 

In Ref. 1 the concept of symmetry is based on relation 
( 1.3) with a = 1. In this paper we investigate the more gen
eral case a =1= 1. 

In Sec. II we establish that the analysis in Ref. 1 goes 
through practically unchanged in our more general case. 

In Sec. III we give some details on group cohomology 
needed for practical applications. 

In Sec. IV we treat some examples. The last section is 
devoted to conclusions and comments. Some computations 
are made in the Appendix. 

II. LAGRANGIAN SYSTEMS WITH LIE GROUPS OF 
SYMMETRY 

Suppose we have a Lie group G acting smoothly on the 
"'. 

variables 5, i.e., for any gEG, one has a map s~s ' such that 
g,s --+q;g (5) is smooth and we also have 

(i) q;e = Id, 

(ii) q;g,oq;g, = q;g,g" Vg\,g2EG. 

By virtue of the discussion in the Introduction one can 
call G a group of symmetry for the Lagrangian L if for any 
gEG, there exists agER\ {a} depending smoothly on G and 
one also has a smooth real valued function A depending on g 
and 5 such that 

- A - n JA 
L(q;g(s),q;g(p») = agL(s,p) + ;~o as; (g,s)p;, (2.1) 

Remark: From (1.2) it follows that we have 

L(s,ap) = aL(s,p), VaER. (2.2) 

[In fact, L is of the form (1.2) iff this condition is true. ] 
We denote by p the direction of p. Then, the action of G 

on (s,p) variables, 
4>. 

(s,p) ~ (q;g (s),$g (p»), 

factorizes to an action g --+ <I> g on (s,jJ) variables. As re
marked in Ref. 2, from (2.1), L is determined on every orbit 
of G in (s,p) variables, if one knows it in one point of the 
orbit. In particular, if G acts transitively in (s,p) variables 
then L is determined by its value at a point So' 

In this case we can give an explicit formula useful in 
applications. From the hypothesis of transitivity of the G 
action <1>, we infer that for any S,V there exists gEG and 
PoER\ {a} (depending on 5 and v) such that 

<l>g(So,Po,O) = (s,l,v). 

Then from (2.1) we have 

- - aA 
L(s,l,v) = agL(so,po,o) + as

o 
(g,So)Po, 

or, in t,x variables, 

L(t,x,v) = po[ agc + ~~ (g,to,Xo)], (2.3 ) 

where we have denoted L(so,O) =c and So = (to,xo)' We 
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return now to the study of (2.1 ). By some computations one 
can show that, for any gl,g2EG, one has 

(2.4) 

and the functions iA(gl,g2)' given by 

iA(gl,g2) (S) 

=.A(gl,g2·S) + ag, A(g2'S) - A(glg2'S), (2.5) 

do not depend on S. [From now on, we use the simpler nota
tion g·S=({Jg (s)·) One must suppose the domain of values 
of S to be connected. 

Because ag #0, VgEG, from (2.4) it follows that we 
have ae = 1, so gt---+ag is a smooth real one-dimensional rep
resentation of the Lie group G. Thus, at least at the formal 
level, we have a problem related to the one studied in a pre
ceding paper.3 We will return to this point later. 

Also from (2.1) one has A (e,s) = const. We remark 
now that the function A is determined by (2.1) up to a func
tion of g. It is convenient to eliminate this arbitrariness as in 
Ref. 1: choose a reference point So and demand 

A(g,so) = 0, VgEG. (2.6) 

We denote by Za the vector space of smooth real func
tions depending on g and S, such that iA(gl,g2) does not 
depend on S for any gl,g2EG, and one has also (2.6). The 
elements of Za are called gauge functions in Ref. 1. It is easy 
to verify that if A is a real smooth function depending on S, 
then A, given by 

A(g,S) =ag[A(s) -A(so») - [A(g·S) -A(g·so»), 
(2.7) 

is an element of Za. We denote by Ba the subset of Za 
formed by elements of this form, and remark that Ba is a 
linear subspace of Za. Two gauge functions differing by an 
element in Ba are called equivalent. We denote Ha = Zal 
Bo; Ha is also a vector space. 

We now denote the vector space of Lagrangians I ad
mitting G as a group of symmetry in the sense (2.1) by .!L'. 
We recall that for Lagrangians of the form 

(A is a smooth real function on s), the Euler-Lagrange equa
tions are identities. We denote by .!L' ° the subset of .!L' 
formed by Lagrangians of this form. Here .!L' ° is a linear 
subspace of .!L', so we can form the vector space Jf' = .!L'I 
.!L' 0. We now remark that we have a natural linear operator 
from Jf' into Ha . Indeed, we have a linear map from .!L' into 
Za, which associates with IE.!L' the function A in (2.1) with 
the appropriate normalization condition (2.6). It is easy to 
see that this linear operator maps .!L' ° into Ba, so it factorizes 
to a linear operator S: Jf' -Ha. (Because Lagrangians dif
fering by a mUltiplicative constant give the same Euler-La
grange equations, they must not be considered distinct: thus 
from the physical point of view we need the projective space 
~.) Thus the study of the Lagrangian systems with symme
try reduces to the study of the map S. In the case where G 
acts transitively in variables (s,p), the remark following 
(2.1) shows that S is surjective. 
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First we must study Ha. We follow the spirit of Ref. 1 
with some important clarifications from Ref. 2. 

First we remind the reader of some standard cohomo
logy notions.4 Let G and Kbe Lie groups, K Abelian, and a: 
~ Aut K a smooth homomorphism of G into the group of 
the automorphisms of K. Let, for any nEN, cn (G,K) be the 
set of smooth maps 

c: GX ... XG-K. 
~ 

n times 

We also define CO(G,K) =.K and C -1(G,k) =.{O} (0 is the 
neutral element in K; we use additive notation for the com
position law in K). The elements of cn (G,K) are called K
valued cochains of dimension n. In what follows we will al
ways suppose the cochains to be normed in the sense 

(2.8) 

for any i = 1, ... ,n. One defines next the cobord operator 0: 
C n (G,K)I--+C n + \ (G,K) by the formula 

OC(gl,.··,gn + \ ) 

= ag, c(g2,···,gn + I) 

+ 2: (-I)ic(gl,···,gi_l,gigi+l,gi+2, ... ,gn+l) 
l,i<n 

+ (_l)n+lc(gl,.··,gn)· 

We will need some particular cases: for CEC ° ( G,K), 

&(g) = agc - c; 

for CEC I ( G,K), 

&(gl,g2) = ag,c(g2) - C(g\,g2) + c(gl); 

for CEC 2 ( G,K), 

&(gl,g2,g3) = ag, C(g2,g3) - c(glg2,g3) 

+ C(gl,gzg3) - C(g\,g2)· 

Now denote 

Z: (G,K) =.{cEcn(G,K) 1& = O} 

(2.9) 

(2.9') 

(2.9" ) 

(2.9"') 

[the elements of Z: (G,K) are called K-valued cocycles of 
dimension n, relative to a), and 

B~ (G,K) =.{cEC n(G,K)13bEcn- \ (G,K) 

such that C = ob} 

[the elements of B: (G,K) are called K-valued cobords of 
dimension n, relative to a]. 

Because 02 = 0, one has B: ( G,K) C Z : (G,K) and we 
can define the nth cohomology group of G with coefficients 
in K relative to a, by H~ (G,K) =Z: (G,K)IB: (G,K). We 
remark that if K is a vector space, then Z: ( G,K), B : ( G,K) , 
and H: (G,K) are also vector spaces. If a is the trivial homo
morphism, the index a is omitted. 

In what follows we need an auxiliary cohomology 
group. Let He G be a subgroup of G. We define, for nEN, 

cn(G IH,K) 

=.{cECn(G,K) Ic(gw··,gn-I ,gn h ) 

= C(gl,. .. ,gn), VhEH,VgI,.··,gn EG}, 

CO(G IH,K) =.{o}, C -I(G IH,K) = {o}. 
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Because 8 maps en (G IH,K) into C n + 1 (G IH,K), one can 
define Z~(GIH,K), B~(GIH,K), and H~(GIH,K) by 
analogy with the similar definitions above. 

We can proceed now with the analysis as in Ref. 1. We 
denote by H the subgroup of stability of the reference point 
So' and suppose that the manifold on which G acts is a con
nected homogeneous G-space, i.e., is of the form G I H. Some 
of the results hold for any K and some only for K = R n 

(nEN). 
(1) Suppose the bundle (GIH,G,1T) is trivial. ThenHa 

is isomorphic with H~ (G IH,R). 
Proof' The proof is similar to the one in Ref. I and is 

based on simple computations, which are omitted. 
(i) Let AERa, and AEA. Then the map 

G XG3gl,g2f--+iA(gl,g2)ER 

is an element of Z ~ (G IH;R). Moreover, if AEBa, this map 
is an element of B ~ (G IH;R). SO we have by factorization a 
map 

t: Haf--+H~ (G IH,R). 

(ii) Conversely, let CER~ (G IH,R), and eEC. From the 
triviality of the bundle ( G I H, G, 1T) we infer the existence of a 
smooth cross section a: G I H - G such that 

(2.10) 

We now define je: G X G I H - R by the formula 

je(g,s) = e(g,a(s»· (2.11 ) 

Then one can show, using (2.9''') and (2.10), that 
jCEZa • Moreover, if eEB ~ ( G I H,R) the jeEB a . So we have a 
natural map}: H~ (G IH,R) -Ha. 

(iii) By direct computation one shows that ioj = Id and 
joi = Id. It follows that to} = Id,}ot = Id. So t is the desired 
isomorphism. • 

(2) Let eEZ~ (G,K). Then eEZa (G IH,K) 
iff elG xH = O. 

Proof' ~: By definition 

e(gl,g2h) = e(gl,g2), Vg1,g2EG, VhER. 

Takegl = g, g2 = e; we get e(g,h) = e(g,e) = O. 
{::::: Take in the cocycle identity Dc = 0, g3 = hER. 

Ifwe use elG xH = 0, we get e(gl,g2h) = e(gl,g2)' • 
(3) Let eEZ~ (G IH,K). Then eEB~ (G IH,K) 

iff e = 8b, where b: G-K verifies b IH = O. 
Proof' ~: By definition eEB ~ (G IH,K) means that 

e=8b,whereb:G-Kverifiesb(gh) =b(g), VgEG, VhER. 
Take g = e. Then b(h) = b(e) = 0, because of (2.8). 

{::::: By hypothesis e = 8b, i.e., according to (2.9"), 

e(g\Jg2) = ag, b(g2) - b(gl,g2) + b(gl)' 

and b IH = O. We takegl = gEG,g2 = hER. But e(g,h) = 0, 
according to (2). So we get 

agb(h) - b(gh) + b(g) = O. 

Becauseb IH = 0, wegetb(gh) = b(g),i.e., bEC I(G IH,K). 
It follows that e = 8bEB ~ (G IH;K). • 

We need now another cohomology structure based on 
cochains defined for nEN: 
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Cn(G,H,K) ={CEcn(G,K) lelH X ... XH = O}, 
~ 

ntimes 

CO(G,H,K)={O}, C-1(G,H,K)={0}. 

These groups of cohomology were introduced in Ref. 2 and 
correspond to the notion of H superequivalence from Ref. I. 

Because 8 maps cn (G,H,K) into C n + 1 ( G,H,K), then 
Z ~ ( G,H,K), B ~ ( G,H,K), and H ~ (G,H,K) can be defined 
similarly to the preceding definitions. 

We now have a central lemma, suggested by Proposition 
2 of Ref. I, and found explicitly in Ref. 2. 

( 4) Let the bundle (G I H, G, 1T) be trivial, and let 
CER ~ ( G,H,K). Then there exists eEC such that 
CEZ~ (G IH,K). 

Proof' (i) If a: G I H - G is the cross section defined in 
(1), define now s: G-G by s=e01T, and X: G-H by 
X(g) =s(g) -Ig. One then proves 1 

s(gh) =s(g), VgEG, V hER, 

sIH=e, 

X(gh) = X(g)h, VgEG, VhER, 

X(h) = h. 

(ii) Let cEC. Define b: G-Kby 

b(g) =c(s(g),X(g». 

We have for any hER, 

b(h) = c(s(h),X(h» = c(e,h) = 0, 

so bEC 1 ( G,H,K). Then define eEZ ~ ( G,H,R) by 

c=c+ 8b. 

One can easily verify that V gEG, V hER, 

e(g,h) = c(s(g)X(g),h) - c(s(g),x(g) h) 

+ c(s(g),X(g»· 

Using the cocycle identity (2.9"') we get 

c(g,h) = as(g)C(x(g),h) = 0, 

because by definition clH XH = O. It follows that 
clG XH = O. Now applying (2), we get that 
eEZ~ (G IH,K). • 

(5) In the hypothesis of ( 4 ), in every cohomology class 
from H ~ (G,H,K) there exists one and only one cohomology 
class from H~ (G IH,K). 

Proof' In every cohomology class from H ~ ( G,H,K) 
there exists at least one cohomology class from H ~ ( G IH,K) 
by virtue of ( 4 ). We now prove the unicity. Let 
CER~ (G,H,K) and C,C'ECnZ~ (G IH,K). Because e,e'EC, 
it follows that e' - cEB ~ (G,H,K), i.e., then bEC 1 (G,H,K) 
exists such that e/ - c = 8b. By definition b IH = O. Apply
ing (3) we get that e/ - cEB ~ (G IH,K), i.e., c and c/ belong 
to the same cohomology class in H ~ (G IH,K). • 

As immediate corollaries we have the following. 
( 6) If the bundle (G I H, G, 1T) is trivial, then 

H; (G IH,K) =H~ (G,H,K). 

(7) For the same conditions as above, we have 

Ha=H~(G,H,R). 
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Proof: From ( 1) and (6) for K = lR. • 
So, we are left with the problem of studying the second 

cohomology group H ~ ( G,H,lR). This can be done by using 
the long cohomology sequence as in Ref. 2 but we prefer a 
simpler approach in the spirit of Ref. 1. 

We remark first that if HCG is a subgroup and r: 
en (G,K) --+ cn (H,K) is the restriction application, then r 
commutes with D. As a consequence we have 
r(B~(G,K»CB:IH(H,K) and r(Z:(G,K»CZ~IH(H,K). 
We call a cohomology class CEll ~ ( G,K) admissible if it con
tains at least one cohomology class from H ~ ( G,H,K). We 
take K = lRn 

• Then we have the following proposition. 
(8) Let G be a paracompact Lie group, and 

CEll ~ (G,lR n
) be an admissible cohomology class. Then the 

cohomology classes from H ~ (G,H,lRn) included in C are in 
one to one correspondence with Z ~IH (H,lRn)/r(Z ~ (G,lRn». 

Proof' Let 'ff oEll~ (G,H,lRn), 'ff oC Cbe fixed in the fol
lowing. 

(i) Let ct be any cohomology class from H; (G,H,lRn) 
included in C. We take cEct and coE'ff o' Because C,CoEC, 
C - coEE ~ (G,lRn), i.e., there exists bEC 1 (G,lRn ), such that 
C - Co = Db. But, on the other hand, C - CoEZ ~ ( G,H,lRn) , so 
by (2), (c - co) IH = O. It follows that b IHEZ ~IH (H,lRn). 
We will show now that if we take another choice for C and co, 
we modify b IH by an element in r(Z! (G,lRn». Indeed, let 
c'Ect and c~Ect o' We have as before c' - c~ = Db', where 
b 'IHEZ !IH(H,lRn). On the other hand, c,c' = Ect implies 
theexistenceofbEC 1 (G,H,lRn ), such that c - C' = Db. Simi
larly, there exists boEC 1 (G,H,lR) such that Co - c~ = Dbo. It 
follows that D(b - bo - b + b') = 0, i.e., b - bo - b 

+ b 'EZ! (G,lRn). Because (b - bo - b + b') IH 
= b 'IH - b IH it follows that b 'IH - b IHEr(Z! (G,lRn». 

So we can define a map that associates with every coho
mology class from H ~ (G,H,lRn) an element from 

Z !IH (H,lRH)/r(Z! (G,lRn». 
(ii) Conversely, let BEZ !IH (H,lRn)/r(Z! (G,lRn» and 

bEE. Takeb: G--+lRn to be any smooth extension ofb (bexists 
according to Th. 5.7, Chap. I in Ref. 5). Let coEct 0 and 
define C=Co + Db. Because b IH = bEZ !IH (H,lR n

), it fol
lows that CEC 2 (G,H,lRn ). Because & = &0 = ° we have, 
moreover, that cEZ; (G,H,lRn). We will show that if we take 
another choice of bEE and coEct 0, then we modify C by an 
elementinB ~ (G,H,lR n

). Indeed, letb 'EEandc~Ect o' Letb': 
G--+lRn be a smooth extension ofb ' andc'=c~ + Db'. Again 
c'EZ;(G,H,lRn). On the other hand, we have 
C - C' = Co - c~ + D( b - b '). But c~ ,coEct 0 implies the ex
istence of blEC1(G,H,lRn ) such that c~ - Co = Db l . So we 
have C - C' = D (b - b ' - b 1)' But 

(b - b' - bl)IH= b - b- b.IH= 0, 

so b - b - blEC 1 (G,H,lRn ). It follows that 
C - c'EE ~ (G,H,lRn). 

We have defined in this way a map that associates with 
every element in Z !IH (H,lRn)/r(Z ~ (G,lRn) a cohomology 
class from H~ (G,H,lRn) contained in C. 
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(iii) It is easy to see thatthe maps defined in (i) and (ii) 
are inverse to each other. This finishes the proof. • 

We can formulate the following theorem. 
Main theorem: Let G be a paracompact Lie group, 

HCGaclosed subgroup such that the bundle (G IH,G,1T) is 
trivial, and u: G I H --+ G a smooth cross section. In every ad
missible cohomology class CEll ~ ( G,lR) , we fix 
ct oEll~ (G,H,lR) and coEct o' In every class 
BEZ!IH(H,lR)/r(Z!(G,lR» we fix bEE. Then every gauge 
function for the homogeneous G space G I H is equivalent to 
one ofthe form 

A (g,S) = co(g,u(S» + aa(lJ's) b(y(g,S» 

- aa(IJ'So) b(y(g,so», 

where y: G X G I H --+ H is given by 

y(g,s) =c(g's) -lgC(S)· 

(2.12 ) 

(2.13 ) 

Moreover, in this way we obtain one and only one represen
tative from every equivalence class in Ha. 

Proof: Let AElla • Then, according to (7), we can find a 
unique ct Ell ~ ( G,H,lR). Let CEll ~ ( G,lR), the admissible 
class that contains ct. Then, to the couple ct 0 and 'ff (ct 0 is 
fixed by hypothesis) we can attach, according to (8), a 
unique elementBEZ !IH (H,lR)/r(Z ~JG,lR». Let bEEbe the 
element fixed by the hypothesis and b: G--+lR be any smooth 
extension of b. Define c = Co - Db. Then, according to (8), 
[c) = ct. With the help of (4), we now find CEct such that 
cEZ ~ ( G IH,lR). Then the preceding argument shows that 
N=jcEA. 

It remains for us to put this program into action. By 
some computations one can find that 

N(g,S) = co(g,u(s» + ags(a(p)b(X(u(s»)) 

- as(go'(5») b(X(gu(s») + as(g) b(x(g» 

+ agb(su(s» - b(s(gu(s») + b(s(g». 

The sum ofthe last three terms is inBa (take A = bosou) , so 
we can take A" EA as 

A" (g,S) = co(g,u(S» + ags(a(s»)b(X(u(s») 

- as(ga(5»)b(X(gu(s))) + as(g)b(x(g» 

But we have 

b(X(gu(s») = b(X(u(g's»y(g,s» 

= ax(a(g's» b(y(g,s» + b(X(u(g·s)))· 

(The last equality follows from the cocycle identity for b.) 
So, A" can be rewritten as 

A" (g,S) = co(g,u(S» - aa(g's) b(y(g,S» 

+ as(g)b(x(g» + ags(a(5»)b(X(u(s») 

- as(a(g's»b(X(u(g's»), 

The last two terms can be written as ag [A (s) 
- A(So)] - A(g'S), where A(S) =as(a(5»)b(X(u(s»)), so 
we can take AEA as 

A(g,S) = co(g,u(S» - aa(g's) b(y(g,s» 

+ as(g) b(x(g» - as(a(g,s,,») b(X(u(g' So))), 

D. R. Grigore 2656 



                                                                                                                                    

Again applying the cocycle identity for b, this expres-
sion can be proved to coincide with (2.12). • 

Remark: The last term in (2.13) is constant so it can be 
left out in (2.1). 

III. THE COHOMOLOGY OF LIE GROUPS 

Section II shows that if we want to find the Lagrangians 
admitting a Lie group of symmetry, we must be able to de
scribe first Z! (G,JR) and H~ (G,JR). Fortunately for Lie 
groups, one can relate these objects to corresponding ones 
for the Lie algebra associated to the Lie group, which re
duces the problems to purely algebraic ones. So we now re
mind the reader of the basic notions of Lie algebra cohomo
logy.6 Let L be a Lie algebra and V a vector space. Let, for 
any nEN, en (L, V) be the set of n - linear completely anti
symmetric maps c: LX'" XL -+ V . We define also 

~ 
n tImes 

CO(L,V) == V, C -l(L,V) = {O}. The elements ofcn (L,V) 
are called V cochains of dimension n. Let! L -+ End ( V) be a 
linear representation of Lin V. Then one defines the cobord 
operator 0: cn (L, V) -+ Cn + • (L, V) by 

8c(Xo,,,,,Xn ) 

and 

= I (- 1 )i(X; )c(Xo, .. ,X;, ... ,xn) 
O<.i<n 

+ I (-1);+jc([X;,X}],Xo, ... ,Xw .. 'xj'''''Xn ), 

O,i<i<n 

Now denote 

Zf(L,V) =={CECn(L,V) 18c = O} 

B f(L,V) =={cECn(L,V) 13bEC n 
- ·(L, V) 

such that C = 8b}. 

(3.1 ) 

The elements of Z f(L, V) are called cocycles and those of 
B f(L, V) cobords. Because 82 = 0, B f(L, V) is a linear sub
space of Z f(L, V) and one can define the nth space of 
cohomology of L relative to / to be Hj(L, V) 
= Zf(L, V)IB f(L, V). If/is the trivial representation, the 

index / is omitted. We need some particular examples of 
(3.1). 

For cECo(L,V) == V, 

8c(X) = /(X)c. 

For CEC • (L, V), 

8c(X,y) =/(X)c(X) - /( y)c(X) - c([X,Y]). 

For CEC 2 (L, V), 

8c(X, Y,Z) = /(X)c( Y,Z) + cycl. 

- (c[[X,Y],Z] + cycl.). 

We suppose now that G is connected and simply con
nected. If a: G -+ Aut V is a representation of G in V, denote 
by a: Lie G-+End( V) the corresponding representation of 
the Lie algebra Lie G of the group G. 

(A) The connection between Z! ( G, V) and 
Z j( Lie G, V) can be described as follows. 4 If CEC • (G, V) 

2657 J. Math. Phys .. Vol. 30. No. 11, November 1989 

then we define, for any g, an operator Tg acting in V + JR and 
given in obvious matrix notation by 

T = (ag C(g»). 
g 0 1 

(3.2) 

Then CEZ! ( G, V) if! gt---+ Tg is a representation of G in 
V + R. Analogously if CEC 1 (L, V), where L is a Lie algebra, 
we define for any XEL an operator leX) acting in V + JR and 
given by 

(3.3 ) 

Again CEZ j(L, V) if! X~t(X) is a representation of L 
in V + JR. 

Since for connected and simple connected Lie groups 
there is a one to one correspondence between representations 
of the group and representations of its Lie algebra, we have, 
by virtue of the preceding remarks, a one to one correspon
dence between Z! ( G, V) and Z! (Lie G, V). 

We remark (although we will not need this in the fol
lowing) that it is easy to prove that this correspondence fac
torizes to a one to one correspondence between H! ( G, V) 

and H! (Lie G, V). 
(B) According to a result of Hochschild/ a similar re

sult also holds for the second cohomology groups; namely, if 
G is a connected and simple connected Lie group and K is a 
conected Lie group, with a and a as above, then there is a one 
to one correspondence between H ~ ( G,K) and 
H ~ (Lie G,Lie K). In our case, K = V, and we can also take 
LieK = V. 

We give only the idea of the proof because it is needed in 
the practical computations. This idea is to use the so-called 
extensions of Lie groups and of Lie algebras, respectively. 

( 1) Let G and K be Lie groups. Then, an extension of K 
by G is a triplet (H,i,j) , where His a Lie group, and the short 
sequence 

is exact. If K is Abelian, then one has a natural homomor
phism a: G-+Aut K defined by 

i(a(g)k) = hi(k)h -., 

where hEH is any element verifyingj(h) = g. The extension 
is called "associated" with a. Two extensions of K by G, 
(H,l,j) and (H',i'j'), are called equivalent if there exists a 
groupisomorphismq:H-+H' such thatqoi = i' andj'oq = j. 
If K is Abelian, then two equivalent extensions are associat
ed with the same homomorphism a: G-+Aut K. We denote 
by Ext ( G,K,a) the set of equivalence classes of extensions of 
the Abelian group K by G associated with a. The first step in 
proving the needed result is establishing a one to one corre
spondence between Ext ( G,K,a) and H ~ ( G,K) . We will 
need explicitly the map from H ~ (G,K) in Ext ( G,K,a). Let 
CEZ ~ ( G,K) . We define on the set H = K X G the following 
composition law: 

(k.,g.) (k2,g2) = (k l + a(gl)k2 + C(g.,g2),glg2)' (3.4) 

Then one can prove that H is a Lie group. We denote by 
He this Lie group. If i: K -+ He and j: He -+ G are given by 
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i(k) = (k,e) andj(k,g) = g, then (Hc,i,j) is an extension of 
Kby G associated with a. We have a map from Z~(G,K) 
into the set of extensions of K by G associated with a. One 
proves easily that this map factorizes to a map from 
H ~ (G,K) into Ext ( G,K,a). The construction of the inverse 
of this map is much more difficult, and can be found in Ref. 
7. 

(2) Now we give the corresponding construction for Lie 
algebras.6 Let L and V be two Lie algebras over the same 
field P. An extension of Vby L is a triplet (E,a,(J) , where E is 
a Lie algebra over P, and the short sequence 

is exact. If V is Abelian, then one has a natural representa
tion! L-+End( V) defined by 

a({(X)v) = [e,a(v)], 

where eEE is any element such that (J( e) = X. The extension 
is called "associated" with f. Two extensions of V by G, 
(E,a,B) and (E I ,a' ,(J '), are called equivalent if there exists a 
Lie algebra isomorphism f): E -+ E I such that f)oa = a ' and 
(J'of) = (J. If V is Abelian, then equivalent extensions are 
associated with the same representation! L->End( V). We 
denote by Ext(L, V j) the set of equivalence classes of exten
sions of the Abelian Lie algebra V by L, associated with f. 
The second step in proving the main result is to establish a 
one to one correspondence between Ext( L, V j) and 
H ;'(L, V). As in (1), we will need explicitly the map from 
H;'(L,V) in Ext(L,vj). Let cEZ;'(L,V). We define on the 
set E = V xL the following composition law: 

[(V 1,x2),(V2,X2)] = ({(Xl )v2 - !(X2)V 1 

+ c( [Xl,X2 ] ),[X1,X2 ]). (3.5) 

Then, one can prove that [ , ] is a Lie bracket, so (E, [ , ] ) is a 
Lie algebra denoted by Ec. If a: V -> Ec and (J: Ec -+ L are 
given by a(v) = (v,e) and (J(v,X) = X, then (Eoa,(J) is an 
extension of Vby L associated withf. 

So we have a map from Z ;'(L, V) into the set of exten
sions of Vby L associated withf. One can prove easily that 
this map factorizes to a map from H;' (L, V) into Ext (L, V j). 
The construction of the inverse of this map is relatively easy 
to do and can be found in Ref. 6. 

(3) The last step of the proof of the main result is to 
establish a one to one correspondence between Ext ( G,K,a) 
and Ext(Lie G,Lie K,a). If G is connected and simply con
nected, this can be done using the connection between Lie 
groups and Lie algebras. 7 

Remarks: ( 1) If G is connected but not simply connect
ed, one proceeds as follows.8 Let G * be a connected and 
simply connected covering group for G, and €: G * -+ Gbe the 
covering homomorphism. Let CEZ ~ ( G,K). Then we can de
fine a*: G*-+AutK by the formula a* =aO€, and 
C*EC 2 (G *,K) by the formula c* (81 ,g!) = c(€(gf) ,€(g!». 
Then a* is a homomorphism and C*EZ! .. ( G * ,K). So we 

have a map from Z ~ (G,K) into Z! .. ( G * ,K). It is easy to see 

that this map factorizes to a map from H ~ (G,K) into 
H2 .. (G *,K). We can analyze H2 .. (G *,K) with the help of 

a a 
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the Hochschild theorem, and then we must study the inverse 
of this map. 

A similar comment is also valid for Z! (G,K) and 
H! (G,K) if G is not simply connected. 

( 4 ) We see that in order to apply the main theorem from 
Sec. II we must study H ~ (Lie G,R). This is another similar
ity with the problem studied in Ref. 3, at least at the formal 
level. 

IV. EXAMPLES 

We now apply the theory developed in the preceding 
sections on Some examples also treated in Ref. 3 from the 
point of view of the Hamiltonian formalism, namely, the 
Galilei group (in three and in one dimension), the one-di
mensional Poincare group, and the one-dimensional New
ton group. In all these cases, G acts transitively on variables 
(s,p)· 

A. The Galilei group in three dimensions f§ ~ 

As in Ref. 3, we identify this group with 5 X 5 real matri
ces of the form 

(R,v,~,a) =G v 

° 
where RESO(3), v,aER3

, and 7JER. The composition law is 
induced by matrix multiplication: 

(R,v,7J,a)(R ',v' ,7J',a') 

= (RR ',Rv' + v,7J + 7J',Ra' + a + 7J'v). 

The group f§ T+ acts in R4 by the following formula: 

qJR.v,.",a (f,x) = (f + 7J,Rx + tv + a) (fER, xER3). 

As in Ref. 1 we take as a reference point (0,0)ER4. Then the 
stability subgroup H of (0,0) is given by 

H = {(R,v,O,O) IRESO(3), vER3}. 

Because f§ T+ is a semidirect product ofR4 and H, the bundle 
( f§ T+ / H, f§ 1+ ,1T) is trivial. In fact, a smooth cross section is 
[see Ref. 1, formula (49) ] 

CT(t,X) = (I,O,t,x). 

Here f§ 1+ admits the following real one-dimensional repre
sentations2

: 

(4.1 ) 

The Lie algebra of f§ 1+ is identified with the linear subspace 
of 5 X 5 matrices of the form 

(A,u,t,x) =G U 

° 
° where tER,u,XER\ and A is a real 3 X 3 antisymmetric ma

trix. Then the following representation of Lie f§ 1+ corre
sponds to (4.1): 

a(A,u,t,x) = pt. 
(I) BecausealH= 1,Z~IH(H,R) =ZI(H,R). We an

alyze first Z i(H*,R), whereH* is a covering of H given by 

H* = {( U,v) IUESU(2), vER3
}, 
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with the composition law 

(U,v)( U',v') = (UU',€( U)v' + v). 

Here €: SU (2) -+ SO (3) is the well known covering homo
morphism [see Ref. 8, Chap. XII, formula (48)]. The Lie 
algebra Lie H * can be identified with the subalgebra of 
Lie f11+ formed by elements of the form (A,u,O,O). 

We take the basisj;, g; (i = 1,2,3) given by 

° ° 
[Here (I;)jk = - €ijk and (e;)j = Dij'] Thecocycleidenti
ty is 

cEZ·(LieH*,R) i,ffc([X,Y]) =0, VX,YELieH*. 

IfwetakeX =j;, Y =jk' wegetc(j[) = 0. If we take X = j;, 
Y = gj' we get c(ge) = 0. So c = 0. It follows that 
Z ·(Lie H*,R) = {O}.Accordingto (A) from Sec. III,itfol-
10wsthatZ ·(H*,R) = {o}. Using the last remark in Sec. III 
we get Z ·(H,R) = {o}. 

(II) Let (f1I+ ) * be the covering group of f11+ defined 
as 

(f1I+ )*={(U,v,1/,a)iUESU(2), v,aER3
, 1/ER}, 

with the composition law 

( U,v, 1/,a) ( U' ,v', 1/' ,a') 

= (UU',€( U)v' + V,1/ + 1/',€( U)a' + a + 1/'v), 

where €: SU (2) -+ SO ( 3) was used in I. We also denote by € 

the covering homomorphism from (f1I+ ) * into f11+ . One 
knows that Lie (f1I+ )* = Lie f11+ and iJ* = iJ. Also in 
Ref. 3 we have proved thatH~ (Lie f1 +,R) = {o}. Now let 
cEZ ~ (f1I+ ,R). According to the last remark in Sec. III, 

C*EZ2 «f11 )*R)=B2z «f11 )*R) a* +, a* +~, 

i.e., there exists b *: (f1I+ ) * -+ R such that 

c(€(g'/'),€(g!) = a
E

(II1') b *(gt) - b * (g'/'gt) + b(gT). 

(4.2) 

Taking in this equality g'/' = g! = ( ± 1,0,0,0) we get 
easily that b * ( ± 1,0,0,0) = 0. We now take in (4.2) 
g! = (-1,0,0,0) andgt = (U,v,1/,a). We get 

b*(U,v,1/,a) =b*( - U,v,1/,a). 

So there is a map b: f11+ -> R such that b * = bO€. Then from 
(4.2) and the surjectivity of € it follows that c = Db, i.e., 
cEB ~ (f1I+ ,R). We have proved that H~ (f1I+ ,R) = 0. 

(III) If we apply (8) from Sec. II we get 
H~ (f1I+ ,H,R) = 0. From (7) in Sec. II we haveHa = {O}. 
We can take therefore A = 0, and (2.3) gives a Lagrangian 
of the form 

L(t,x,v) = ceP', i.e., i-o, so K = 0. 

We get nothing interesting from the physical point of 
view. 

B. The Galilel group in one dimension1 

As in Ref. 3 we identify this group with 3 X 3 real matri
ces of the form 
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v 

° where v,1/,aER. The composition law is induced by the ma
trix multiplication 

(v,1/,a) (v',1/',a') = (v + V',1/ + 1/',a + a' + V1/'). 

This group acts on R2 by the following law: 

({Jv,'f/,a (t,x) = (t + 1/,x + vt + a), t,xER. 

As in Ref. 1 we take as a reference point (0,0)ER2. Then the 
stability subgroup H of (0,0) is given by 

H = {(v,O,O) IVER}. 

We have a smooth cross section given by 

u(t,x) = (O,t,x). 

This group admits one-dimensional real representations of 
the form 

aV,'f/,a = e~v+p'f/ (;,pER,;2 + p2=1=O). (4.3) 

The Lie algebra of this group can be identified with the 
linear space of 3 X 3 matrices of the form 

u 

° ° 
with u,t,xER. Then the following representation of the Lie 
algebra corresponds to (4.3): 

iJ(u,t,v) = ;u + pt. 

(I) From (4.3) we have (aIH)v = e~v. Because H is 
connected and simply connected we can determine 
Z !IH (H,R) by studying first Z ~(Lie H,R). The generic 
element ofC ·(Lie H,R) is of the form c(u) = cu, with cER, 
and is evidently in Z ~(Lie H,R). We find the correspond
ingelement inZ !IH (H,R) following the method in part (A) 
of Sec. III: 

b(v) =c(e~V-l). 

Let b.EC ·(G,R) be given by 

b.(v,1/,a) = c(e{;v+ p,_ 1). 

Evidently we have b = b.IH and b.EZ! (G,R) so it follows 
that bEr(Z! ( G,R). 

(II) We now study thegroupH~ (G,R) using the meth
od from part (B) of Sec. III because G is connected and 
simply connected. We first determine H~ (Lie G,R). We 
have determined in Ref. 3 the most general element from 
Z~ (Lie G,R) in the form 

c( (u,t,x), (u',t ',x') 

= A;(XU' - x'u) - Ap(tX' - t 'x) + u(tu' - t 'u), 
(4.4) 

with A,O'ER. On the other hand, the most general element in 
C ·(Lie G,R) is of the form 

b(u,t,x) = au + {3t + yx (a,{3,YER). 

A simple computation shows that by choosing a, {3, and y 
conveniently we can arrange that c given by (4.4) is of the 
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form Db. It follows that H ~ (Lie G,R) = {o} so by part (B) 
of Sec. III, H~ (G,R) = {O}. 

(III) As in the preceding example, we have 
Ha = ([O]}. If we take A = 0, then (2.3) gives 

L (t,x,v) = ceP' + tv, (4.5) 

so K contains only one element. 
The case; = 0 is uninteresting. If; #0, the Euler-La

grange equation for (4.5) is 

x= -pi;, 

i.e., a uniform accelerated motion. 

c. The Poincare group in one dimension1 

As in Ref. 3, we identify this group with the set of 3 X 3 
real matrices of the form 

(

cosh X 
(X,1],a) = sin~x 

sinh X 
cosh X 

o 
with X, 1],aER. The composition law is induced by the matrix 
multiplication 

(X,1],a) (X',1]',a') 

= (x + X',cosh(X)1]' + sinh(x)a' + 1],sinh(X)1]' 

+ cosh(x)a' + a). (4.6) 

This group acts on R2 by the following formula: 

<fJx,7/,a (f,x) 

= (cosh(X)t + sinh (X)x + 1],sinh(X)t 

+ cosh(X)x + a). 

We take (0,0) as a reference point and the stability subgroup 
is then 

H= {(X,O,O)IXER}. 

We have a smooth cross section 

u(f,x) = (O,t,x). 

This group admits one-dimensional real representations of 
the form 

(4.7) 

The Lie algebra of this group can be identified with real 3 X 3 
matrices of the form 

(U,',Xl=G 
u 

o 
o 

Then the following representation of the Lie algebra corre
sponds to (4.7): 

iI(u,t,x) =pu. 

(I) From (4.7) we have (aIH)x = ePX • Because His 
connected and simply connected we determine Z~IH (H,R) 
by the method from part (A) of Sec. III. The most general 
elemen t in C I (Lie H,B) is of the form 

c(u) = cu, with cEB, 

and is also in Z !IH (Lie H,B). As in (B), the corresponding 
element in Z !IH (H,B) is 

b(X) = c(ePx - 1). 
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Define blEC I (G,R) by 

bl (X,1],a) = c(ePx - O. 

Then bIEZ! (G,R) and evidently bliH = b, so 
bEr(Z! ( G,R». 

(II) We study H~ (G,R) by the method of part (B) of 
Sec. III, because G is connected and simply connected. We 
first determine H~ (Lie G,B). In Ref. 3 we have established 
that the most general element in Z ~ (Lie G,R) is of the form 

c«u,t,x),(u',t ',x'» = A(XU' - x'u) + Il(U't - ut '), 
( 4.8) 

with A,IlER. On the other hand, the most general element of 
C I (Lie G,R) is of the form 

b(u,t,x) = au + pt + yx (a,p,YER). 

We have two distinct cases. 
(a) p # ± 1. Then by taking a,p,y conveniently we can 

arrange such that c given by (4.8) is of the form Db. It follows 
that in this case H~ (Lie G,R) = {o}, so by part (B) of Sec. 
III, H~ (G,R) = {o}. 

(b) p = ± 1. In this case H~ (Lie G,R) is one dimen
sional and every element in Z ~ (Lie G,R) is cohomologous 
with one of the form 

ct«u,t,X),(u',t ',x'» = /(xu' - x'u). (4.9) 

By the result of part (B) of Sec. III, H ~ ( G,R) is also 
one dimensional. One can determine (see the Appendix) the 
element in Z ~ ( G,R) corresponding to (4.9): 

ct< (X, 1],a), (X' ,1]' ,a'» 

= (j12) [(xe±X - sinhX)1]' ± (xe±X + sinhx)a'] 
(4.10) 

(the signs ± are in accordance with p = ± 1). So every 
element in Z ~ ( G,R) is cohomologous with one of the form 
(4.10). 

(III) (a) In the casep# ± 1, we have, as in the preced
ing examples, Ha = {O}. Ifwe take A = 0, then (2.3) gives 

L(t,x,v) =cff=/l«1 +v)/(l-v»)P/2, (4.11) 
A 

so :Jr'is formed by a single element. 
(b) In the case p = ± 1, it follows from (8) of Sec. II 

that every admissible class in H~ (G,R) contains one and 
only one class from H~ (G,H,R). Because cf' given by 
(4.10), verifies cflH XH = 0, every class in H ~ (G,R) is ad
missible; thus H~ (G,H,R) is in one to one correspondence 
with H~ (G,R). We can now apply formula (2.12) with 
Co = cf and b = O. Taking (4.6) into account, we get the 
following gauge functions: 

A( (X, 1],a), (f,x» 

= (j 12) [(Xe± x - sinhX)t ± (Xe ± x + sinh X)x]. 
(4.12 ) 

If we now apply (2.3) we get 

L(t,x,v) = (/)/4)( 1 ± v)ln[ (1 + v)/(l - v)]. (4.13) 

For A = 0, we get, from (2.3), formula (4.11) ~r p = ± 1. 
These Lagrangians are equivalent to O. Thus, :Jr'is formed 
by a single element. 

We remark that both (4.11) and (4.13) describe free 
motions. 
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D. The Newton group1 

As in Ref. 3 we identify this group with 3 X 3 real matri
ces of the form 

(

cosh 1] sinh 1] 

(1],a,v) == sin: 1] cos: 1] 

with 1],a,VER. The composition law is induced by the matrix 
multiplication 

(1],a,v) (1]',a',v') 

= «1] + 1]',cosh(1]')a + sinh(1]')v + a', 

sinh(1]')a + cosh(1]')v + v'). 

This group acts on R2 by the following formula: 

fP'1,a,v (t,x) = (t + 1],X + v sinh ( 1])t + a cosh ( 1] )t). 

We take, as before, (0,0) as the reference point. The stability 
subgroup is then 

H = {(O,O,v) IVER}. 

We have a smooth cross section 

u(t,x) = (t,x,O). (4.14 ) 

This group admits one-dimensional real representations 
of the form 

(4.15 ) 

The Lie algebra of this group can be identified with real 3 X 3 
matrices of the form 

t 

° u 

Then the following representation of the Lie algebra corre
sponds to (4.15): 

a(t,x,u) =pt. 

(I) From (4.15) wehavealH= 1. We can easily deter
mine that the elements of Z I (H,R) are of the form 

b(v) =jv, 

withjER. 

(4.16) 

We turn now to Z! ( G,R). First we determine 
Z ~ (Lie G,R). By simple calculations one establishes that 
there are two cases. 

(a) p=l= ± 1. In this case, H! (Lie G,R) = {O} so 
H! (G,R) = {O} by part (A) of Sec. III. It follows that the 
most general element in Z! ( G,R) is of the form 

c( 1],a,v) = b(eP'1 - 1). 

In particular, r(Z! ( G,H» = 0. 
(b) P = ± 1. In this case every cocycle in Z ! (Lie G,R) 

is equivalent to one of the form 

c(t,x,u) = a(x + u) (aER). 

With the method of part (A) of Sec. III we get the corre
sponding element in Z! (G,R): 

c(1],a,v) =ae±'1(a+v). 

In particular, r(Z! (G,H» is formed by elements of the 
form (4.16). 
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(II) We now study H~ (G,R). The most general ele-
ment in Z~ (Lie G,H) is of the form 

c«t,x,u),(t ',x',u'» = A(xt' - x't) + u(ut' - u't). 

We again have two cases. 
(a) p=l= ± 1. In this case H~ (Lie G,R) = {O}, so 

H~(G,R) = {O}. 
(b) p = ± 1. In this case H~ (Lie G,lR) is one dimen

sional, and every two-cocycle is cohomologous with one of 
the form 

ca«t,x,u),(t ',x',u'» = a(t 'x - tx'). 

It follows, by an analysis similar to the one for the one
dimensional Poincare group, that H ~ ( G,R) is one dimen
sional and every two-cocycle is cohomologous with one of 
the form 

Ca « 1],a,v), (1]',a',v'» 

=! ae±'1[a(1]' + e±'1' sinh 1]') 

+ v(1]' +e±'1'sinh 1]')]. ( 4.17) 

(Ill) (a) p =1= ± 1. From (8) in Sec. III it follows that 
H~ (G,H,R) is in one to one correspondence with Z I(H,R). 
We can apply (2.12) with Co = 0, b given by (4.16), and u 

given by (4.14). We get the following gauge functions: 

A« 1],a,v), (t,x» = jeP('1 + ,) (a sinh t + v cosh I). 

We now apply (2.3) and get 

L(t,x,v) =jeP'(x + pv + c), 

i.e., IE.!!" 0 so JY = 0. 
(b) P = ± 1. From (7) and (8) of Sec. II it follows that 

Ha is in one to one correspondence with the admissible 
classes from H~ (G,R). But ca IG XH = 0, so every class in 
H~ (G,R) is admissible. We now apply (2.12) with Co = ca 

and b = 0, and get that every gauge function is equivalent to 
one of the form 

A( (1],a,v),(t,x») 

= (a/2)e ± '1[a(t + e ±' sinh I) 

+ v(t + e ± , sinh I) ]. 

We now apply (2.2) and get 

L(t,x,v) = ae'(x + c) 

and, respectively, 

L(t,x,v) = ae- '(v + c), 

i.e., they are in .!!" o' So JY = 0. We get nothing interesting 
from the physical point of view. 

E. Final remark 

Ifwe analyze in this spirit the cases studied in Ref. 1, i.e., 
we take the trivial one-dimensional representation of G 
(a = 1, 'tI gEG), then the only minor modification is that one 
must identify, from the physical point of view, Lagrangians 
differing by a multiplicative constant. This is in accordance 
with a similar phenomenon from Ref. 3. 
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v. CONCLUSION 

We have proved that the result in Ref. 1 extends to a 
more general case, related to a similar problem studied in 
Ref. 3. From the physical point of view the result is rather 
negative in the sense that it does not furnish new Lagran
gians admitting a Lie group of symmetry (and thus interest
ing from the physical point of view), besides those in Ref. 1, 
at least for the four groups studied here. One exception is 
(4.5). Of course, it is possible in principle that for other 
groups appearing in physics this enlarged concept of symme
try gives new and interesting Lagrangians. This remains to 
be investigated. 

Another problem that deserves clarification is the rela
tion between the analysis in Ref. 3 and in this paper. We have 
remarked at the formal level some similarities in Secs. II and 
III. Another similarity is the following. Suppose that 
XELie G is such that a(X) = 0. Then a conservation law 
corresponds to theX's by the Noether theorem. This has also 
been remarked in Ref. 3. 

It would be interesting to formulate the connection be
tween the two problems at the abstract level. This can prob
ably be done using a more general concept of symmetry 
based on the Lagrange-Souriau form,9 and it will be done 
elsewhere. 

At last, we remark that this analysis can be extended to 
classical field theory following the lines in Ref. 10, and refor
mulated completely in cohomological terms. 
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APPENDIX: EXPLICIT COMPUTATIONS OF TWO
COCYCLES 

From (3.5) we can find the extension of R by Lie G 
corresponding to the cocycle cf' We denote a generic ele
ment of Eel by (k,u,t,x) and take the following basis: 

E= (1,0,0,0), k= (0,1,0,0), 

h= (0,0,1,0), ,0= (0,0,0,1). 

Then the commutation relations are 

[p,k] = - h - fE, [k,h] = ,0, [h,p] = 0, 

[p,E] = 0, [k,E] = ± E, [h,E] = 0. (A1) 

To determine the corresponding group cocycle cf , we must 
first determine the extension (H,i,j) ofR by G related to the 
Lie algebra extension above, with H a connected and simply 
connected group. 

One has, from (3.4), 

(O,gl) (0,g2) = (Cf (gl,g2),e) (0,g,g2) . (A2) 

From this relation one can now find cf' 
The program goes as follows. First, we note that every 

element (X,1],a) can be written as 

(X,1],a) = eT/heapexk, 

where h, a, and k are the 3 X 3 real matrices introduced in 
Ref. 2. Because we also have from (3.4) 

(k,g) = (k,e) (O,g), 

2662 J. Math. Phys., Vol. 3D, No. 11, November 1989 

we can write any element in H in the form 

(exp kE) (exp 1]h) (exp ap) (exp Xk), 

where exp is the exponential map in H and we have identified 
the Lie algebra ofR with the group itself, so the exponential 
map in the R subgroup of H is the identity: exp kE = k. From 
(A2) and the composition law of the group it follows that cf 
verifies the following relation: 

(exp 1]h) (exp ap) (exp Xk) (exp 1]'h) (exp a'p) (exp X'k) 

= (exp cf«X,1],a),(X',1]',a'»E)(exp(cosh(X)1]' 

+ sinh(x)a' + 1])h)(exp(sinh(X)1]' 

+ cosh(x)a' + a)p)(exp(t + X')k). (A3) 

From this relation we can now determine cf with the 
help of the commutation relations (AI). We must commute 
exp Xk over exp 1]'h and exp a'p, 

This can easily be done as follows. First we use the well 
known identity 

00 1 
(expA)B exp( - A) = I - [A,B ]n' (A4) 

n=O n! 

where [A,B] n are defined recursively by [A,B]o=B, and 
[A,B ] n + 1 = [A, [A,B ] n]. With this identity one easily 
has, with the help of (AI), 

(exp Xk)h exp( - Xk) 

= cosh(X)h + sinh (X)p + (f !2)(xe ±xsinh X)E. 

Because h, ,0, and E commute among themselves one now has 

(exp xk)(exp 1]'h)(exp( - Xk» 

= (exp(f 12)1]' (xe ± x sinh X)E)(exp 1]' cosh(X)h) 

X (exp 1]' sinh(x)p). 

Analogously one gets 

(exp Xk) (exp a'p)(exp( - Xk» 

= (exp ± (f 12)a'(xe ± x + sinh X)E)«exp a' sinh(x)h: 

X (exp a' cosh(X)p). 

Using the last two relations in (A3), we get (4.10). 
Remarks: ( 1 ) One could also determine cf by the proce

dure of Bargmann, 7,11 i.e., searching for a cf as a polynomial 
in 1],1]',a,a', because these are changed linearly in the compo
sition law. Starting with a polynomial of degree 1, with coef
ficients depending on X and X', we can get, after some com
putations, (4.10). The problem is that in this way we have no 
guarantee that cf is not in B; (G,R). In the case studied by 
Bargmann, namely, the three-dimensional Galilei group 
(with a = 1), this is resolved by observing that if cEB 2 ( G,R) 
andgl andg2 commute, thenc(gl,g2) = C(g2,gl)' This prop
erty must be contradicted by some special choice of gland g2 
(see Ref. 8, Chap. X). 

In the case when a is nontrivial this trick does not work 
and there is no immediate generalization available, but there 
is an alternative method based on a generalization of Lemma 
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10.36 from Ref. 8. Namely, one can prove that if 
cEZ ~ (G,lRn

) then the corresponding element 
cEZ~ (Lie G,lRn

) is given by the following formula: 

Using this relation, one can prove that cf given by 
(4.10) is related to cf given by (4.9). 

(2) Of course, one can use the method developed here to 
recover the well known expression of a nontrivial cocycle in 
[f '+ (for a = 1) [formula (137) from Ref. 8, Chap. X], and 
also the cocycles used in Ref. 1. 
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Conserved quantities, bi-Hamiltonian formulation, and recursive structure ofthe relativistic 
Toda lattice (RT) are obtained in an algorithmic way without making use of the Lax 
representation. Furthermore, for the multisoliton solutions the gradients of the angle variables 
are described in terms of mastersymmetries. A new hierarchy of completely integrable systems 
is discovered, which turns out to correspond to the "negative" of the hierarchy ofRT. Thus it 
is shown that the full algebra of time-dependent symmetry group generators for each member 
of the R T hierarchy is isomorphic to the algebra of first order differential operators with 
Laurent polynomials as coefficients. The surprising phenomenon is revealed that the members 
of the R T hierarchy are connected to their negative counterparts by explicit Backlund 
transformation. 

I. INTRODUCTION so that the equations of motion read 

1] [aHlaqn ] 
o aH laen 

with 

bn = exp(en ) [1 + exp(qn_1 - qn)] 1/2 

X [1 + exp(qn - qn + I)] 1/2, 

exp(qn - qn+ 1) 
an = , 

(1 + exp(qn - qn + 1») 

where we assume the natural boundary conditions 

qn - qn + I -+ 0; en -+ O. 
Inl-oo Inl-oo 

( 1.3a) 

(1.3b) 

(1.4) 

In the field of completely integrable Hamiltonian sys
tems of finite dimension, outstanding results have recently 
been obtained by Ruijsenaars. Indeed, he first introduced 
and solved, together with Schneider, a relativistic version of 
the Calogero-Moser system l

-
3 and then proposed an analo

gous relativistic extension of the Toda system: in a remark
able paper4 (yet, to our knowledge, unpublished) he defined 
a Poincare-invariant Hamiltonian system which, in the non
relativistic limit, reduces to the Toda lattice; moreover, in 
the "free ends" case, he provided a Lax representation, 
proved the complete integrability, and solved the scattering 
problem, also establishing a close connection with soliton 
dynamics. New results on this relativistic Toda lattice, here
after referred to as RT, have later on been obtained by Brus
chi and one of the authors,5,6 who, starting from the Lax 
representation, were able to produce a hereditary recursion 
operator, thus providing an alternative proof of complete 
integrability. The role played by the Lax representation was 
also crucial in order to prove the complete integrability and 
to solve the Cauchy problem in the periodic case.? 

In this paper, we deal with the infinite lattice and inves
tigate its integrability structure from a Lie-algebraic point of 
view. This then leads to the action-angle variables of the 
multi soliton solutions and, in addition, to a new hierarchy of 
integrable systems consisting of the "inverse members" of 
the RT hierarchy. In contrast to the previous work5-? our 
approach does not make any use of the Lax representation, 
but we will rather rely on the concept of "mastersymme
tries. " 

Much simpler forms of the evolution equations, more 
convenient for our purposes, can be obtained by rewriting 
the dynamics in terms of the an and the bn as defined above 
in (1.3), Then the boundary conditions at infinity are 

We recall here the basic definitions for the RT system. 
In terms of the canonically conjugated variables {qn ,en} nEZ 

the Hamiltonian for the infinite RT is given by 

H(q,e) = I {exp(en ) [1 + exp(qn_1 - qn)] 1/2 
nEZ 

bn -+ 2; an -+ 1/2, 
Inl-oo Inl-oo 

the Hamiltonian reads 

H(b,a) = I (b n - 2), 
nEZ 

and the evolution equations assume the form 
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A [bT-ba-baT+b; b(T- -1)a(1-a)] 
0-

- a(1-a)(1- T+)b; 0 ' 

[
JHIJbn ] [1] 

VH(b,a) = JH IJa
n 

= 0 . (1.6b) 

Here 1 denotes the identity operator, the product ab of 
two sequences a = (an) and b = (b n ) is to be understood as 
the pointwise multiplication (ab) n: = anbn, and T + (resp. 
T -) is to denote the raising (resp. lowering) operators on 

A 

sequences: T ± In = In ± I' The implectic8 operator 0 arises 
from the canonical symplectic form using the transforma
tion ( 1.3). A further useful form of the Hamiltonian and the 
evolution equations can be obtained by setting 

[
1 +exp(qn_1 -qn) ]112 

d n: = b n (1 - an) = exp (9 n ) , 
1 + exp(qn - qn + I) 

(1.7a) 

Cn: = bnan = exp(9n )exp(qn - qn + I) 

[ 
1 +exp(qn_1 -qn) ]112 

X 1 + exp(qn - qn + I) , 
(1.7b) 

so that now we have 

H(d,c) = I (Cn + dn - 2), ( 1.8) 
NEZ 

and the evolution equations are 

[
dn] [ dn(cn_ 1 -Cn) ] 
Cn ,= cn(dn -dn+1 +Cn_ 1 -cn+ l ) 

= 0(0IVH(d,c) , ( 1.9a) 

with 

0(0)= [0; d(T- -1)c ], 
c(1- T+)d; c(T- - T+)c 

[
JHIJdn] [1] 

VH(d,c) = JH IJc
n 

= 1 . (1.9b) 

The operator 0(0) is obtained from e in (1.6) by the 
usual transformation laws and hence is again an implectic 
operator.8

-
to The boundary conditions at infinity now are 

dn -> 1; Cn 1. 
Inl-oo Inl-oo 

For the form (1.9) of the relativistic Toda lattice, a hier
archy of mastersymmetries will be constructed in Sec. IV. 

II. MASTERSYMMETRIES AND ANGLE VARIABLES 

We briefly explain the background which leads to the 
results of this paper. We consider a Hamiltonian flow, 

U, = K(u) = {H(u),u} = 0(u)VH, (2.1) 

where u is on a suitable manifold equipped with a Poisson 
bracket {.,J and H(u) is to denote the Hamiltonian func
tion. Then K(u) denotes the vectorfield defining this flow. 
There is a homomorphism between the Lie algebra of scalar 
fields (with the Poisson bracket as Lie product) and the 
vectorfield Lie algebra; it is given by the operator 0 (u) aris
ing from the Poisson bracket, and it maps the gradient of 
H(u) onto the generator of the flow. We call 0 an implectic 
operator. Looking for conserved quantities and generators 
of symmetries amounts to finding the commutants of either 
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H(u) (in the Lie algebra given by the Poisson bracket) or 
K (u) (in the vectorfield Lie algebra). There are many stan
dard methods for recursive generation of commutants, for 
example by inverse scattering theory, by application of here
ditary operators, or by the Hirota bilinear mechanism. Un
fortunately, it turns out that in some cases either these stan
dard mechanisms do not work or they are not suitable for 
algorithmic approaches. Therefore we choose to perform the 
construction of the commutant by way of mastersymme
tries, which is a simple and straightforward method having 
the additional advantage of being rather accessible for com
putational methods. Mastersymmetries do exist for almost 
all known completely integrable systems. They were first 
discovered in the case of the BO (Benjamin-Ono equation) 
and the KP (Kadomtsev-Petviashvili equation); they exist 
for the nonlinear quantum mechanical XYZ-model and the 
XYh-model and many others. Systematic studies can be 
found in Ref. 11 and Refs. 9, 10, and 12. 

Mastersymmetries are simple to explain: Let L be a Lie 
algebra. A mastersymmetry r for GEL is an element ofL such 
that 

[ [ r,G ],G] = O. (2.2) 

Thus 

GO): = [r,G] (2.3 ) 

obviously is an element of the commutant of G since 
[G(I),G] = O. Because of the Jacobi identity, 

(2.4 ) 

also gives a symmetry. Let G@ denote the commutant 

G @ = {GELI [G,G] = O} 

of G. In the case of an Abelian G @ one can continue this 
process of construction II to obtain a sequence 

(2.5) 

of Lie algebra elements commuting with G. Thus commuta
tion with r maps G @ into G @ and, under additional and 
reasonable assumptions, we can expect that G @ is generated 
out of G by successive application of the commutator with r. 
So our only task is to find a Lie algebra element r in L-G @ 

fulfilling (2.2). 
If one carries out this task for the Lie algebra of vector

fields one discovers that basically there are two possible si
tuations, depending on whether the mastersymmetries un
der consideration are Hamiltonian or not. 

If the mastersymmetries are Hamiltonian, then apply
ing the Lie algebra homomorphism going from the vector
fields onto the scalar fields, one finds conservation laws lin
ear in time (i.e., angle variables). This happens for equations 
like BO, KP, and all the other completely integrable systems 
in (2 + 1) dimensions. In these cases no recursion operators 
(in the usual sense) have been found, although recently re
cursion operators in an extended sense have been discov
ered. 13 The situation changes drastically when the master
symmetries are not Hamiltonian, which means that the Lie 
derivative of the implectic operator 0 into the direction of 
the mastersymmetries do not vanish. According to an obser
vation ofOevel l2

•
9 (see also Ref. 10), in most examples of 
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integrable hierarchies the Lie derivative of 0 into the direc
tion of the mastersymmetry gives rise to a second implectic 
operator e. Hence each nontrivial mastersymmetry yields a 
candidate for a bi-Hamiltonian formulation for the regarded 
system. This happens for equations like the Korteweg-de 
Vries, the modified Korteweg-de Vries, the sine-Gordon, 
the nonlinear Schr6dinger, and so on. Now, taking 

<I> = e0- 1, (2.6) 

one finds a recursion operator for the system. 
If the second operator e indeed turned out to a yield a 

second implectic operator, then the above <I> is hereditary 
automatically. So in any case a nontrivial mastersymmetry 
provides a heuristic tool for the recursive construction of the 
wanted hierarchy. 

But in addition, the angle variables, at least for the 
multi soliton manifolds, can be easily obtained by the master
symmetries even if those are not Hamiltonian. In the first 
case, where the mastersymmetries are Hamiltonian, this is 
obvious. In the other case this is far from being obvious and 
will be reported in detail elsewhere. 14 

Here wejust review the results. Let u, = K(u) be a dy
namical system admitting a hereditary recursion operator <I> 
and a mastersymmetry 7(1). With suitable assumptions, that 
are fulfilled for most of the known examples of integrable 
systems,9-12.15 we apply <I> to the first mastersymmetry 7(1) 
and obtain a sequence of mastersymmetries 

7(j) = <l>j - 17 (1), j = 1,2,3, ... , 

satisfying 

[7(jl,7(k)] = (k - j)7(k + j). 

As <I> is to be hereditary, the vector fields defined via 

K(j+ I): = <l>jK 

(2.7) 

(2.8) 

(2.9) 

are the symmetry generators of the system (or the members 
of the hierarchy, if one likes). Now the following invariant 
submanifold, 

{ 

N + I 

ul ;~I a;K(i) =0, (2.10) 

turns out to be the N-soliton manifold l6
•
17 being of dimen

sion 2N. The parametrization of this manifold is given by 
time, the N - 1 phases, and the N different asymptotic 
speeds (represented by the variables a;). A detailed study 
reveals that, although the 7(n) themselves are not Hamilto
nian, the set of vectorfields consisting of the following linear 
combinations, 

N 

Ar =f3r I a(r);7(i+r), r= 1, ... ,N, 
;=1 

(2.11 ) 

are Hamiltonian on the reduced manifold given by (2.10). 
Here the a (r); are the coefficients of the polynomials 

N . 1 N+ I . I a(r»).I=-- I a). I, (2.12) 
;=\ A.-A.r ;=\ 

the f3r are suitable integrating factors, and the A.r are the 
zeroes of the polynomial 

N+I 
P(A.) = I a;A;. 

i= 1 

Since the corresponding scalar fields are linear in time [con-
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sequence of (2.9)] we thus have found the angle variables 
for these multisoliton manifolds. 

Thus the program for finding the recursion operator 
and the angle variables for the multisoliton solutions is the 
following. 

Let K be a Hamiltonian vector field with respect to the 
implectic 0. 

Step 1: Find the first nontrivial mastersymmetry 7(1). 
Step 2: Take e equal to the Lie derivative of e into the 

direction of 7(1) in order to obtain the recursion operator 
<I> = e0- 1

• 

Step 3: Check whether e is implectic (this implies that 
<I> is hereditary). 

Step 4: If yes, then construct the angle variables using 
(2.11),where7(j) = <l>j-I,fl). 

The crucial step of course is Step 1. For this step a com
puter algebra algorithm has been implemented. Some of the 
principles of this computer implementation will be briefly 
described in the next section; a detailed report of the method 
will appear elsewhere. 15.18 In addition, computer programs 
for Steps 2-4 also have been developed in Paderborn. 19 It 
should be observed that for carrying out the procedure 
which has been described above, no advance knowledge of 
the special structure of the system or of its Lax representa
tion is necessary. 

III. COMPUTER ALGEBRA ASPECTS 

About the algorithmic aspects and details of the imple
mentation a detailed report will appear elsewhere. Here a 
few remarks must suffice (see also Refs. 20, 15, 18). A cru
cial role is played by a "highest-order projection" for vector 
fields. Recall that the vector fields under consideration are 
polynomial such that if one evaluates the vectorfield at the 
place n of the lattice also field variables at other places do 
enter because there is some interaction between neighboring 
points. Projecting a vectorfield G onto those terms where the 
interaction reaches farthest (highest distances with respect 
to lattice points) and then taking the highest polynomial 
degree of these projected terms constitutes the highest order 
projection. The result of this projection is denoted by hoe G) 
and we are able to define a suitable degree function yielding 
these highest order terms. Now an important role in the pro
gram is played by an approximate solution of the division 
problem in the Lie algebra of vector fields. By approximate 
we mean that for given vector fields G and R we are able to 
find a vectorfield X such that 

ho([ho(G),X]) = ho(R). (3.1 ) 

This routine is called CS ( G,R) ("commutator solu
tion") and is the heart of the whole matter. The reason why 
this is possible at all lies in the fact that restricting the atten
tion only to terms less that a fixed degree more or less sim~
lates the situation of a finite-dimensional Lie algebra. 

Having this procedure, it is rather simple to find symme
tries and mastersymmetries automatically. We start with a 
symmetry S for the vector field G, i.e., [S,G] = 0, where S 
and G are both assumed to be translation invariant, i.e., they 
are invariant w.r.t. the replacement n--n + N, where n is the 
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lattice variable and N some fixed shift. We assume that the 
mastersymmetry is of the form 

T = nS + Z, where Z is translation invariant. (3.2) 

Why such an ansatz for T leads to success in most exam
ples will be explained elsewhere. Since T is assumed to be a 
mastersymmetry, commutation with G must produce an
other symmetry, 

SYM(G,S): = [T,G]. (3.3 ) 

Based on the observation that the highest order term of T 

can be assumed to be given by the highest order term of nS, 
we know that the highest order term of [T,G] is given by the 
highest order term of [nS,G] and we can use the following 
algorithm of successive approximation to find a new symme
try SYM ( G,S). 

Procedure: SYM ( G,S) : 
Step 1: Put G(I): = [nS,G]. 
Step 2: Put R: = [G(I),G]. If R = 0 then return (G(I). 

Otherwise go to Step 3. 

Step 3: Determine X = CS(G,R), where CS ( ) is ap
plied by restricting the considerations only to terms of de
gree less than the degree of G (I). If there is no solution then 
return. ("There is no symmetry of this form.") Otherwise go 
to Step 4. 

Step 4: Put G(I): = G(I) + X and go to Step 2. 
Obviously, in Step 1 the quantity G(I) is computed cor

rectly in its highest order and each run computes G (I) cor
rectly up to one order less. Hence the algorithm has to stop 
either after a number of runs given by the degree of G (I) thus 
giving the correct G (I), or it stops before by telling us that for 
the given S there is no mastersymmetry of the form (3.2). 
Obviously this algorithm has to terminate since all descend
ing chains (with respect to degree) are finite. 

Of course, this algorithm is based on a symmetry S 
which has to be known already. But observe that one can 
always use S = G. In order to determine the mastersym
metry itself we need the following procedure. 

Procedure: GHO(G,R,E): The procedure GHO ("giv
en highest order") determines those X with 

ho(X) = ho(E) 

such that 

[X,G] =R. 

Step 1: Put X: = E. 

(3.4 ) 

(3.5 ) 

Step 2: If [X,G] = R then return (X). Otherwise go to 
Step 3. 

Step 3: Put X: = X + CS(G, [X,G] - R), whereCS ( ) 
is applied by restricting the considerations only to terms of 
degree less than the degree of X. If there is no solution then 
return ("There is no solution.") Otherwise go to Step 2. 

Of course, once we have implemented this algorithm 
there is no need for SYM anymore because 

SYM(G,S) = GHO(G,O,[nS,G]). (3.6) 

Now, the determination of the first nontrival mastersym
metry (if existent) is given by 

MAS(G,G) = GHO(G, SYM(G,G),nG). (3.7) 

This means that first we use SYM to determine one nontri-
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vial symmetry and then we determine, via GHO, the master
symmetry which commutes the G we started with into this 
symmetry. 

Of course, if this is successful then by further commuta
tion with T we can compute as many higher order symme
tries as we like, and these higher order symmetries then can 
be used to compute further mastersymmetries. Another, 
more tedious, way to compute symmetries would be succes
sive use of SYM, i.e., 

G(I) = SYM(G,G), 

G(2) = SYM(G,G(I), (3.8) 

G (n+ 1) = SYM(G,G (n). 

The program package is implemented in MAPLE,z1 a 
formula manipulation system developed by the University of 
Waterloo. The choice for a formula manipulation system 
was mainly based on our desire for rapid prototyping and on 
the fact that for these systems many sophisticated algor
ithms are available. 

In the next section we describe what the procedures 
yield in the case of the relativistic Toda lattice. The remark
able fact about this algorithm is that the only knowledge 
needed for the determination of the action-angle variables is 
the equation itself. 

IV. RESULTS: MASTERSYMMETRIES AND MUL TI
HAMILTONIAN STRUCTURE OF THE RUIJSENAAR5-
TODASYSTEM 

Throughout this section we will use the form of the R T 
system in the variables {u = (d n ,c n )} nEZ as given by (1.7). 
We shall proceed in a heuristic way, making use of the prin
ciple of mastersymmetries. 

The right-hand side of (1.9a) shall be denoted by K (I)u. 
A first (trivial) mastersymmetry for the R T system is found 
easily from the observation that it quite obviously is invar
iant with respect to the scaling transformation 
u(t) .... e£ u(e£ t) generated by the vector field tK(I)(u) + u. 
As the time-depending symmetries are in one-to-one corre
spondence with their time-independent pare· I I we only take 
into account this last part and denote it by T(O). One easily 
checks [T(O), K(l)] = K(l). The Lie derivative of the Hamilto
nian operator e(O) given in (1.9) into the direction of ,f0) 

vanishes, i.e., not only K(I) but also T(O) is Hamiltonian. In
deed, one finds 

T(O)(U) = u = e(O)v L n In (~). (4.1) 
nEZ cn 

This Hamiltonian generates a conserved quantity with linear 
time dependence and hence can be regarded as a first angle 
variable for the RT system. 

The above scaling field is a trivial mastersymmetry, in 
the sense that it does not generate new invariants. In order to 
obtain higher invariants we have to look for a first nontrivial 
mastersymmetry ,fl), say. Using the ansatz 

T~ I) = - nK ~ I) + translation invariant terms, 

we exploit the computer-algebra algorithms described in the 
previous section. The computer finds the vector field 
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'T~\) = - nK ~I> 

[ 
dn (dn + 2cn - 1 ) ] 

+ cn(2dn +dn+1 +cn +cn+1 +2cn_ l ) 

(4.2) 

having the property that ['T(I),K(I)] commutes with K(I). 
HencethevectorfieldK(2): = ['T(1),K(1)] isahighersymmetry 
of the RT system. We compute the Lie derivative of the 
Hamiltonian operator 0(0) and find 

~II ",,(\). = _ L ",,(0) = [""(\) 

~ • .",,~ M(\) 
0 21 

where the matrix elements are 

0g>] 
",,(\ > ' 
~22 

(4.3) 

0\:> =d(T-c-cT+)d; 

0g> =d( -d-c-cT+ + T-c+dT- + T-cT-)c; 

0~:> = c(d + c + T-c - cT+ - T+d - T+cT+)d; 

0g> = c( - T+c + cT- - cT+ + T-c - 2T+d 

+ 2dT- - T+cT+ + T-cT-)c. 

Again using computer algebra it is checked that 0(1) is 
an implectic operator and gives rise to a further Hamiltonian 
of the RT system, 

K(1) = 0(\)V I In(dn )· (4.4 ) 
nEZ 

As 0(1) is obtained from 0(0) via a Lie derivative it automati
cally is compatible with 0(0) in the sense that the operator 
0(1) + 0(0) is again implectic. Hence inverting 0(0), 

1 1 1 ] d T: - 1 c , 0(0) _ 1 _ [~ (T + 1_ 1 + 1 _IT -) ~; 
( ) - 1 1 1 

, -71-T- d; 

(4.5) 

we find a hereditary recursion operator, 

T+ -1 c 
<1>: = 0(1)(0(0»-1 = [ d; 

c(1 + T+); 

d+d(1-T-)c - ] 

c(1 + T+) +c(T+ -l)d 1 ~+c(T+ _ T-)c 1 ~' 
T+ -1 C T+ -1 c 

(4.6) 

for the RT system. Here the inverses of the difference opera
tors 

1- T-

T+-l 1- T-

are nonlocal operations. 

n-I 
- 1: un -+ I Uk 

k = - co 

(4.7) 

It turns out (as expected) that (4.6) isjusttherecursion 
operator found in Refs. 5,6 by completely different methods 
(namely starting from the Lax representation). 

Before further investigation of the hierarchy of vector 
fields generated by the recursion operator let us have a closer 
look at the two Hamiltonian operators 0(0) and 0(1). For both 
operators we found two Casimir functions, i.e., functions 
with gradients in the kernels of these operators. For 0(0) the 
second Hamiltonian/o: = ~ In(dn ) is such a Casimir func
tion and the function C: = ~ In (d ~ len) is a Casimir for 
both operators. In addition to this we found 

/(-1):= _ I d n + 1 +Cn 

kEZ dndn + I 

(4.8) 

as a further Casimir of 0(1). As such functions are conserva
tion laws for all Hamiltonian equations with respect to the 
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borresponding Hamiltonian operators, we thus have found 
two further conserved quantities C andj< -I) for the RT sys
tem. The implectic operators map gradients of conservation 
laws to generators of symmetries, hence we have a further 
symmetry, 

K(-I):=0(O)Vj<-I), K~_I)=[d::1 ~:=:l' (4.9) 
Cn Cn ----
dn dn + I 

for the R T system. An additional mastersymmetry !-- I) cor
responding to (4.9) is found as 

[1+~+~l (-1)_ K(-I) dn + 1 dn _ 1 
'Tn - n n + . 

Cn ---
dn + 1 

(4.10) 

Again, computing the Lie derivatives of the Hamilto
nian operators into the direction of (4.10), one finds 
L.,,-,,0(1) = 20(0) and 

",,(-I). _ L ",,(0) _ [ cT+ - T-c; 
o .- -,i-I)\!;! -

-c(T+-l); 
- (1- T-)C] 

o ' 
(4.11 ) 
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which turns out to be Hamiltonian and hence is compatible 
with 0(0). The RT system is thus endowed with three local 
Hamiltonian structures, defined by 0( - I), 0(0), and 0(1) . We 
recall that an analogous property holds for the classical 

I 

Toda lattice, as was shown by Kupershmidt.22 

One checks <1>0(- I) = e(O), i.e., the operator 
0(- 1)(0(0» -I yields the explicit inverse 

[ 

1( 1 1)1 1 "(cT+-T-c)- + + _ -+-; 
_I (_I) (0) _I d T - 1 1 - T d d 

<I> = 0 (0) = 
( 1 T+) 1 (1 1) 1. 

c - ~ T+-l+I-T- 7 

T + T 1 1 1 ] (- c + -c) - -
d T+ - 1 c 

c( T + - 1) J.- 1 J.-
d T+ - 1 c 

of the recursion operator (4.6). Of course, the inverses of the 
difference operators T + - 1 and 1 - T - are defined only up 
to "integration constants." Via these nonlocal operations we 
have "inverted" the above operators although their kernels 
are not empty, e.g., for <I> and <1>-1 one finds 
<l>K(-1) = 0 = <I>-IK(I). By formally putting 

[11(1- T-)](1) = (n), 

[1I(T+ -1)](1) = (n) - (1), 
(4.13) 

where (1) is the constant sequence ( ... ,1,1,1, ... ) and (n) is 
( ... , - 2, - 1,0,1,2, ... ), one verifies rl) = <l>rO) and 
r-I) = <I>-lrO). 

Let us now finish the derivation of the R T hierarchy and 
define the higher invariants in a systematic way. We start 
with the first symmetries K (I) (i.e., the R T system itself) and 
K (- I). Furthermore we consider the Hamiltonian operator 
0(0), the recursion operator <1>, its inverse <1>-1, and the scal
ing field r(O). Let these quantities be given as above. Let the 
first Hamiltonian function be given by jo = ~nEZ In(dn ). 

Define 

K (i): = <l>i-IK(I); i = 1,2,3, ... , 

K(i):=<I>i+IK(-I); i= -1,-2,-3, ... , 

j(i): = (1Ii) (Vj(i - I) ,rl); i = 1,2,3, ... , 

j(i): = (1/i) (Vj(i+ I),r-I); i = - 1, - 2, - 3, ... , 

r(i): = <l>irO); 0(i) = <l> i0(0); i6l.. ( 4.14 ) 

Furthermore we define the auxiliary vector field K(O): = 0. 
Using the hereditary property of <1>, i.e., the compatibili

ty structure of the implectic operators 0(0) and 0(1) (or 0(-1) 
and 0(0» and the scaling properties of K (I), K ( - I), 0(0), 0(1), 
andj(O), one obtains the following. 

Results: 

K (i+j) = 0(i)Vj(j); 

[K (i),K (j)] = 0; 

[r(i>,K (j)] = jK (i + j); 

[r{i) ,r(j)] = (j - i)r(i + j); 

L
r
(i)0(j) = U - i)0(i+j); 

(Vj(j>,r{i» = (j + i)j(i+j) 

(modulo constant functions). 

(4.15 ) 

Here all i,j6l., i.e., positive, negative, or mixed combinations 
of i andj are admitted. The way to prove these statements is 
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(4.12) 

I 
by induction, using the derivation property of the Lie deriva-
tives and the hereditary property of the recursion operator <I> 
(see Refs. 10 and 12). Obviously the above Lie algebra 
spanned by the vector fields K(i) and r(i) can also be realized 
in terms of the following operator algebra: 

r(i)~zi+ I(d Idz), 
(4.16) 

It is worthwhile to notice that in this example both the 
kernels of <I> and its inverse are given explicitly in terms of 
the field variables by the vector fields K(-I) and K(I), i.e., 
<l>K(-1) = K(O) = ° = <I>-IK(I). This situation is quite excep
tional in the context of completely integrable bi-Hamilto
nian systems. 

It is interesting to ask how the equations of the "nega
tive" hierarchy K(-I), K(-2), ... , can be interpreted in terms of 
the original "physical" variables (qn, en ). Using the trans
formation (1.7) one obtains the form of the dynamical sys
tem u t = K (- I) (u) in terms of these canonical variables. It 
turns out that this new equation is related to the original R T 
(1.2) by the simple transformation 

(4.17 ) 

Rewriting this transformation in terms of the (d,c)-coordi
nates, we obtain 

d ..... J.-l+cn-Ildn-I c ..... _I_I+cn_ I ldn_ t 

n Cn 1 +cnldn ' n dn 1 +cnldn 
(4.18 ) 

i.e., a "Backlund" transformation in the sense that it does 
not map each lattice point u(n) individually but involves 
interaction terms of shifted lattice points. The transforma
tion obviously is an involution, i.e., it is its own inverse, map
ping K ( - I ) ~K (I). Checking the transformations 
rO)~ - r(O), 0(0)~ - 0(0), and 0(1)~ - 0(-1), one con-

cludes that (4.18) maps 

K{i)~K( -i), r{i)~ _r{-i), 

0{i)~ - 0{ - i), j(i)~ _ j{ - i) ( 4.19) 

for all indices i6l.. Hence the negative part of the RT hierar
chy may be regarded as the transformed of the positive part. 
The above transformation is not an "auto-Backlund trans
formation" but a "Backlund" ("Miura") transformation, 
mapping the R T system and its "higher" symmetries to a 
different form. Nevertheless, and this is an unusual and re
markable phenomenon found for this example, the "Miura" 
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transformed equations commute with the original hierarcy 
and hence constitute a further (the negative) part of the 
whole picture. We remark that the commutation property 
[K ( - \) ,K (\)] = 0 is not surprising once its meaning in 
terms of the original variables has been elucidated; it is a 
simple consequence of the Poincare invariance of the R T 
system (see Refs. 1, 4) that the discrete transformation 
8+-+ - 8 yields a symmetry for the R T equation. 

We finally remark thatthe Hamiltonian operator 0( - 1) 

(linear in the fields) gives rise to the Lie-Poisson structure 
on the dual of some Lie algebra. Indeed, we have been able to 
identify this Lie algebra and establish an approach to the RT 
via so-called "R matrices" [see, e.g., Ref. 23 for the theoreti
cal background and Ref. 23(a) for the application to the 
classical Toda lattice]. The application of this approach to 
the RT shall be published elsewhere.24 Following the ideas in 
Ref. 23, the technique of translated Casimir functions thus 
leads to an extension of the RT system (in analogy to the 
classical Toda lattice). 
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The uniqueness of the energy momentum tensor in non-Abelian gauge field theories is 
established under minimal hypothesis. 

I. INTRODUCTION 

In the general theory of relativity, the interaction of the 
gravitational field (characterized by a metric tensor gij ) and 
a source-free gauge field (characterized by a curvature form 
Fij; see Ref. 1 for definitions and notations) is assumed to be 
governed by the Einstein-Yang-Mills field equations 

R ij - WjR = Baf3 (FaikFf3jk - J,gijFahkFfk)' (1) 

F aij 0 (2) lli= , 

where Baf3 are the coefficients of a bilinear symmetric form 
in LG, the Lie algebra of the Lie group G, which are Ad G 
invariant, i.e., Baf3 = Ad~ (a)AdZ (a)BYT} for all a in G. Be
sides, the covariant gauge derivative of Fij is defined as 

where Cpy are the structure constants of the Lie group and 
A f are the gauge potentials (see Ref. lor Ref. 2) related to 
the curvature form by 

Fij=Afi-Af.j+CpyAfAJ. (4) 

It is easy to see that with these definitions, the following 
identity holds: 

(5) 

Since the Einstein tensor given by the left-hand side of 
(1) is divergence-free, the same must be true for Tg, the 
right-hand side of ( 1 ). This is the case because of the identity 

T ij fJ FaihFf3 j 
0lli = af3 hili' (6) 

and Eq. (2). For any Tij in the right-hand side it must be 
true that T ijlli = 0, at least when (2) holds. In other words, it 
must be true that 

F aij -0 ------ Tij -0 lli - -{' lli - . (7) 

The uniqueness of the energy momentum tensor was 
established recently 1 under the restrictive hypothesis Tijlli 

= Caf3Hf3jrFairjli' Clearly (7) is weaker and it is mandatory 
because of ( 1 ) and (2). In this paper we will prove that To ij is 
essentially the only solution to the following problem: to find 
all gauge invariant symmetric tensors Tij = Tij(ghk;F~k) 
such that (7) holds. Our result generalizes Ref. 3. 

We want to point out that, due to the condition (7), one 
cannot generate energy momentum tensors by adding terms 
to the action. 

II. CONSEQUENCES OF THE IMPLICATION (7) 

We will work in a coordinate system for which (gij) 

= diag( - 1,1,1,1) and gij,h = 0 (which implies rjk = 0), 
Then (2) reads 

Ffklll = Ffkll2 + Ffkll3 + F~k114' 
It is easy to see that 

.. aTij f3 
TlJlli = --f3- F hk lli 

aF hk 

(8) 

ijhk f3 =Tf3Fhk1li , (9) 

because of the gauge invariance of T ii and its tensorial char
acter. Then Tiilli = 0 written out in full in the above men
tioned coordinate system is 

( T,'223 + T iJJ3 )Ff3 + (T,'224 + T ilI4 )Ff3 + (T i323 _ T iJJ2 )Ff3 + (T i334 + T iJJ4 )Ff3 + (T"I24 T ilI2 )Ff3 f3 f3 2311 2 f3 f3 24112 f3 f3 23113 f3 f3 34113 f3 - f3 24114 

+ ( T "I34 TiJJ3)Ff3 + (T i123 + T,'213)Ff3 + (T i312 + TI'213)Ff3 + (T i313 _ TI'2J2)Ff3 . f3 - fJ 34114 f3 f3 2311 1 f3 fJ 12113 f3 fJ 13113 

+ ( T il24 + T''214)Ff3 + (T"I12 + T1'214)FfJ + (T i414 T,'212)FfJ + (T i134 + T i314 )FfJ f3 f3 24111 fJ fJ 12114 fJ - fJ 14114 fJ fJ 34111 

+ (T"I13 + T i314 )FfJ + (T,'234 + T i324 )FfJ + (T"I23 + T i324 )FfJ - 0 fJ fJ 13114 fJ f3 34112 fJ f3 23114 - • 
(10) 
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Let us choose, for arbitrary but fixed ghk, F~k' the derivatives F~,h such that (8) holds. 
Taking account of(8) and (5), it is clear that theF~lh appearing in (10) are arbitrary and independent. Then we deduce 

T i313 _ Ti212 _ Ti414 _ Ti212 _ Ti223 + Til13 _ Ti224 + Til14 _ T i323 _ Til12 _ Ti334 + Ti114 
P P - P P - P P - P P - P P - P P 

_ Ti424 _ Ti112 _ Ti434 _ Til 13 _ T il23 + T i213 _ T i312 + Ti213 _ Til24 + Ti214 _ Ti412 + Ti214 
- P P - P P - P P - P P - P P - P P 

= T~34 + T~14 = T;13 + T~14 = T~34 + T~24 = T;23 + T~24 = O. (11) 

Taking i = 1,2,3,4 in (11), a tedious but straightforward computation proves that 

1212 = 1313 = 1414 = 2323 = 2424 = 3434 = 1234 = 1324 = 1423 = 2314 = 2413 = 3412 = 0, 
1323 = 1424 = - 2212 = - 2313 = - 2414 = 3312 = 4412 = 1112, 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

- 1223 = 1434 = 2213 = - 2312 = - 3313 = - 3414 = 4413 = 1113, 

- 1224 = - 1334 = 2214 = - 2412 = 3314 = - 3413 = - 4414 = 1114, 

- 1213 = 1312 = 2223 = - 2434 = 3323 = 3424 = - 4423 = 1123, 

- 1214 = 1412 = 2224 = 2334 = - 3324 = 3423 = 4424 = 1124, 

- 1314 = 1413 = - 2234 = 2324 = - 2423 = 3334 = 4434 = 1134, 

where, for the sake of simplicity, we have used the notation 

Ttk = ijhk 

for a fixed p. 

III. THE UNIQUENESS OF THE ENERGY MOMENTUM 
TENSOR 

Let us denote, for fixed a, p, and y, 

a 3Tij Tijhkrslm = _____ _ 

aF~k aFt;. aFfm 

We will prove that all these derivatives are zero. From (12)
(18) it is clear that it is enough to consider the cases 
ijhk = 1213, 1214, 1223, 1224, 1323, 1314. 

(i) The case ijhk = 1213: It is clear that T 1213rslm = 0 ex
cept perhaps for (r,s)#(1,2)#(I,m) and (r,s) #(3,4) 
# (I,m). Since 1 Ttkl = 1 T~kijl for i#jandh #kasa conse
quenceof (12)-( 18), then in this case all the pairs commute, 
and so it is enough to consider (r,s) # (1,3) # (I,m) # (r,s), 
which leave us with the following cases: 

(a) (r,s,/,m) = (1,4,2,3), 

(b) (r,s,/,m) = (1,4,2,4), 

(c) (r,s,/,m) = (2,3,2,4). 

In case (a) using (16), (15), and 1 TZhkl for i#j and 
h #k, we have 

IT121314231 = 1 T33231423 1 = IT331423231 = IT241223231 

= 1 T232324121 = O. (19) 

In case (b) we have 

IT121314241 = IT131214241 = IT132412141 =0. (20) 

Finally, in case (c) it is 

ITI21323241 = IT131223241 = IT132412231 =0, (21) 

where we have also used the equality of the cross derivatives. 
We conclude that 

T 1213rslm = 0 for all r,s,l,m. (22) 
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(ii) The case ijhk=I2J4: It is easy to see that T1214rslm 
= 0 except perhaps for (r,s) # (1,2) # (I,m) # (r,s), (r,s) 
#(1,4) # (I,m) # (r,s), (r,s) #(3,4) # (I,m) # (r,s),and 
(r,s) #(2,3) # (I,m) # (r,s),whichleavesusonlywiththe 
case T12141324, and this is zero because of (20). Then 

T 1213rslm = 0 for all r,s,/,m. (23) 

(iii) The case ijhk= 1223: As in case (ii) T1223rslm = 0 
except perhaps for (r,s) # (1,2), (2,3), (3,4), (1,4) 
# (I,m), and (r,s) # (I,m). This leaves us only with the case 
T12231324 which is zero by (21). Then 

T 1223rslm = 0 for all r,s,l,m. (24) 

(iv) The case ijhk= 1224: As before, it is enough to con
sider the cases (r,s) # (1,2), (2,4), (3,4), (1,3) # (I,m), 
and (r,s) # (I,m). Then there is only the case IT122414231 

= 1 T 142312241 = O. Then 

T 1224rslm = 0 for all r,s,l,m. (25) 

(v) The case ijhk=1323: It is enough to consider (r,s) 
# (1,3), (2,3), (2,4), (1,4) # (I,m), and (r,s) # (I,m). 
Then IT132312341 = IT123413231 =0. Thus 

T1323rslm = 0 for all r,s,/,m. (26) 

(vi) The case ijhk=I3J4: It is enough to consider (r,s) 
# (1,3), (1,4), (2,4), (2,3), # (I,m), and (r,s) # (I,m). 
But then 1 T 131412341 = 1 T 123413141 = 0, and so 

T 1314rslm = 0 for all r,s,l,m. 

From (22)-(27) we conclude that 

Tijhkrslm = 0 for all iJ,h,k,r,s,l,m, 

(27) 

and so T ij is a polynomial in Fij of degree not greater than 
two. 

Consequently 

Tij = A ijhkrs(g )FE FY + B ijhk(g )FE + C ij(g ) EY 1m hk rs E 1m hk 1m . 
(28) 
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The tensorial concomitants of glm were recently 
found4

•
5 for any valence of the tensor. Taking account of the 

fact that we are dealing with all coodinate systems, and not 
merely with those belonging to an oriented atlas, then it fol
lows that 

Tij = (da/3 FahkF~k + ,1.)ij 

+ 1a (Fai F/3jt + Faj F/3it ) 
2 a/3 t t' (29) 

where d a/3' A., and aa/3 are real numbers and aa/3 = a/3a' d a/3 

= d/3a' Then 

Tij = (da/3 FahkF~k + ,1.)gij + aa/3F ai
tF/3jt. (30) 

Assuming FaijllJ = 0, it follows that TijllJ = 0, and so, 
using the identity (5) to change indices, we have 

[2da/3gijF ahk + !aa/3gijF ahk ]F~k IIJ = O. (31) 

It is easy to see that if S tk is the term within brackets in 
(31) then, because of (12)-(18), we have 

Stkgij = O. (32) 

From (32) and the definition of stk it follows that 

(33) 

Differentiating (33) with respect to F~k we obtain 

(34) 
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Multiplying (34) by ghr . gks we deduce 

da/3 = - !aa{3' 

and so, replacing (33) in (30), it follows that 

Tij - a (Fai F/3jt _ luijFahkF/3 ) + ,1.,.ij 
- a/3 t 40 hk 5 • 

(35) 

(36) 

It follows easily from the gauge invariance of T ij that 
the aa/3 are Ad G invariant. 

In summary, we have proved the following. 
Theorem: If Tij = Tij(ghk: F~k) is a gauge invariant 

tensor whose divergence vanishes when the divergence of 
Faij is zero, and if Tij = Tji, then 

Tij = Toij + ,1.gij, 

where Tg is the usual energy momentum tensor. 

'R. J. Noriega and C. G. Schifini, Int. J. Theor. Phys. 24,1181 (1985). 
2S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Wi
ley-Interscience, New York, 1963), Vol. 1. 

3B. Kerrighan, J. Math. Phys. 23, 1979 (1982). 
4R. J. Noriega and C. G. Schifini, Gen. Relativ. Gravit. 18,983 (1986). 
50. Pn&lat, "Tensorial concomitants of a metric and a convector," Utilitas 
Math. (in press). 
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By postulating that the gauge vector field and the Higgs field both lie in an affine algebra 
rather than a Lie algebra, an affine field theory with an expanded soliton sector is obtained. An 
infinite family of exact, special solutions of the new equations corresponding to the original 
't Hooft-Polyakov solitonic solutions, is now found. A perturbation method for an arbitrary 
solution of the new equation is also proposed. 

I. INTRODUCTION 

Since the work of't Hooft and Polyakov, it has been 
known that non-Abelian field theories may have a soliton 
sector. In particular, magnetic monopoles 1,2 as well as 
dyons3 may arise in a spontaneously broken SU(2) gauge 
theory. Although there is no present evidence for these parti
cles one can speculate that they are simply too heavy to have 
been observed or that they are bound preons.4 If one is inter
ested in gravitationally coupled theories, however, and 
therefore in extremely high energies, perhaps one should 
think more about these objects. 

The theoretically known Yang-Mills solitons are node
less, but in principle there could be noding solutions like the 
excited states of an atom or nucleus. In fact, one should in 
general expect higher modes of excitation in any spatially 
extended structure.5 It may be, however, that the ensemble 
of higher modes is realized physically only if one passes from 
the finite Lie algebra to an infinite algebra. Moreover, such a 
formal extension is natural since there exists an infinite-di
mensional Lie algebra corresponding to every semisimple 
Lie algebra. This formal extension is also suggested by the 
idea of regarding the infinite algebra and the corresponding 
internal space as a surrogate for particle extension in space
time. 

If one does pass from Y ang-Mills theories to their affine 
extensions,6 one finds that the soliton sector is indeed corre
spondingly expanded. In this paper these new solitons will be 
studied. In taking this step our basic assumption is that the 
Higgs field, as well as the vector field, lies in a loop algebra 
rather than in a Lie or in a Kac-Moody algebra. In an earlier 
note 7 we discussed the Higgs splitting of a Kac-Moody field 
and found that the mass of the vector particle was linear in 
the loop index n. That result provided a simple interpreta
tion of n as a label of the heavy vectors, but our assumptions 
here will be slightly different: for simplicity we limit the dis
cussion to the loop rather than the full Kac-Moody algebra. 

II. FORMULATION 

We assume that the vector and Higgs field lie in the loop 
algebra 

(2.1) 

(2.2) 

where 

and the structure constants are real. Then 

( Tn a) + = - T a_ n . 

We also take both fields to be anti-Hermitian: 

WI' + = - WI" 

<P+ = - <P. 

Then 

(2.3 ) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

if we take the component fields to be real. We consider the 
action 

s = f d 4x L, (2.9) 

L = (-! GI'A (G ~)+ + ~ (DI'<P)(DI'<P)+) 

+AV«<P+<P», (2.10) 

where ( ) is the invariant scalar product for the algebra, G I'A 
is the usual field strength, and D I' ct> is a covariant derivative: 

GI'A = (VI" VA)' 

DI'<P = (VI"<P)' 

VI' = JI' + WI" 

Here WI' and <P are the loop vector and scalar fields. 

(2.11 ) 

(2.12 ) 

(2.13 ) 

The equations of motion are formally the same as for a 
Lie algebra since ( ) shares with the trace the properties 

(AB) = (BA), (2.14) 

«A,B)C) = «B,C)A). 

Also 

(Tn aTm b) = - Oabo(n + m). 

The equations of motion are 

(VA,G I'A) = (<P,(VI',<P», 

(VI',(VI"<P» =11. ::. 

In addition there is the Bianchi identity 
- A (VI',GI' ) = 0, 

(2.15 ) 

(2.16) 

(2.17) 

(2.18 ) 

(2.19) 

where G I'A is the dual field. The symmetric energy momen
tum tensor is 
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Tp.).= (Gf.'U(G,/')+ + (Df.'et>)(D..l.et>)+ +gp.).L) 

(2.20) 

and the energy density is 

Too =! (15' i(15' i)+ + flJ i(flJ i) + (D°et>)(D°et>) + 

+ (D iet>)(Diet>) +) +AV«et>et>+», (2.21) 

where 

GOi = 15' i, 

Gij = ~jk flJ \ 

(2.22) 

(2.23 ) 

(2.24) 

A field configuration for which Too = 0 everywhere will 
be called a vacuum configuration. Then by (2.21) a vacuum 
configuration implies 

G p.). = 0, (2.25) 

D f.'et> = 0, 

v=o. 
(2.26) 

(2.27) 

A region of space-time will be described as a Higgs vacu
um if (2.26) and (2.27) but not necessarily (2.25) are satis
fied. 8 The condition of finite energy for the entire soliton 
field will enforce the Higgs vacuum' asymptotically at large 
distances. 

One may ask for classical solitons that solve Eqs. 
(2.17)-(2.19) subject to the boundary conditions (2.26) 
and (2.27). Solutions are known where G f.'..l. and et> are both 
isotriplets lying in SOC 3). For definiteness we limit our work 
to the loop generalization of SO (3). Therefore we shall in
vestigate the generalization of the SO (3) solitons to the cor
responding loop algebra. 

III. THE HIGGS VACUUM AND THE 
ELECTROMAGNETIC FIELD8 

In the Higgs vacuum the SO(3) symmetry is broken 
down to SO (2) or equivalently to U (l ). Then the photon, 
remaining massless, is separated from the massive vectors 
which acquire mass aeli, where a = I~I in the Higgs vacuum 
and e is the gauge coupling constant. The Higgs particle ac
quires the mass a (U) 1/2fz. In the same region of space-time 
where the Higgs field points in a fixed direction ~, the elec
tromagnetic potential may be identified with ~ WI' / a and the 
electric charge operator with e~Tfz/a, where Ta (a = 1,2,3) 
are the SO(3) generators and ~T/a is the equivalent U(l) 
generator. In this region the electromagnetic field is well 
defined. However, the expression for it is not unique since 
the electromagnetic field is not well defined in the interior of 
the soliton, although all such expressions must agree in the 
Higgs vacuum. 

The electromagnetic field tensor proposed by 't Hooft 

Ff.'..l. = ~a( G;..l. - e - lE"bcDf.' ~b D..l. ~c), 

where 

For SOC 3) this tensor may be rewritten as 
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(3.1 ) 

(3.2) 

(3.3 ) 

where 

and 

Mp.). = af.' A..l. - a..l. AI" 

A..l. =~aW..l.a, 

Hp.). = e-lE"bc~a af.' ~b a..l. ~c. 

(3.4) 

(3.5) 

(3.6) 

The magnetic current is 
..l.-

kf.' =a Ff.'..l.' (3.7) 

where F p.). is the dual field. Then 

kf.' =! Ef.'vpu a v MPU 

- (l/2e)Ef.'vpu E"bc av ~a ap ~b au ~c. (3.8) 

The magnetic current may arise from the first term if A..l. is 
singular on Dirac strings or entirely from the second term if 
A..l. has no string singularities. These equivalent descriptions 
of magnetic charge are connected by a singular gauge trans
formation. If there are no string singularities, the magnetic 
charge is 

g = -l-f kod 3x (3.9) 
411' 

(3.10) 

or 

(3.11 ) 

The integral in the preceding section is a topological invar
iant that can assume only integral values. The total magnetic 
charge is therefore 

g = n/e, (3.12) 

where n is the number of nodes in the Higgs function.9 

Equation (3.1) for the electromagnetic field is gauge 
invariant and reduces by (2.26) to the required form in the 
Higgs vacuum. As already remarked, however, there is no 
unique definition of Ff.'..l. outside the Higgs vacuum. Another 
proposal that agrees with (3.1) in the Higgs vacuum is lO 

Ff.'..l. = ~.Gp.)./a (3.13a) 

or 

Ff.'..l. = Tr(et>Gf.'..l./a). (3.13b) 

We shall generalize (3.13b) for the loop algebra to 

Ff.'..l. = (et>+Gp.).)/a, (3.14) 

where 

(3.14a) 
r_ 00 

and ( ) is the invariant scalar product for the loop algebra. 
Here F p.). is the generalized electromagnetic field, but only 
n = 0 is the Maxwell field. The corresponding generalized 
magnetic current is 

k I' ='a..l. (et>+G p.).)/a (3.15a) 
or 
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(3.15b) 

by the Bianchi identities (2.19). 
The conservation of k" follows from its definition 

(3.15a) as the divergence of an antisymmetric tensor. 
The generalized electric and magnetic charges following 

from (3.14) are 

Q = lim ~JdO(<D+ I&'r) (3.16a) 
r ...... 00 a 

= ~ J d
3
x(D;<D+ 1&';), (3.16b) 

M = !~~ : J dO(<D+ g() r) (3.17a) 

= ~ Jd
3
X(D;<D+ g() J, (3.17b) 

where I&' and g() are given by (2.22) and (2.23), respective
ly. 

The actual electric and magnetic charges are, of course, 
given by the n = 0 components. 

IV. DYONS3.11 

We consider those special solutions obeying the condi
tions 

(Wo,<D) = 0, 

aow" = ao<D = O. 

Then 

DoWo = Do<D = O. 

(4.1 ) 

(4.2) 

(4.3 ) 

With these assumptions it is shown in the Appendix that 
Eqs. (2.17)-(2.19) are equivalent to the set 

1&'; = sin a D;<D, 

g(); = cos a D;<D, 

(4.4 ) 

( 4.5) 

in the limit ,1,-+0+. This reduction holds for any algebra 
including loop algebras. 

The mass of the dyon is 

m = J Tood 3x. (4.6) 

By (2.21) and (4.3), 

m = ~ J ( 1&'; 1&'; + + g(); g(); + + D;<DD;<D+)d 3x. 

(4.7) 

By (4.4) and (4.5), 

m = J (D;<DD;<D+)d 3x (4.8a) 

= J (I&'; 1&';+ +g(); g();+)d 3x. (4.8b) 

From (3.16), (3.17) and (4.4), (4.5), one finds 

(4.9) 
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M cos a = ~ J ( g(); g(); +)d 3X, (4.10) 

and 

m = a(Qsin a + M cos a). (4.11 ) 

Also 

aQ = sin a J (D;<D)(D;<D+)d 3x, (4.12) 

aM = cos a J (D;<D)(D;<D+)d 3x, (4.13 ) 

Q/M=tana. (4.14 ) 

By (4.11) and (4.14), 

m = a(Q2 + M2)1/2. (4.15 ) 

This relation between mass and generalized electric and 
magnetic charge holds for an exact solution of the affine field 
equations, and in relation to the finite algebra it is known as 
the Bogomolny bound.8

•
12 

The solution found by Prasad and Sommerfield, a spe
cial solution of the general loop equations, is the follow
ing8•

1I
: 

eW/ = [K(r) - 1 ]~aij rj/r, ( 4.16) 

e¢>a = (H(r)/r) ra, ( 4.17) 

Wa ° = (J(r)/r) ra, (4.18 ) 

where 

K(r) = Ar/sinh(Ar), ( 4.19) 

H(r)cos a = Arcoth(Ar) - 1, (4.20) 

J(r) = H(r)sin a, (4.21 ) 

and 

,1,= ae cos a. (4.22) 

Then 

lim ~(r) = ar. (4.23 ) 
r- 00 

The differential equations for the functions J, H, and K are 
scale invariant. The scale of the soliton is fixed by the value 
of a, the vacuum expectation value of the Higgs field. 

V. GENERALIZATION TO LOOP ALGEBRA 

As already noted, Eqs. (4.4) and (4.5) hold for the loop 
algebra. We again assume (4.1) and (4.2) as well. Then 

(5.1 ) 

By (4.4) 

Dk Wo = - sin a Dk<D, (5.2) 

so that we may take Wo proportional to the Higgs potential 
as shown in (4.21). Then it is only necessary to solve (4.5). 

We make the simplest generalization of the Yang-Wu 
ansatz13

: 

eWk an = gn (r)~kIXI, 

eWoan = I n (r)X
a

, 

e<Dan = hn (r)X
a. 

Then 
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f!J} k an = Ok a f!J} 1 n + XaXk f!J} 2 n, 

where 

ef!J}ln= -(r :r +2)gn(r), 

n 1 dgn " ef!J}2 =--d + """gn-pgp' 
r r p 

while 

(V k,<I>an) = Ok aIn + xaXkIIn, 

eIn = hn - r Lgn-p hp, 
p 

1 dh n " elln 
= ---+ """gn-p hp. 

r dr p 

Then (4.5) becomes 

(5.6) 

( 5.6a) 

(5.6b) 

(5.7) 

(5.7a) 

(5.7b) 

rgn'+2gn=cosa[r~gn_php-hn], (5.8) 

~gn' + Lgn-p gp = cosa[ ~hn' + Lgn-p hp]. 
r p r p 

(5.9) 

In order to describe a soliton solution, these equations must 
be satisfied subject to the boundary conditions that all the 
components of <I> and WI' be regular at r = ° and that they 
approach the Higgs vacuum at r = 00. We shall require 
finiteness and a flat tangent at the origin as well as 

lim DI" <I> = 0, (5.10) 
r_ 00 

( 5.11) 
r-oo 

Then 

lim (<1>+<1» = L am 2 = a2
• 

r_ 00 

(5.12 ) 

VI. SPECIAL SOLUTIONS 

Let us denote the nth soliton by the set (g,b), where 
gm =hm =Oiflml>nandwhere 

g= (g-n"'gO"'gn)' 

b = (h _ n ... ho' .. h n ). 

(6.1 ) 

(6.2) 

By (2.7) and (2.8), gm = g _ m and hm = h _ m' According 
to (5.8) and (5.9) the components (go,ho) satisfy 

rgo'= -2go-ho+r(goho+2tgmhm), (6.3) 

- , - 2 2 ( n) rho = - 2go - ho + r go + 2 .f gm . 

The remaining components satisfy 
m 

rgm' = - 2gm - hm + r Lgm-p hp, 
o 
m 

rhm' = - 2gm - hm + r Lgm-p gpo 
o 

Here 
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(6.4 ) 

(6.5) 

(6.6) 

(6.7) 

The complete set of components ( go" 'gn; ho' .. hn) is code
termined by the nonlinear equations (6.3 )-( 6.6). Notice 
that (hm, gm) cannot be renormalized independently. They 
can be rescaled together, however, if lengths are also re
scaled. 

The Prasad-Sommerfield solution is recognized in this 
class of solutions as 

hm =gm = 0, m#O, 

ho(r) = (l/r)[ 1 - 11.0 coth(Aor)], 

go(r) = (l/r)[ 1 - Aor/sinh(Aor)], 

where 

(6.8) 

(6.9) 

(6.10) 

11.0 = ae cos a. (6.11) 

This solution will be described as a "singlet." 
Since all components are coupled nonlinearly, there is 

no obvious method to investigate the general solution of 
these equations. One may, however, obtain special solutions 
in the following way. With r corresponding to the time, the 
general solution will trace out an orbit in (h,g) space. We 
may find special solutions in this space by confining the mo
tion to a subspace of the full space. In particular, we may ask 
for solutions lying in the following subspace: 

Then (6.3) and (6.4) become 

rgo' = - 2go - ho + (1 + 2K)rgo ho, 

rho' = - 2go - ho + (1 + 2K)rg0
2. 

Now rescale the length by 

x2 = (1 + 2K)r. 

Then 

dgo h- 2-x-= -2go- o+xgoho, 
dx 

dho 2 h- 2 2 
X - = - go - 0 + x go . 

dx 

( 6.12) 

(6.13 ) 

(6.14) 

(6.15 ) 

( 6.16) 

( 6.17) 

(6.18 ) 

These rescaled equations have the explicit solutions for 
( go,ho) given by (6.9) and (6.1 0) in which r is replaced by 
(1 + 2K) 1/2r. The rescaling, of course, depends on the other 
components (gl" ·gn)· 

Since they are not integrals of the complete set of equa
tions, (6.12) and (6.13) are nonlinear constraints on the set 
(6.5) and (6.6). These constraints may be satisfied for the 
special solutions 

gn = (g-=-n ° ... °goo ... °gn), 

gm =0, Iml = 1, ... ,n-1, 

hn = (h_n ° ... °goo",ohn ), 

hm = 0, Iml = 1, ... , n - 1. 

( 6.19) 

These special solutions will be termed "triplets." Then 
(6.12) and (6.13) imply 
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and 
n 

Lgn-p hp = 2kgo ho, 
o 
n 

L gn-p gp = 2kg02. 
o 

(6.20) 

(6.21) 

(6.22) 

(6.23 ) 

Equations (6.5) and (6.6) for the components ( gn' hn ) be
come 

rgo' = - 2go - ho + 2ilgo ho, 

rho' = - 2go - ho + 2ilg0
2. 

(6.24) 

(6.25) 

These are identical with (6.14) and (6.15) for (go,ho) with 

1 +2K=2, 

k= ±~~. 
(6.26) 

Therefore (go,ho) and (gn ,hn ) are given by the explicit solu
tions (6.9) and (6.10) in which r is replaced by ~r. 

By (6.20) and (6.26), however, gn and hn are normal
ized differently from go and ho: 

gn (x) = ~ ~go(x), (6.27) 

hn (x) = ~ ~ho(x). (6.28) 

We have now found an infinite set of exact solutions. Let us 
denote their h components by hm (n). The simplest of these is 
the singlet for which 

(6.29) 

This is the previously obtained solution given by (6.8)
(6.11 ). 

The new set contains the triplets for which 

(6.30) 

where 

x=~r. (6.31 ) 

Let us label the boundary values by am (n). Then, by (5.11), 

r_ 00 

and, by (6.30), one finds 

a (n) - 1 '2 a (0) o - 2"~ 0 , 

an (n) = a _ n (n) = ~ao(O). 

We are also interested in the sums 

r- 00 

-n 

For the triplets 
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(6.32) 

(6.33) 

(6.34) 

(6.35a) 

(6.35b) 

(a(n»2 = (ao(n»2 + 2(an (n»2. (6.36) 

Then by (6.33) and (6.34), 

(6.37) 

VII. ELECTRIC AND MAGNETIC CHARGES AND MASS 

The formally generalized electric charge may be calcu
lated by (3.17): 

r_ 00 

The scalar product is 

(ct>+?f r) = sin a(ct>+ Dr ct» 

= sin a( ct>+ Jr ct> + ct>+ ( Wr,ct»). 

The commutator term depends on 

(ct>+(Wr,ct») = - (Wr(ct>,ct») =0. 

Then 

(ct>+?f r) = sin a(ct>+ Jr ct» 

= ~ sin a L !!... (ct>n a)2. 
an dr 

The total charge of the nth solution is 

-n 

where 

(7.1 ) 

(7.2) 

(7.3 ) 

(7.4 ) 

a(n)Qm(n) = 2: sin a lim il!!...il[hm(n)(r)V (7.5) 
e r_ 00 dr 

Then for the singlet 

dO)Q(O) = 2: sin a lim il!!... il[ho(O)(r) f, 
e r_ 00 dr 

(7.6) 

where ho(O) (r) is given by (6.29) and 

Ao = dO)e cos a. (7.7) 

Taking the limit one finds the known result 

Q(O) = (4'77/e)tan a. (7.8) 

For the triplets, one has 

Q (n) = Qo (n) + 2Qn (n>, (7.9) 

where 

By (6.30), 

anQo(n) = 2: sin a(_I_)3 lim x 2 ~x2(ho(0)(X»2 
e ~ X-oo dx 

= (1!~)3dO)Q(0) (7.11) 

or 

(7.12) 
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by (6.30) and (6.37). The additional contributions to the 
total triplet charge are Qn (n) and Q _ n (n). For these we have 

a(n)Q ± n (n) = 2: sin a lim r.!!..- -r(hn (n) (r»)2 
e r-oo dr 

= (~r ~ ~: sin a 

X lim x 2 ~x2(ho(0)(X»)2 
X-oo dx 

= (.,filS) a(O)Q (0), 

Q±n (n) = (.,fi/S)Q(O). 

Then the total triplet charge is 

Q (n) = (.,fi/4 + 2.,fi/S)Q (0) =! .,fiQ(O) 

or 

Q (n) = (.,fi12)( (417'/e ) tan a). 

The corresponding magnetic charge is 

M(n) = (.,fi12)(41Tle), 

by (4.14). 

(7.13) 

(7.14 ) 

(7.15a) 

(7.15b) 

(7.16) 

The true electric and magnetic charges come from the 
Maxwell field only and for the singlet have the usual values: 

q(O) = Qo(O) = (41Tle) tan a, (7.17) 

g<0) = 41Tle. 

For the triplets these charges are reduced: 

q(n) = Qo(n) = (.,fi/4)q<0), 

g(n) = (.,fi/4 )g(O). 

(7.1S) 

(7.19) 

(7.20) 

The mass is determined by the total charge according to 
(4.14) and (4.15): 

m = aQlsin a. (7.21) 

Then 

m(O) = dO)Q(O)/sin a = a(O)qlsin a, 
(7.22) 

men) = a(n)Q (n) Isin a. 

By (7.15a), 

men) = (.,fi12)a(O)Q(0)/sin a, 
(7.23 ) 

men) = (.,fi12)m(0). 

The triplet dyons have less charge and also less mass than the 
singlet. All triplets have the same charges and mass. 

VIII. GENERAL SOLUTIONS 

The special solutions just discussed are not only exact 
but are also the simplest. They also span an infinite-dimen
sional function space, but a general solution of the soliton 
equations (5.S) and (5.9) does not lie in this space since the 
soliton equations are nonlinear. 

We have also studied a slightly different set of equations 
obtained by dropping the terms in (6.3) and (6.4) coupling 
(ho,go) to the higher modes (hm ,gm ), namely, l:.~gm 2 and 
1:. ~ g m h m' In this truncation the remaining equations are to 
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be left unchanged. We propose the so-modified set of equa
tions as the basis of a general perturbation method for inves
tigating arbitrary solutions of the exact equations, provided 
that the higher amplitudes (h m ,gm ) are small compared to 
the zero set (ho,go)' The modified equations themselves may 
be solved exactly by the following procedure. 

Let the general solution be 

g= (g-ng-n+l"'gO"'gn-lgn)' 

h = (h _ n h _ n + 1 ••• ho' .. h n _ 1 h n ). 
(S.1 ) 

where (go,ho) is the exact Prasad-Sommerfield solution 
since (go,ho) is now decoupled from the other modes. The 
remaining components may be shown to satisfy 

gm" +Pgm' + Qggm =Sm 
(g) 

(S.2g) , 

hm" + Phm' + Qhhm = Sm 
(h) (S.2h) , 

where 

P= (2Ir)F, (S.3 ) 

Qg = [F 2 - 3G 2 - l]lr, (S.4 ) 
m-l 

Sm (g) = G L gm-pgp' (S.5) 
p=l 

and 

Qh = 2[F - G 2 
- l]1r, (S.6) 

Sm (h) cos a 

[( 
d )m - 1 m - 1 ] 

= r- + 2F L gm-pgp + 2G L gm_php . 
dr p= 1 p= 1 

(S.7) 

These expressions all depend on only the two functions F and 
H, which are linear functionals of ho and go: 

F = 2 - r cos a ho, (S.S) 

( S.9) 

From (S.2h) and (S.2g) one sees that (h m ,gm) satisfy linear 
equations where the coefficients depend on the pair (ho,go), 
which in turn satisfy the nonlinear equations (6.14) and 
(6.15) with K = O. Since these coefficients depend only on 
(ho,go)' they are the same for all m. The different compo
nents are distinguished by only the source terms 
(Sm (h),Sm (g», which do not depend on (hm,gm) but do de
pend on all the lower components (hp,gp)' where 
1 <.p<.m - 1. As a consequence of this structure these cou
pled equations may be solved by first solving the nonlinear 
equations for (ho,go) to obtain (6.9) and (6.10), and then 
proceeding along the sequence (h 1 ,g 1 ) " • (h m ,g m ) 

... (hn,gn) by solving at each step equations that are only 
linear in the new variables (hm,gm)' 

Since there is no source for the (h1,gl) equation, the 
required (h 1 ,g 1) functions satisfy homogeneous equations 
subject to the boundary conditions at the origin and infinity. 
To proceed to higher states we shall introduce the Green's 
function, which also satisfies the proper boundary condi
tions. The general solution of these equations is the sum of 
the solutions of the homogeneous equation and a special so
lution determined by the source: 
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gm(r) =gm(r) + Loo W(r)Gg(r,r')Sm(g)(r')dr', 

(8.lOg) 

h m (r) = hm (r) + Loo W(r)Gh (r,r')Sm (h)(r')dr'. 

( 8.lOh) 

Since the differential equations are not Sturm-Liouville, 
it is necessary to introduce a weight function W( r) indepen
dent ofm: 

W(r) = (rsinh r)2, (8.11) 

The Green's functions are also independent of m since they 
depend on only (hl,gl) as follows: 

G 
' _ {-gl< (r')gl> (r), r>r', 

g (r,r) - , , 
-gh(r)gl«r), r<r; 

, {~hl < (r')hh (r), r> r', 
Gh(r,r)= h ' h ' ! her) I«r), r<r; 

(8.12g) 

(8.12h) 

where a sUbscript < refers to solutions of homogeneous 
equations satisfying boundary conditions at the origin and a 
subscript > refers to an independent solution satisfying 
boundary conditions at infinity. 

IX. THE LOWEST STATES OF THE MODIFIED 
EQUATIONS 

The first excited state is characterized by (h,g), where 
h = (ho,h l ) and g = (go,gl)' The components (ho,go) have 
already been given in (6.9) and (6.10). The new compo
nents satisfy the homogeneous linear equations 

g/' + PgI' + Qggi = 0, 

hi" + Ph; + Qh h I = 0, 

with solutions of the form 

gl (r) = exp [ - ~ r P(S)dS] Ug (r), 

hi (r) = exp [ - ~ Jr P(S)dS] Uh (r), 

where 

U"+(Q _IP'-lP")U =0 g g 2 4 g , 

Uh " + (Qh - ~P' - ~P " ) Uh = O. 

By (8.3), (8.4), and (8.6), one finds 

(9.1g) 

(9.1h) 

(9.2g) 

(9.2h) 

(9.3g) 

(9.3h) 

P = (2/r) (1 + "lor coth "lor), (9.4) 

Qg-!P'-lP 2 = -2("loIsinh"lor)2, (9.5) 

Qh - ~ P' - !p 2 = - "lo2 - 2 ("loIsinh "lor)2. (9.6) 

There are two independent solutions of both the hand g 
equations. These may be chosen to be 

and 
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(9.7) 

(9.8) 

hl< =_1_[ -coth"lor+ . "l~r ], 
..tor smh "lor 

(9.9) 

1 1 
hi> =- . 

..tor sinh2 ..tor 
(9.10) 

Here g I < and hi < satisfy the boundary conditions of regu
larity at the origin; these functions also vanish properly at 
infinity. On the other hand, gl > and hi> vanish at infinity 
but blow up at the origin. The solutions g I < and hi < satisfy 
not only the second-order equations (9.1) but also the first
order equations (6.5) and (6.6), as required. The functions 
gl < and hi < therefore describe the approximate solitonic 
solution we seek. 

Since both the first- and second-order equations are lin
ear and homogeneous in gland hi' these equations do not fix 
the normalization of these functions. However, since the 
first-order equations (6.5) and (6.6) relate the normaliza
tion of gl and hi' only one normalization condition needs to 
be supplied. We take this to be the boundary condition at 
infinity for h I < • At the two limits we have 

(9.11) 

where A I normalizes g I < and h I < and 

lim gl< (..tor) =Ale- Aor
, 

r_ 00 

(9.12) 

r- 00 

But we require, by (5.11), 

lim rlhn (r) I = ean (9.13) 
r_ 00 

or 

(9.14) 

The approximate soliton (ho,go;hl,gl) is then entirely 
determined by the parameters appearing in the action and 
the constants {am}, the vacuum expectation values of the 
extended Higgs field. 

The (h2,g2) solutions of the modified equations are 

h i 1[ 12 Y 2=--- (A 2 +/I,1 )-.--
cos a y smh2 y 

2 y2 cothy ] - ..t I • 2 - A2 coth Y , 
smh y 

(9.15h) 

_ (A + 1 2) coth y A I g2- 2 /1,1 -.--- 2--.--
smhy ysmhy 

..t12[ y ycoth2 y] 
- 2 sinh3 y + sinhy , 

(9.15g) 

where y = ..tor and A2 is the constant that multiplies the solu
tion of the homogeneous equation. The value of A2 is fixed by 
the limit of h2 at large distances. By (9.13), A2 = ..toA2' with 
"l2 = a2e cos a. 

There is no reason for this series of solutions to termi-
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nate. The recursive procedure for generating new solutions is 
described in Sec. VIII. The explicit form of the Green's func
tion appearing there is obtained by substituting the appropri
ate hand g solutions from (9.7)-(9.10) into (8.12). The 
general solution is the sum of solutions of the homogeneous 
equation and the special solution depending on the source 
and the Green's function. 

At each stage of this recursive procedure one must de
termine the constant associated with the solution to the ho
mogeneous equation. In the next step we encounter the con
stant A3 = AoA3 with ,,1,3 = a3 e cos a. 

Although we do not have a general formula for the solu
tions at any level n, only the contribution from the homoge
neous solution is important in the calculation of (9.13 ). 

For n = 3, we have 

h3 = _1_[~[(A3 + :U2Al)~ -A3 coth Y] 
cos a y smh y 

_ (~ :u A )y cothy , + 1 2 . h2 
/\'0 sm y 

,,1,13 [y2 coth
2 

Y 1 y2 ]] 
+ To sinh2 y - 3 sinh2 y , 

(9.l6h) 

cothy 1 
g3 = (A3 + :U2A1 )-. -- - A3-.--

smhy ysmhy 

_ (,,1,01 + ~ AI3)[~ + _y_] 
2 ,,1,0 sinh3 y sinh y 

A1
3 (y cothy 1 y2 coth Y) +- +- . 

,,1,0 sinh3 y 6 sinhy 
(9.16g) 

For n = 1 there is a test of this perturbative procedure since 
we have both the exact solution and the approximate solu
tion as determined from the modified equations. For small r 
the approximate solution (9.9) becomes 

(9.17) 

This expression is of the same form as the exact solution 
(6.30). At large distances, on the other hand, the exact and 
approximate solutions do not have the same form; but at 
large distances one has a linear approximation to the unmod
ified equations. 

In general, if the higher n components are small com
pared to (ho,go), one would expect the preceding procedure 
based on the modified equations to be useful. 

X.REMARKS 

In order to investigate the dependence of the soliton sec
tor on the affine index, we have studied a very special model 
that can be generalized in different ways. In particular, if the 
total field contained an additional component tranforming 
according to some irreducible and higher-dimensional rep
resentation of SU (2), this additional component carrying 
electric charge would interact with the magnetic charge so as 
to convert internal degrees of freedom into spin degrees of 
freedom with the result that the total angular momentum 
would no longer vanish; the total angular momentum would 
then be either integral or half integral, depending on the 
transformation properties of the additional field. 14.15 One 
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would also expect that this additional structure might lift the 
infinite mass degeneracy of the triplet solitons. Then the 
members of the infinite family of dyons would differ not only 
in mass but also in angular momentum and statistics,16 and 
in a way that can be calculated once the model is made defi
nite. 

The refinements just described have not yet been investi
gated. We have shown elsewhere, however, how the theory 
may be made globally17 and also locally18 supersymmetric. 

The preceding comments refer to the soliton sector of 
the theory, which one may expect to be excited only at very 
high energies. At currently accessible energies, on the other 
hand, the vacuum or "meson" sector provides the appropri
ate formalism. Here the particle states have spin 1 and O. In 
this sector, where one has the standard procedures, we have 
previously studied the Higgs splitting and found a linear 
mass spectrum for the vectors if the Higgs has a component 
lying in the Lo direction of the associated Virasoro algebra. 
In the present paper our model is different and our object has 
been to concentrate on the affine solitons rather than to pro
vide a unified consistent model for both sectors. One may, 
however, plausibly assume that the soliton and vacuum sec
tors exhibit different representations of the Kac-Moody al
gebra and, in particular, that the central operator k and the 
Virasoro operator Lo vanish for the soliton sector. A more 
realistic model would also address this question. 

APPENDIX: DERIVATION OF EQS. (4.4) AND (4.5) 

Equations (4.4) and (4.5) may be obtained from the 
field equations in the following way. Ifwe distinguish space 
from time coordinates, the set (2.17 )-( 2.19) becomes 

(V k,G Ok ) = 0, (At) 

(Vk,G Ok ) = 0, 

(Vk,(V\<I») = 0, 

(VA,G kA
) =0, 

(VA,G kA
) = (<1>+, (V\<I»). 

Let us try 

GkO = a(Vk,<I», 

GkO = b(Vk,<I»· 

(A2) 

(A3) 

(A4) 

(AS) 

(A6) 

(A7) 

By (A6) and (A7), Eqs. (Al)-(A3) become equivalent. 
Then it is enough to check (A2). But (A2) and (A4) to
gether comprise the Bianchi identity. Since both may be 
checked in the same way, we write out (A4) only. 

One equation of the set (A4) is 

(Vo,G 10) + (V2G 12) + (V3G 13) = 0 

or 

(VO,G01 ) + (V2,G03 ) + (V3,G20 ) = o. 
By (A6) and (A7), 

- b (Vo,(V 1,<1») - a(V 2'(V 3,<1») + a(V 3'(V 2,<1») = o. 
By the Jacobi identity, 

- b (VO,(V1,<I») + a(<I>,(V2,v3») = O. 

By the Jacobi identity and (4.3), 
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b(<I>,(Vo,v)) + a(<I>,(V2,V3 ») = O. 

By (2.11), 

b(<I>,Go) + a(<I>,G23 ) = o. (AS) 

Finally by (A6) and (A7) one sees that (AS) is satisfied 
identically, as it should. 

By a similar reduction of (A5) one finds 

(A9) 

The preceding argument holds any for any algebra including 
the loop algebra. 
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A string can have a simple potential interaction only when it has a constant radius. The 
Hamiltonian for such a string is characterized by a cyclic radial momentumpr' Physical 
properties of this interacting string (or "ring") are illustrated by exact solutions of quantum 
ring equations (with a "flavor potential") in the four-dimensional space-time and in a 
particular reference frame. The energy eigenstates of the ring are ultrastable because flavor 
transitions between different states are forbidden. Furthermore, the ring can be permanently 
confined by a potential a: r- 1 In(Ar), and the size of the ring can be detected by scattering 
processes. In the absence of the electroweak interaction, a simple composite quark model based 
on a particle-ring interaction is discussed. It is found that the relation 
mJmc ;:::;mb/m, zmb./m/. holds independently of the parameters in the potential. Differences 
and similarities between quantum rings and Nambu strings are discussed. 

I. INTRODUCTION 

The idea of strings has a great influence on contempo
rary theoretical physics. 1 To explore its possible applications 
in particle physics, one should have at least a quantum-me
chanical equation for a string moving in a potential field. We 
observed that only when the string is closed and has a constant 
radius, can one have a simple string equation with a potential 
interaction. Such a closed string may be termed a "ring." We 
first consider the classical motion of a string in a central 
force field based on a Hamiltonian with the cyclic radial 
momentumpr (which implies constant radii). Classically, 
such a Hamiltonian is trivial, but it is important for passing 
to the quantum theory. Based on a classical analog, we ob
tain quantum equations for bosonic rings and fermionic 
rings with a mass m >0 and a potential interaction. 

To illustrate physical properties of an interacting ring in 
the four-dimensional space-time, we consider a simple mod
el of a massless and spin-O ring moving in a flavor potential 
Co(r) produced by a particle in a particular frame. The ring 
is described by the quantum equation (c = fz = 1) 

(1) 

This closed quantum string has a constant radius r, so that 
0' = r¢, 0.;;;;0'.;;;;21Tr, and it differs from the Nambu string. 

A composite quark model based on the interacting ring 
has some interesting properties (in a strong interaction ap
proximation) . 

(a) Its energy eigenstates are "ultrastable." 
(b) Its extended structure in space cannot be detected 

by quark-lepton scatterings because leptons do not carry 
flavor charges. 

(c) In the strong interaction approximation, the ultra
stability of the ring states enables us to interpret, for exam
ple, the conservation of the quantum numbers n = 0 and 
n = 1 of the d-ring system as the conservation of the strange
ness and the bottomness, respectively. 

(d) The quantum ring can be permanently confined by 

the basic quark with a new flavor potential 
Co(r) = fr- 1 In(Ar), which leads to a mass spectrum con
sistent with known quark masses. 

Although a free ring described by (1) withf = 0 satis
fies an equation similar to that of the Nambu string, 

[a
2 a2] a? - ar? XJl(O',r) = 0, (2) 

the physics derived from the quantum equation ( 1) is quite 
different from that derived from (2). We note that both (1) 

and (2) areformally analogous to the massless Klein-Gor
don equation with cyclic radial momentum Pr and cyclic 
angular momentumpe: 

[( a )2 1 a2 
] i - - fCo(r) + ~ . 2 -2 <I>(O',t) = o. at sm (J a¢ (3) 

This analogy suggests that one can consider (1) as a quan
tum-mechanical equation ofa ring and <I> (O',t) as a probabil
ity amplitude. This viewpoint leads to a conceptual depar
ture from the original Nambu string equation (2), which is 
regarded as a classical equation of a freely moving relativistic 
string whose coordinates in space-time are described by 
X Jl (O',t). The interactions of general strings described by the 
coordinates X Jl(O',t) are not simple. 2 On the other hand, the 
scalar function <I> (O',t) in (1) is interpreted as the wave func
tion of a spin-O bosonic ring. According to this new view
point, we can also have a vector function <l>Jl(O',t) and a 
spinor function 'I' (O',t) for other types of rings. The interpre
tation of <I> (O',t) is based on a well-established method for 
passing from the classical theory to the quantum theory, 
which is discussed in Secs. II and III. 

II. CLOSED STRING AND A HAMILTONIAN WITH 
CYCLIC Pr AND Po 

The analogy of Eqs. (3) and (2) [or (1) ] suggests that 
a closed string with a constant radius (i.e., a ring) is de
scribed by a Hamiltonian with cyclic radial momentum Pr 
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and cyclic angular momentum Po. This property can be seen 
more clearly in classical mechanics and can be generalized to 
quantum mechanics. Let us consider the relativistic Lagran
gian Lr(r,e,l/J,~) with cyclic rand e in the action 
Sr = S Lr dt: 

Sr = - f m dsl. . . = - f m( 1 - ':;'~1 sin1 e)l/l dt, 
r,8cychc 

(4) 

for a free ring. If this ring moves in a Coulomb-like potential 
field V(r), the ring Lagrangian is assumed to have the usual 
form: 

We have the Lagrange equations 

.!!.- aLr _ aLr = 0, i = 1,2,3, 
dt ail; aq; 

(6) 

where q I = r, q1 = e, and q3 = l/J. Since rand e are cyclic, the 
radius r and the angle e are constants determined by 

aLr 
--=0, 

ar 

aLr 
--=0, 
ae 

(7) 

respectively. In order to have the corresponding quantum 
mechanical equation for such a ring, we follow Routh's pro
cedure for treating cyclic variables3 and define a new Hamil
tonian function H r : 

Hr (r,e,l/J,p",) = P",~ - Lr 

= (m 1 + p~/(':;' sin1 e»I/l + V(r), 

aLr p", =-. . (8) 
al/J 

We have seen that the momentapr andpo are cyclic in Hr. 
The usual Hamiltonian equations for l/J and P", can be ob
tained. We also have the following equations (in which Hr 
plays the role of the Lagranginan3

) for the ring's motion: 

aHr d aHr aHr d aHr 
-=--=0, -=--. =0. (9) 

ar dt ar ae dt ae 

They determine the constant values r = a r and e = a o, re
spectively, and are equivalent to equations in (7). 

For an arbitrary central potential V(r) in Hr given by 
(8), the equation aHJa() = 0 in (9) leads to a general re
sults: 

e= 1T/2 = a o. (10) 

Thus the new Hamiltonian Hr = Hr (ar,ao,l/J,p",) involves 
only l/J and P", as the dynamical variables. Classically, this 
Hamiltonian Hr can describe a particle with a mass m mov
ing in a circular orbit. Since a rotating ring (~=I= 0, 
r = const) can be pictured as a collection of N particles mov
ing in the same circular orbit, we can also interpret Hr as the 
Hamiltonian for a rotating ring with a total rest mass m. In 
this paper, we consider Hr in (8), in which Pr and Po are 
cyclic, as a classical ring Hamiltonian. It is the basis for our 
discussion of quatnum rings and a composite quark model. 
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III. QUANTUM EQUATIONS FOR INTERACTING 
BOSONIC AND FERMIONIC STRINGS 

Based on classical analogy, it is natural to postulate that 
the wave function <I> (l/J,t) for a bosonic string with a mass m 
and an arbitrary value for P", satisfies the quantum equation 

(i :t - V Y<I>(l/J,t) = (,:;. Si~2 ()p~ + m2
)<I>(l/J,t), 

.a 
p",= -/-. 

al/J 
(11 ) 

Similarly, for an interacting fermionic ring we postulate the 
quantum equation 

[ i ~ - V(r)]'l' = [ .1 ap", + (3m]'l', 
at rsm e 

a2 = (31 = 1, a(3 + (3a = 0, (12) 

where a and (3 are 2 X 2 matrices. From the quantum-me
chanical viewpoint, it appears difficult to distinguish among 
a mass point, a section of a ring (an open string), and a ring, 
if they have the same mass m and move with ~ =1= 0, r = const, 
and e = 1T/2 in a potential V(r). The reason is that they are 
all described by the same quantum equation. 

In the nonrelativistic case, i.e., p",/r~m, the quantum 
ring equation (11) can be approximated by 

[i :t - V(r) ]<1> = ( m + 2~':;' p~ )<1>. (13) 

Since <I>(l/J,t) has only one component, Eq. (11) describes a 
scalar string (which may be open or closed) with spin O. A 
vector string is postulated to be described by <l>1'(l/J,t), which 
satisfies 

[i~- V(r)]2<1>1'(l/J,t) = [,:;. .1 1 p~ +m1]<I>I'(l/J,t). 
at sm e 

(14) 

The fermionic string described by (12) has only two 
components. It resembles the two-component neutrino rath
er than the four-component electron. In the special case 
m = 0 in (12), we have a = ± 1. 

In this paper, we are interested in the physical properties 
of the quantum ring moving within a central potential field 
and in its application to the composite quark model. Thus we 
investigate the quantum equation (11) with m = 0 and a 
central potential V(r) in a particular reference frame. We 
note that the four-dimensional symmetry of ( 11 ) and that of 
the Nambu equation (2) are nontrivial. Equation (11) in
volves cyclic Pr and Po, which are frame dependent. The 
Nambu equation (2) is related to the gauge conditions, 
which are also frame dependent. One may look at these prop
erties from the viewpoint of a four-dimensional framework 
with a common scalar evolution variable.4 At any rate, for 
our discussion, we choose a particular reference frame to 
solve the stationary states of the quantum equation (11). 

IV. MASS SPECTRA OF COMPOSITE QUARKS 

Let us consider a massless ring with I z = +! and spin 0 
moving in a flavor potential produced by the basic d quark 
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with /z = -! and spin !. The ring carries only a flavor 
chargejand does not have any other charge. Suppose the d 
quark located at r = 0 is the source of the flavor potential, 

C!, = (Co(r),O,O,O). 

At this stage it becomes important to note that the only clue 
we have for the flavor potential Co(r) is that is must lead to 
the quark mass spectrum consistent with experiments. Let 
us consider the following two forms of potential: 

{ 
- jr- I log(11 Ar) = VI' 

Co(r) = _ jr-Ilog(e + liAr) = V2, log e = 1. (15) 

The potential VI is simple for solving the quantum ring equa
tion. Nevertheless, the potential V2 is perhaps more realistic 
because it approaches - j Ir as r>A -I. For small r~A -I, 
we have VI = V2• Assuming that bound states can only be 
isospin singlet, we can identify them with sand b quarks with 
isospin 0, spin !, and charge quantum number - j. 

Since Co (r) is time independent and cp is the only coordi
nate variable, we write <I> (cp,t) in the form 

<I>(cp,t) = e- iE'F(cp). (16) 

It follows from ( 11) with m = 0 and (16) that 

d 2F(cp) + nF("I..) = 0 (17) 
dcp2 ~, 

E - jCo(r) = Inllr, V =jCo(r), n = const, (18) 
where we have used () = rrl2 in (10). In analogy with Bohr's 
atomic model [using (E - e21r)2 = p2 + m2], we take the 
positive square root in (J 8). The usual requirement that F( cp) 
and dF( cp) I dcp be continuous throughout the domain 0 to 2rr 
of cp demands that n = 0, ± 1, ± 2, ... in (17). Thus we have 

Fn(cp) = e-intpI(2rr) 1/2. (19) 

The constant values of r in (18) for stationary states must 
satisfy aE I ar = 0, which corresponds to aHJ ar = 0 in (9). 
We find 

rn =A -lexp(1-lnllj2), Co = VI' Inl =0,1,2, .... 
(20) 

For Co = V2 , the constant radii are determined by the equa
tion 

Inl j2 ( 1) j2 --+-log e+- + =0. (21) r r Ar A~(e + liAr) 

When lI(Ar) >e = 2.718, the values for r in (21) can be 
approximated by (20) with n?;J 1. Note that if n = 0 there is 
no solution for r in (21). Thus n must be 1,2,3, ... for rn in 
(21), which cannot be solved exactly. 

Let us now concentrate on the simple case Co = VI' 
which can be solved exactly for the model of composite 
quarks. The eigenvalues of the energy E are 

En =j2Aexp(lnlfj2-1), Inl =0,1,2,.... (22) 

Since the ring is massless and the d quark has a mass 
md = 0.0089 ± 0.000 26 GeV (see Ref. 5), we have the ex
ponential mass formula for the d-type quarks: 

M: = md + FA exp(lnl/j2 - 1), Inl = 0,1,2, ... , (23) 

which holds approximately because the d quark's motion is 
ignored. Using Mg = ms = 0.175 ± 0.055 GeV and 
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Mt = mb = 5.3 ± 0.1 GeV (see Ref. 5), we can determine 
the flavor chargej and the composite mass scale A: 

j = 0.54 ± 0.03, A = 1.5 ± 0.7 GeV. (24) 

Based on (23) and (24), the model predicts the mass ofthe 
fourth-generation quark b ' to be 

mb , =M~:::::170GeV. (25) 

Similarly, let us consider the bound states of the u quark 
and the ring with isospin /z = -!. Based on symmetry con
siderations, their interaction should have the same flavor 
charge! But they may involve a different mass scale, A' #A, 
because mu differs from m d • Thus their flavor potential is 
assumed to be 

(26) 

Following the steps (20)-(22), we obtain a similar mass 
formula for the u-type quarks: 

M~ = mu + j2A ' exp( Inllj2 - 1), Inl = 0,1,2,00' . 
(27) 

Using mu = 0.005 ± 0.0015 GeV and M~ = me 
= 1.35 ± 0.05 GeV (see Ref. 5), we obtain 

A' = 12.6 ± 2.0 GeV. (28) 

The exponential mass formula (27) predicts the masses of 
the top quark t and the fourth-generation quark t' to be 

m, = 45 ± 23 GeV, m,,::::: 1400 GeV, (29) 

which are consistent with experiments,S Furthermore, the 
mass formulas (23) and (27) imply the approximate rela
tion 

mslme:::::mblm,:::::mb./m", foranyj,A,andA', (30) 

V. RING WAVE FUNCTIONS AND SIZES OF COMPOSITE 
QUARKS 

According to (16), (19), and (20), the composites and 
b quarks are described, respectively, by the wave function <1>0 
and <1>1: 

{
e-iEO'/(2rr) 1/2, r= ro, ()= rr12, 

<l>o(cp,t) = 0, r#ro or () #rr/2, 
(31) 

{
e- iE,'- i"'/(2rr) 1/2 r = r () = rrl2 

<1>1 (cp,!) = ' I' , 

0, r#rl or () #rr/2, 
(32) 

Thus we may picture composite sand b quarks as rings with 
radii ro and r l and with the basic d quark at the center. 

As far as the variable cp is concerned, <l>o(cp,t) and 
<I> I (cp,t) are orthogonal. Furthermore, these two wave func
tions have no overlap in space at all, as one can see from (31 ) 
and (32). Therefore, the transition between the n = 0 state 
(s quark) and the n = 1 state (b quark) through the flavor 
interaction is forbidden, This property could be changed by 
other interactions. In a class of processes, the quantum num
ber is conserved. Consequently, it appears reasonable to 
identify the conservation of n = 0 (n = 1) as the conserva
tion of the strangeness (bottomness) quantum number, in 
the absence of weak interactions. 

J, P. Hsu 2685 



                                                                                                                                    

Of course, it is possible to change the d quark and the 
ring with I z = + ~ to the u quark and the ring with I z = -1 
through other interactions. For example, suppose ad-type 
quark is initially in a state n and suppose the weak interac
tion causes such a change during a very short time interval 
(e.g., in a collision process). In this case, the flavor potential 
Co = - fr- I loge 1/ Ar) is suddenly changed into another 
flavor potential Co = - fr- l log(1IA 'r). To find out the 
change of the energy of the system, we use sudden approxi
mation in quantum mechanics6

: 

[(i :t - fCoY + ~ :;2 ]<I>(~,t) = 0, t<O, (33) 

[(i :t -fCor + ~ :;2]<I>'(~'t) =0, t>O. (34) 

After the interaction (t > 0), we solve (34) and obtain the 
following results: (i) the ring remains in the same state n; 

(ii) the energy of the system increases from En' given by 
(22), to E~ =f2A' exp(lnllf2 - 1); and (iii) the wave 
function of the system changes from 

<I> n = exp( - iEn t - in~ )/(21T) 112, 

at 

to 

at 

r~ = A ,-I exp(1 - Inllf2). 

The detailed mechanism of such a physical process is prob
ably not simple and should be treated by introducing anni
hilation and creation operators for the rings, etc. 

Note that ~ is the only coordinate variable. The normal
ization of <I> n can be formally written as 

1 = fl7 l<I>n(~,tWd~== f IlPn(r,0,~,t)12d3r, 
IlPn (r,O,~,t) 12 = 8(r - rn )8(cos 0) IFn (~) 12/r. (35) 

The new function lPn (r,O,~,t) explicitly exhibits the impor
tant property that <I> n #0 only at r = rn and 0 = 1T12. We 
have seen that the ring's flavor charge is distributed in space 
accordingtop(r) = PllPn (r,O,~,t) 12. It is interesting to note 
that such a ringlike distribution of the flavor charge leads to 
an angle-dependent form factor: 

F[(k) = f f-2p(r)e-ik.rd3r=Jo(rnksinOd, 

sin Ok = kll/k, . k" = k! + k;, (36) 

where kll is parallel to the ring's plane and Jo(z) denotes the 
Bessel function of the first kind: Jo(z) = 1 - ~ 14 + ... , for 
Izl < 1. For a spherically symmetric charge density, a form 
factor F(k) can be expanded as F(k) = 1 - IkI2(r)1 
6 + .... Comparing (36) to this form factor F(k), we may 
say that, for a given Ok == e, the mean square radius (r) 0 of 
the ring's flavor-charge distribution is (r) 0 = ~~ sin2 0, 
0= Ok' Thus when we take averages over 0, we have the 
mean square radius: 
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1 il7 3~ (r)==- (r)o dO=-
1T 0 4 

(37) 

where 

r 0 = A - I exp (1) = 3.6 X 10- 14 cm, for an s quark, 

r l = A -I exp( 1 - 1/f2) = 1.1 X 10- 15 cm, 

for a b quark. (38) 

The result (37) should be observable by the scattering of 
the ringlike quark and a pointlike object carrying the flavor 
charge. However, the ringlike structure of quarks probably 
can also be detected experimentally by the scattering of two 
ringlike quarks. In this case, the observed form factor will be 
more complicated than that in (36). We shall not discuss 
this case here. 

VI. COMPARISONS OF QUANTUM RINGS AND CLOSED 
NAMBU STRINGS 

Let us examine the heuristic connection between the 
classical equation (2) and the quantum equation ( 14) for a 
ring. In a particular frame, Eq. (2) has a solution XJ.l(8,r) 
that describes a rotating ring: 

X O = Rns, Xl = R cos(ns), 

x 2 = R sin(ns), x 3 = 0, (39) 

where n=I,2, ... and s=(u+r)IR or (u-r)IR. 
This solution also satisfies the constraints 
(aXl'olar)(aXJ.llau) = 0 and (aXJ.llar) 2 + (axl'olau)2 
= O. The spatial components X I and X 2 satisfy the periodic 

condition Xi(U + 21TR,r) = Xi(u,r); but physically it is 
not necessary for the time component X 0 to satisfy the condi
tion. The total energy po of such a ring is 

o I i217R 
axo Rn k p =- du-=- (p =0, k= 1,2,3), 

41Ta' 0 ar 2a' 
(40) 

where a' is the "Regge slope" that appears in the Nambu 
action: 

--1-f (oo·)dud1'. 
41Ta' 

Intuitively, if one introduces a central potential V(R) with a 
source located at the center of the ring, we expect that the 
total energy (40) of the ring will be just shifted by V( R ). 
Nevertheless, even in such a simple case, it does not seem 
possible to implement V(R) in the string equation (2). In 
sharp contrast, we can easily implement a potential in the 
quantum ring equation (14). We note that Eq. (14) with 
V( r) = m = 0 can be obtained formally from Eq. (2) by the 
replacements 

XI'o(U,1') ..... <I>I'o(~,t), u ..... (rsin O)~, 1' ..... t. (41) 
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It is interesting to observe that the resultant equation, 
which is formally obtained through (41 ), turns out to be the 
same as that obtained by passing from the classical theory 
with the Hamiltonian (8) to the quantum theory, as dis
cussed in Sec. III. It should be stressed that we have followed 
the conventional and well-established method for passing to 
the quantum theory. Although the free massless ring equa
tion (11) [or (14)] with V = m = ° is the same as the 
Nambu equation (2) with a = (rosin ()4>, it has different 
solutions and different physical properties: The free closed 
Nambu string described by (2) has a quantized energy 
En = n (in a suitable unit). The discrete energy En is kinema
tically determined by the boundary condition 
XI'(O,r) = XI'(2rrR,r), where the constancy of R = r sin () 
has been implicitly assumed in choosing a suitable unit of 
length for a = resin ()4>. 

On the other hand, if one considers a free quantum ring 
described by (11) [or (14)] with m = V = ° and 

<t>(4),t) = exp( - iEt + i/34». 

We obtain 

E = 0, r = 00, f3 = n. (42) 

These results for a free ring are the same as those of an atom
ic system in the limit of vanishing coupling constant. Thus 
we have seen that discrete energy states of a quantum ring 
cannot exist if there is no potential. The reason for this is 
that, in our approach based on a Hamiltonian with cyclic 
radial momentumpr' the radius and the energy eigenvalues 
of a ring are determined by aE I ar = 0, as one can see in (20) 
and (22). 

VII. PERMANENT CONFINEMENT OF THE QUANTUM 
RING 

The ring in the composite quarks is characterized by its 
ultrastable states with 

O<Eo<E, <E2 <"', 
A- 1-ro>r l >r2>"', (43) 

even though the flavor potential vanishes as r- 00. (The 
effective potential at r = r n has a maximum rather than a 
minimum). The positive and discrete energy spectrum (43) 
resembles that of the confining particle in the simple har
monic oscillator or in a linear potential field. 7 When one hits 
the composite quarks with a particle, however large the im
pact energy may be, the system will not collapse and break 
into pieces. (If the interaction of collision can change the 
state of a composite quark, the ring will jump to a higher 
energy state rather than become a free string. ) 

Furthermore, the bosonic ring moving in the flavor po
tential (26) has unusual behavior in the limit/-O. In this 
limit, rn and En in (20) and (22) become 

r
n
_{A- 1

exP(1), En ..... {O' n=O, (44) 
0, 00, n#O, 

which are completely different from those results (42) for a 
free ring. They indicate that once the ring exists in the sta
tionary state, it cannot become a free ring even if the flavor 
charge / approaches zero. 
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All these properties indicate that the quantum ring is 
permanently confined by the basic quarks within a small 
radiusrSA -1:::::;1O-14 cm. 

VIII. DISCUSSIONS AND REMARKS 

The usual free-string equation (2) with the closed string 
boundary conditions gives the well-known normal-mode ex
pansion. It also leads to many particles with different spins. 
However, the free quantum ring, described by Eq. (3) with 
Co(r) = 0, does not have these results. According to our 
Hamiltonian approach with cyclic Pr andpo' there is simply 
no stationary state with discrete energy, as shown in (42). 

The flavor potential Co(r) = VI in (IS) can be ex
pressed in terms of an integration in momentum space: 

J d3k eilN rr (eYk) Co(r) =4rr/ ----( --)log-
(2rr)3 k 2 2 A 

=/r-'log(Ar), 

where r = 0.577 21 is the Euler constant. The unusualloga
rithmic factor in Co(r) is probably related to higher-order 
corrections, which are complicated and puzzling beyond 
measure from the field-theoretic viewpoint. 

If one takes the negative square root in ( 18), one gets 

rn = A -I exp(l + Inll/2) 

and 

En = /2A exp( - In 1//2 - 1) 

instead of (20) and (22). These states correspond to systems 
with a negative "centrifugal energy" for a ring and do not 
seem to exist in nature. 

The quark masses can be fitted by different potentials. 
For example, one can modify the flavor potential (26) for 
r~ 1/ A • in such a way that the energy levels are essentially 
unchanged. Usually, one does not expect a potential model 
to work in a high energy region as shown in (24) and (28). 
However, the present ring model is very much different from 
all previous potential models, as one can see from the proper
ties (a)-(d) in Sec. I. We stress that these special properties 
for an interacting quantum ring are physically more impor
tant than a particular flavor potential and mass formula. 

We may remark that the definite radius for a ring, 
tv = 0, as shown in (31) or (38), does not contradict the 
uncertainty relation. 8 The reason is that the ring's radial mo
mentum Pr is completely undefined, i.e., b.Pr = 00, in the 
formalism. This is the physical meaning of the cyclic Pr in 
quantum mechanics. 

In this simple model of composite quarks, we assume 
that only isosinglet states can exist. This resembles the situa
tion of color singlet states in quantum chromodynamics. It is 
hoped that this property.can be understood dynamically in 
the future. 
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The signal propagation in nonlinear electrodynamics when an arbitrary Einstein-Born-Infeld 
theory is invariant under duality rotations is discussed. The quasimetric defining the 
characteristic surfaces that depend on the structural function is obtained. The propagation of 
nonlinear photons is also briefly discussed. 

I. INTRODUCTION 

Recently the ideas of nonlinear electrodynamics (NLE) 
have been found of interest, even in the strings and superstr
ings theories. Born-Infeld (BI) type actions were already 
discussed in connection with string theory in Refs. 1 and 2. 
Fradkin and Tseytein found that the BI Lagrangian is the 
exact solution of a constant external vector field problem in 
the open string theory? Bergshoeff et aZ.4 found that the 
bosonic part of the low-energy open superstring effective ac
tion is again the BI action. Supersymmetric BI action was 
established by Cerotti and Ferrara.5 

These new approaches reinforce the importance of the 
study of classical BI-type theories coupled with gravitational 
fields. Recently, by restricting these theories to be invariant 
under duality rotations, it was possible to get a wide branch 
of new exact solutions.6 . 

On the other hand, assuming Einstein-BI dynamics as a 
classical model of the vacuum polarization processes near 
strong gravitational fields,7 it is interesting to study the na
ture of causal signals in this theory. The content of this paper 
is the study of the characteristic surfaces, along which dis
continuities of the nonlinear electromagnetic field are propa
gated, when we impose the restriction to the theory to be 
invariant under duality rotations. 

In Sec. II, we give a brief introduction to the Einstein
BI theory and the consequences of the duality rotations in
variance. In Sec. III, we develop the corresponding simplifi
cations on the theory of discontinuities in general relativistic 
nonlinear electrodynamics8 when the duality rotation invar
iance is assumed. The special case corresponding to the 
original BI theory is discussed with some details. Conclud
ing remarks are given in Sec. IV. 

II. NL ELECTRODYNAMICS ENDOWED WITH THE 
FREEDOM OF DUALITY ROTATIONS 

The nonlinear electrodynamic field is represented by 
two skew field tensorsfl'Y and P",y, which are interrelated 
through a single relation designated as the "structure" equa
tion. The existence of a potential All satisfying the Faraday 
field equation 

fill' = AIl;y - Av,1l (2.1) 

is assumed, yielding the electrodynamic Lagrangian 

(2.2) 

The "structure function" cW' = cW'(P,Q) , whose arguments 
v v 

P: = l PllypllY and Q: = ! PllypllY 

are invariant (scalar) and pseudoinvariant, respectively, is a 
real Hamiltonian whose functional form is intentionally left 
unspecified. 

The essential distinction between linear and nonlinear 
electrodynamics resides in the electromagnetic structure 
equations, 

(2.3 ) 

When these equations can be inverted one may algebrai
cally express PIlY throughflly, its dual, and the invariants 

F: = V;,JIlY and G: = !/P]IlY 

by the expression 

aL v 

P"y = 2 -- = LF!"Y + La!'.y. 
r af llY r r 

(2.4 ) 

Hence L = L(F,G) is understood as a fun'¢ion of fill' de
pending on it through the arguments F and G. 

The Hamiltonian function cW' and the Lagrangian func
tion L are related by a Legendre transformation, 

We can introduce new independent parameters of the com
plex invariants and therefore invariants as such by the rela
tions 

P+Q= -~(D+i)h2:j:O, 
F+G= -!(E+ili)2:j:O; (2.6) 

the interpretation of these parameters in an adequate null 
tetrad is discussed in Ref. 9. 

From Eqs. (2.6) we can consider the Hamiltonian func
tion cW' as a function of D and H and the Lagrangian func
tion L as a function of E and B. Defining the function 

M=ED+cW', 

we have 

dM=EdD+HdB; 

then 

(2.7) 

(2.8) 
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M=M(D,B) . (2.9) 

The theory is equivalently uniquely defined with any of the 
structural functions K,L of M. 

With the freedom of the duality rotations defined by the 
v v 

condition that "given ()D ,D + iB and E + iH, which satisfy 
the Einstein-Maxwell equations, then 

ea,D' + iB': = eitPo(D + iB), 
v ." V 

E' + iH': = e'tPo(E + iH) 
(2.10) 

are also a solution of the Einstein-Maxwell equations for 
arbitrary ;Po = const," the function M is constrained to a 
function of one variable ~ (D 2 + B 2). 

It is convenient to understand M as determined by an 
arbitrary dimensionless function of a dimensionless variable 
f(x) in the form 

M:=b 2f(x), x:= (l/2b 2 )(D 2 +B 2
) , (2.11) 

where b is a constant of dimension of the electromagnetic 
field. An extended version of this section can be found in 
Ref. 6. 

III. SIGNALS IN NONLINEAR ELECTRODYNAMICS 
ENDOWED WITH THE FREEDOM OF DUALITY 
ROTATIONS 

According to the general theory developed in detail in 
Ref. 8, the discontinuities of the derivatives of the nonlinear 
electromagnetic field propagate along the two possible sets 
of the characteristic surfaces S=S(x) = 0, these being sub
mitted to the eikonal equation 

y/1-"S'/1-S,,, = 0 , (3.1 ) 

where the quasimetrics y /1-" --determined modulo propor
tionality factor ¢-2#O-are, correspondingly, 

I: y/1-" = ¢-2{g;v + [(Kjfjf - 1")/(Kjfjf + 1")] 

.1"/1-V/IZ I} , 

II: y/1-V = ¢-2{g;v + [(K DD + 1")/( 1" - K DD)] 

.1"/1-V/IZI} , (3.2) 

IZ I: = !(D 2 + H2), 1"/1-1': - P/1-PP"P + Pg/1-". 

This description of the characteristic surfaces applies when 
one works with the structural function K = K(D,H) con
sidered as given as fundamental [recall that 
P+Q= -!(D+iH)2]. 

The remaining structural element of (3.2)-apart from 
the Riemmanian metric g/1-V-the invariant 1", is defined by 

0: = {(KDjf + iKQ )2 + (Kp)2 - KDDKjfjf} , 

k: = 02 + 4(Kp)2KDD Kjfjf, 

1" = (1/2kp)( Jk + 8) . 

(3.3 ) 

In the specific case of the theory endowed with the freedom 
of the duality rotations, deciding to work with the structural 
function M equivalent to K, we find that the description of 
characteristic surfaces given above considerably simplifies. 
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In the first step, omitting manipulations related to the 
replacement of the independent electromagnetic variables 

v v 
(D,H) by the equivalent (D,B), we state that 0 and 1 can be 
expressed in terms off in the forms 

0= 1/MBB ·[(D 2 +B 2)/(D 2 +H2)] 

x{2xfVV + fV + (fV)2}, 

k='?, (3.4) 

v: = 1/MBB · (D 2 + B 2)/(D 2 + H2) 

·{2xf VV + fV _ (fV)2}, 

while K HH = 1/MBB . We must now distinguish two sub
cases, 

(a) v<o->1"= (fV)2IMBB , 

(b) v> 0->1" = 1/2MBB .1/( fV)2 (3.5) 

·{2xfVfVV + fV2}. 

By substituting these values of 1" into (3.2) one obtains the 
final expressions for the quasimetrics y /1-". It turns out that 
the case (a) evaluated in I overlaps with the case (b) evalu
ated in II, the final result amounting to 

I: Y/1-V = ¢-2{g/1-v + [1- (fV)2]![ 1 + (fV)2] 

·1"/1-JIZ I}, (3.6) 

II: Y/1-" = ¢-2{g/1-V - xfvv/( fV + xfvV) ·1"/1-JIZ I} . 

These formulas are general: they apply also in the sense of a 
limiting transition when the electromagnetic field is null, 
i.e., when with x->o, 1"/1-JIZ l->kJl-k", k/1-k/1- = o. 

According to the results of Alarcon, the single struc
tural function for which the quasimetrics (3.2) coincide, is 
that which is equivalent to the original Born-Infeld Lagran
gian. This can be verified in the considered special case of the 
theory endowed with the freedom of the duality rotations by 
noticing that I-II quasimetrics coincide iff 

(1 - f V2)/ (1 + f V2) + xfvV I ( f v + xf VV) = 0 . 
(3.7) 

This condition leads to J, 

f= (2Ia){~1 + ax -l}, (3.8) 

where a is an integration constant, which, because6 of 
fix> fV , must be positive. Thus 

M= (2b2Ia){~1 + (aI2b 2)(D2+B2) -l}, (3.9) 

so that renormalizing b according to 2b 21 a we end up pre
cisely with M equivalent to the Borne-Infeld Lagrangian6 

M = b 2{ ~ 1 + 2x - l} . 

Consider then the case of algebraically general electromag
netic field P/1-V described in terms of a null tetrad aligned 
along the eigenvectors of the field. The only nontrivial com
ponents of 

1"abllZ 1 are 1"12/IZ 1 = - 1, 1"34/1Z 1 = 1 . 
(3.10) 

Equation (3.1), spelled out in terms of the null tetrad, is of 
course yab S'a S,b = 0, where a denotes the directional deriv-
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ative. We then easily see that in the case 1 from (3.6) this 
equation amounts to 

I: 2(f v )2S»S'2 + 2S, S'4 = 0, 

while in the case II we have, assuming d(xfv) #0, 

II: 2(1 + 2x( f vv If V»S»S'2 + 2S'3S'4 = ° . (3.11) 

Now, the bicharacteristic lines xl-' = xl-' ( 1"), which are the 
integrals of 

(xl dx
Y 

- S ( ) 
Yl-'Y d1" - 'I-' X , 

in a sense "the trajectories of the nonlinear photons" --can 
be obtained by treating correspondingly (3.11) as the Ham
ilton-Jacobi equation. These lines are null geodesic in the 
sense of quasimetrics y I-' Y' which, if taken as normalized as in 
(3.11), evidently correspond to the Riemannian line ele
ments 

d§2: = ' , 
{

I: 2(jV)-2(JI ® 0 2 + 2(P ® 0 4 ; 

II: 2(1 +2x(f vvlf V»-101 ® 0 2+20 3 ® 0 4 ; 
, s 

(3.12) 

it follows that the basic Riemannian line element 

dr = 20 I ® 0 2 + 20 3 
® 0 4 

is evaluated along these lines, because then d§2 = ° amounts 
to 

{

I: 2[1-(fv)-2]01 ® 0 2 , 
dr= S 

II: 2[1_(I+2x(f vvlfV»-1]01 ® 0 2 . , 
(3.13 ) 

With 0 I ® 0 2 being positive, it is thus the sign of the coef
ficients in (3.13) that determines whether the corresponding 
bicharacteristic lines are spacelike ds2 > ° or timelike ds2 < 0, 
i.e., they can be interpreted as corresponding to the "nonlin
ear photons" propagating with velocities faster or slower 
than light. 

Notice that in the case of the original Born-Infeld struc-

tural function f = ~ 1 + 2x - 1 and 

11-+1, 1_(jv)2= -2x<O-+dr.,;;O, 

and therefore the nonlinear light cone is contained within 
the Riemannian light cone bicharacteristic lines are timelike 
or null in the standard sense. 

With a general structural function, withf = f (x) con
strained only by 

f=x+O[(X)2], flx>fv>O, 

the spacelike or timelike nature of the bicharacteristic line 
depends on the specific form of this function. 

We will close this section with a general comment con
cerned with the relationship between the causal horizons-if 
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they occur-of the gl-'Y metric and the quasimetrics y I-'V' 

Working with a general structural function 
JY = JY(D,H), i.e., not necessarily committed to the case 
of a theory endowed with the freedom of the duality rota
tions, in the case of the algebraically general electromagnetic 
field, and employing the null tetrad aligned along the eigen
vectors of the field, one easily sees that the tRy S'I-'S,y = ° 
equations with yl-'Y from (3.2) is equivalent to 

I: 2(dJYJifI)S»S'2 + 2S'3S'4 = 0, 

II: - 2(JY DDh)S'IS'2 + 2S'3S'4 = 0, 
(3.14 ) 

where the invariant 1" is defined by (3.3). The quasiline ele
ment d§2 is then 

d§2= S S 

{

I: 2(JY HHh)O I ® 0 2 + 20 3 ® 0 4 , 

II: -2(dJYDD )01 ® 0 2+20 3 ® 0 4 . 

(3.15 ) 

Comparing this with the Riemannian metric 
ds2 = 20 I ®, 0 2 + 20 3 ® S 0 4, we see that the relevant seg
ment of the metric, 20 3 ® ,0 4, i.e., that segment of signature 
( + , - ) essential for the reversal of signs 
[( + , - ) -+ ( - , + )] on both sides of a horizon, is the 
same for the metric dr and quasimetrics dr. From this we 
now infer that the causal horizons-if they occur-of ds2 

and or do coincide. This generalizes a result of S. Alarcon 10 

derived this for the case of the spherically symmetric solu
tions. 

IV. CONCLUSIONS 

The study of the characteristic surfaces, along which 
discontinuities of the nonlinear electromagnetic field are 
propagated in the specific case of the theory endowed with 
the freedom of the duality rotations is considerably simpli
fied. The quasimetric defining the characteristic surfaces 
that depends on the structural function is given by Eq. (3.6). 
The trajectories of the nonlinear photons can be obtained by 
treating Eq. (3.11) as the Hamilton-Jacobi equation. Non
linear photons can propagate with velocities faster or slower 
than light. 
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In this paper a class of non unitary infinite dimensional Hilbert space representations of a 
semidirect product is investigated. The equivalence of this category with the category of finite 
dimensional representations of the stability subgroups is shown. This theory is applied to the 
Poincare group and to the construction of free quantum fields. In an appendix a method is 
introduced for building an infinite family of finite dimensional indecomposable representations 
of the noncompact Euclidean group in two dimensions. Such representations are used for 
carrying out the analysis of the massless fields. 

I. INTRODUCTION 

This paper represents the beginning of a detailed study 
of not necessarily unitary representations of the Poincare 
group and their applications to problems of quantum field 
theory. In Sec. II we introduce the category 9 of Hilbert 
space representations of certain semidirect products 
G = A X' H of which the Poincare group is a typical exam
ple. One of our fundamental results (Sec. III) is that this 
category is naturally equivalent to the category of finite di
mensional representations of the appropriate stability sub
group Ho. This result permits us to reduce various problems 
concerning the infinite dimensional representations in 9 to 
corresponding problems involving the finite dimensional 
representations of Ho. While this principle is not new, going 
back as it does to Frobenius and Mackey in the category of 
unitary representations, the construction of a Hilbertian 
Junctor in the nonunitary context is believed to be new. 

In order to apply these results to quantum field theory 
one should describe (cf. Sec. VI) all intertwining operators 
from the Schwartz space of classical fields to the representa
tions in 9. We do this in Sec. VII. In the appendices we 
discuss various mathematical techniques necessary for ap
plying the results of Secs. III and VII to physical problems. 

The need for working with nonunitary categories is al
ready clear from the Gupta-Bleuler theory of quantum elec
trodynamics, and the category 9 is a very conservative ex
tension of the usual category of unitary representations of 
the Poincare group with finite spin (or helicity). If one does 
not insist on working in Hilbert spaces, one can replace, at 
least when A, H, and G are Lie groups, the category 9 by the 
category of smooth vector bundles on HI Ho, while G is act
ing on the spaces of sections in the usual manner. In particu
lar, the elements a of the group act as multiplication by ei(a.a). 

To obtain more extensive categories it is thus essential to give 
up this requirement for the action of A. Interesting examples 
of such more general representations of the Poincare group 
have been constructed by Rideau 1 and studied further by 
Carey and Hurst,2 Mintchev,3 Pierotti4 (see also Araki.s) 

We shall postpone to another paper a systematic study of 
this enlargement of 9. 

The definition of the morphisms between objects of 9 
also perhaps needs a comment. The point is that nonunitary 
representations allow, in general, unbounded operators in
tertwining them and so, due to the obvious complications 
involving the domains of these operators, care is needed in 
defining the notion of morphism. Our definition, inasmuch 
as it works with states of finite extent in momentum space, is 
very natural from the physical point of view. 

In this paper we shall use freely the basic facts of the 
theory of representations oflocally compact groups (in par
ticular, of semidirect products) in Hilbert spaces. For this 
we refer to the book of Varadarajan. 6 

II. THE CATEGORY 9 OF PHYSICAL 
REPRESENTATIONS 

We consider a semi direct product G = A X 'H where A, 
Hare lesc groups, with A closed, Abelian, normal and H 
acting on A by h, af---+h [a] . Here A is the dual groIW of A and 
H acts naturally (h, af---+ h[a]) on it. We fix aoEA and con
sider representations of G that are not necessarily irreducible 
but associated to the H orbit of ao. We put X = H[ao], we 
denote by Ho the stabilizer of ao in H, and assume that X is 
locally closed in A, so that hHo f---+ h [ao] is a homeomor
phismofH 1HowithX. We also assume that X has an invar
iant Borel measure a. 

:Jr'. , 

Definition 2.1: 9 is the class of pairs (U,:Jr') where 
(a) :Jr' is a Hilbert space; 
(b) U is a (strongly) continuous representation of G in 

(c) Ua is unitary for all aEA; 
(d) if P is the projection valued measure associated to 

( Ua ) <lEA on A, then supp(P) ex; 
(e) P has a uniform multiplicity N < 00. 

We call (U,:Jr') unitary if U is a unitary representation 
ofG. 

2692 J. Math. Phys. 30 (11), November 1989 0022-2488/89/112692-16$02.50 @ 1989 American Institute of PhYSics 2692 



                                                                                                                                    

P is related to (Ua ) aeA by 

Ua = Ix ei(a,;') dP(a) (aEA). 

The relation 

Uh Ua U h- I = Uh [a I (hElI,aEA) 

leads to 

UhPEU h-
1 =Ph[EI (ECX). (2.1) 

Relation (2.1) shows that if SeE) is the range of PE' 
then Uh takesS(E) toS(h[E]). Let 

JYO= U{S(C): CCXand relatively compact}. 

Then ~ is a dense linear subspace of JY'. Elements of ~ 
are called finite. It is obvious that 

Ua,d~] =JYO, Ua[S(C)] =S(C). 

Let (Ui,JY'i) (i = 1,2)E&'. We write 2'( (JY'I )0: (JY2)0) 
for the space of linear maps 

T: (JY'I)O -+ (JY2)0 

such that for each relatively compact C ex, T maps S I ( C) 
into S 2 (C) and defines a bounded operator on S I (C) [the 
norm of Ton S I (C) may be unbounded as C varies]. It is 
easy to see that T has a closure and an adjoint T* which is 
defined on (JY2)0 and defines a member of 2'(JY2)0: 
(JY'I )0). 

We make &' into a category with the following defini
tion. 

Definition 2.2: If ( U I ,JY'I) and ( U 2,JY2) are in &' , the 
morphisms ( U I,JY'I) -+ ( U 2 ,JY2) are precisely all the maps 
T«JY'I)o-+(JY2)O) such that (a) TE2'«JY'I)o: (JY2)0); 
(b) Tcommuteswith U~, i.e., TUh = U~ T(hElI). We say 
that (U I ,JY'I) and (U 2,JY2) are isomorphic in &' if there 
exists between them an isomorphism in the sense of the cate
gory &'. 

We denote by Morph (U) the algebra of morphisms 
( U,JY') -+ ( U,JY'). A morphism is called strict if it is a 
bounded operator; in this case it extends to T (JY'I-+JY2) 
that intertwines U I and U 2

• The set of strict elements of 
Morph ( U) is the commuting algebra of the representation U 
in the usual sense. 

It is easy to show that every morphism between unitary 
elements of &' is strict. So our theory extends the standard 
one6 of unitary representations of G. In particular, if ( U,JY') 
is unitary, Morph ( U) coincides with the commuting algebra 
of U in the usual sense. 

III. THE INDUCED REPRESENTATION AS A FUNCTOR 
(u, W) f-* (U,J¥') 

For any lesc group L let Y = Y (L) be the category of 
pairs (u, W), where W is a finite dimensional Hilbert space 
and u a continuous representation (not necessarily unitary) 
of Lon W We write Y for Y(Ho)' Fix once and for all a 
Borel section seX -+H) such that s(ao) = eH and s is locally 
bounded on X, i.e., for any relatively compact CCX, s( C) is 
relatively compact in H. Then if we put 

y(h:a) =s(h [a])-Ihs(a), 
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it is clear that y is a strict Ho-valued cocycle for (H,x). We 
. define Cu = uoy by 

Cu (h: a) = u(s(h [a] )-Ihs(a) 

so that Cu is a strict GL( W) cocycle for (H,x). 
Definition 3.1: A family of (positive definite) scalar 

products for W, ( . , . ) a (aEX) , is said to be regular for u if (a) 
(',)a is Borel, i.e., (OI,02)a is Borel in a VOI,02EW; (b) for 
any relatively compact CCX, there exist kl = kl (C) > 0, 
k2 = k2 (C) > 0, such that 

kl (0,0) w< (0,0);, <k2(O,O) W (aEC) 

[ ( • , • ) W is the given scalar product on W]. (c) Let JY' ( W) 
be the Hilbert space of all (a-equivalence classes of) Borel 
functions jon X with values in W, such that 

Ix Ilf (a) II~ da(a) < 00; 

then the action 
(a,h) f-* Uah 
(UaJ) (a) = ei(a,Q)C

u 
(h: h -I [a]) jh(a) 

defines a continuous representation of G in JY' ( W). 
Note that P E ( j f-* X J) are projections so that, writing 

U( W) for the representation defined in (c), (U( W), 
JY'( W) )E&'. 

Condition (b) guarantees that JY'( W)0 = L 2(X: W)0. 

We shall now examine when a regular family of scalar 
products exists. It is clear that, in order to verify (c), it is 
enough to check that h f-* UeAh = Vh is a continuous repre
sentation of H. 

We introduce the following definition. 
Definition 3.2: A pair (u, W)EY is called extendible if 

there exist two pairs (u l , WI)EY, (u', W')EY(H) such that 
(a) u is a subrepresentation of u I' (b) u I is a quotient repre
sentation of ub = u'IHo' 

This means that we have a diagram 

where t is an injection and 11' a surjection and both t and 11' are 
Ho-module maps, i.e., they commute with the action of Ho' 

Theorem 3.1: If ( U, W) is extendable, there exists a regu
lar family of scalar products for u. 

Proof It is not a difficult exercise to see that, if ( . , . ) W' is 
a fixed scalar product for W', the family (',) Woo;' defined by 

(0 1,02) WOoa = (u'(s(a»)OI,u'(s(a»)02) w O, 01,02EW ', 

is a regular family for ub. From this the reduction to W is 
quite straightforward. 

Extendability is an algebraic property. The following 
lemma is of wide applicability. 

Lemma 3.1: Suppose H is a real algebraic matrix group 
and H o is an algebraic subgroup. Then all rational represen
tations of H o are extendable (to rational representations of 
H). 

Proof Let R (resp. Ro) be the ring of regular functions 
on H (resp. H o)' Rationality of a representation is equiva
lent to the assertion that its matrix elements are in the ring of 
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regular functions. The group H (resp. Ho) acts on R (resp. 
R o) by right translations and each element of R (resp. R o) 
lies in a finite dimensional subspace stable under H (resp. 
H o)' Since the restriction map R -+Ro is surjective and com
mutes with the action of Ho' it is immediate that any sub
representation of R o (for Ho) is extendable. This property is 
then true for subrepresentations of R ~ = R o ffi ... ffi R o (M 
copies). The proof is completed now with the well known 
observation that any rational representation of H o is a sub
representation of R ~ for some M. In fact, let ro be a rational 
representation of Ho in a vector space Wo of dimension M 
and let er (1 ..;;;i..;;;M) be a basis for the dual of WOo Let OE Wo 
and let go,; (h) = (ro(h)O,en (hER). Then (go, I , .. ·,gO,M) 

ER~ and 

O~ (gO,I, ... ,gO,M) 

is a map of Wo into R ~ that commutes with Ho.1f go,; = 0, 
'tJi, ro(h)O = 0, 'tJh, so that 0 = 0. This is thus an embedding. 
The proof of the lemma is complete. 

Let E be the group of all 

( z a I) (z,aEC,lzl = 1). ° z-

It is clear that SU (2) and E, the stabilizers of the orbits of the 
Poncare group that we consider in the sequel, are real alge
braic. For application to the Poincare group we need the 
following Lemma. 

Lemma 3.2: All continuous representations of SU(2) 
and E are rational. 

Proof For SU(2) this is by direct verification since the 
representations of SU (2) are explicitly realized in spaces of 
polynomials. We now take up E. We begin by recalling the 
well known fact that all irreducible representations of E are 
one dimensional and are given by 

(~ z~I)~zn (nEZ). 

Suppose now V carries an arbitrary representation and let 
a = a l + ia2 act asea,L, + a,L, whereL I , L2 elements of End V 
and commute with each other. Let 

V = VI::> V2 ::> ... ::> Vr ::> ° 
be a Jordan-Holder series. Since V;lV;+ I is irreducible, 
they are one dimensional and L I = L2 = ° on them. So 
Lj ( V; ) c V; + I for all i and for j = 1,2, showing that the Lj 

are nilpotent. This means that ea,L, + a,L, is a polynomial in a I 
and a2 , and the rationality of the representation is clear. The 
lemma is proved. 

In view of the above discussion the assumption that for 
each (u, W)EY there is a regular family of scalar products 
for u is seen to be a very reasonable one, satisfied in all cases 
of interest. We shall therefore suppose it to be true from now 
on. Then, for each (u, W) EY we can associate a pair (U( W), 
JY( W) )E.9'; it is only necessary to select a regular family of 
scalar products. The following theorem is then our basic re
sult; its proof is essentially similar to the corresponding re
sult in the unitary context. 

Theorem 3.2: The assignment 

(u,W) ~ (U( W),JY( W») 
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is an exact covariant functor from the category Y to the 
category .9' which is an equivalence of categories. 

IV. COVARIANT SESQUILINEAR FORMS 

We shall now discuss briefly the theory of covariant ses
quilinear forms associated to .9'. 

Definition 4.1: Let (U,JY)E.9'; we say that C·) is a 
sesquilinear form for (U,JY) if (a) C·) is a sesquilinear 
form on JYO; (b) C·) is invariant with respect to Ua for 
aEA; (c) C·) is bounded on S(C)XS(C), for all CCX, 
relatively compact. 

It is easy to see that these are precisely the forms defined 
by 

(J,g) = (J,rg), J,g~, 

where r is a selfadjoint element of ..2" (JYO: JYO). The form 
( " . ) is called covariant if it is invariant with respect to Uh , 

for all hER; the condition for this is 

UtrUh = r, 'tJhER, 

We denote by ~ (JY) the space of sesquilinear forms covar
iant for (U,JY). We say that C·) is of full rank if r is 
invertible. A full rank covariant sesquilinear form is called 
an indefinite metric. We denote by M(JY) the space of in de
finite metrics for (U,JY). Let now (u, W)EY; a sesquilinear 
form on W is defined by 

(01,02 ) = (01,r02) w, 0102EW, 

where rEHomc ( W, W). The form ( " . ) is called covariant if 
it is invariant with respect to the action of Ho on W (through 
u), i.e., 

u(k)*ru(k) = r, 'tJkERo' 

We denote by 0"( W) the space of covariant sesquilinear 
forms for (u, W). In analogy with the previous case we can 
define the indefinite metrics for (u, W). We denote by J..L ( W) 
the space of the indefinite metrics for (u, W). The fundamen
tal result for covariant sesquilinear forms is the following. 

Theorem 4.1: Let (U,W)EY; then there is a canonical 
bijection between 0"( W) and ~(JY( W»; this bijection also 
induces a bijection between the corresponding sets of inde
finite metrics. 

Proof Let rEO"( W), so that 

u(k)*ru(k) = r, 'tJkERo' 

Let us define on X a function r(-) by r({lo) = r and by 
defining r( h [ao] ) through the equation 

Cu (h: ao)*r(h [ao] )Cu (h: ao) = r, hER. 

Let us define r by 

(r f)(a) = r(a)f(a), fEJY'( W)0. 

It is easy to show that 

rE..2"(JY( W)0: JY( W)0) and UtrUh = r. 

We thus have a well defined linear map r-+ r from 0" (W) to 
~(JY( W»), which is obviously injective. It is in fact also sur
jective and it is the bijection referred to in the theorem. We 
omit the proof since it is essentially based on the same type of 
arguments used in the unitary case. 
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V. EXPLICITLY COVARIANT MODELS 

Let us suppose that (uo, Wo)EY is such that there exists 
(u,W)EY(H) with the properties: (a) woe W; (b) if we 

denote by ub = u I H,,' then ub I w" = uo· 
For all aEX we define 

where hER is any element such that 

h [aD] = a, aEX. 

The definition of Wo(a) is independent of the choice of h. 
The map a f--+ Wo(a) is a covariantfield of subs paces of W, in 
the sense that 

Let us define Band 1T(B --->X) by 

B = U Wo(a), 17"(O(a» = a, VaEX. 
GEX 

An action of H on B is defined by setting 

h,O(a) f--+ u(h)O(a)EWo(h [a]). 

With these definitions B is a vector bundle on X. 
Let us denote by JY"'ov ( Wo) the Hilbert space of square 

integrable sections of B. Explicitly, JY"'ov ( Wo) is the Hilbert 
space of all (a-equivalence classes of) Borel mapsf (X ---> W) 
such that (a) f(a)EWo(a) for all aEX; (b) 
fllf(a)ll~ da(a) < 00. 

Let us define U COV ( Wo) on JY"'OV( Wo) by 

(U COV ( WO)aJ)(a) = ei(a,a)u(h) fh(a). 

It can be shown that there exists a strict isometric isomor
phism between (U( Wo),K( Wo» and (U COV ( Wo), 
JY"'ov ( Wo». 

The algebra Morph( U Cov ( Wo» is given by the operators 

A~ov:f (a) f--+ LA (a) f (a), 

whereLA is the unique function fromXin End( Wo(a» satis
fying 

LA (h [ao)) = u(h)LA (a)u(h) -I, 

with LA (ao) = A., A.E..cz1 (uo) = commuting algebra of Uo. 
We remark that, in general, the functions LA will have 

unbounded norms as a varies in X; in fact, we are considering 
the commuting algebra of UCov in the sense of the category 
9. 

A similar calculation allows us to transfer to the covar
iant model (UCOV( Wo), JY"'OV( Wo» the description of the 
bijection between 0"( Wo) and ~(K( Wo». Given y = y(ao) 
satisfying 

u(k)*yu(k) = y (kERo) , 

the equation 

u(h)*y(h [aD] )u(h) = y 

defines y(a) without ambiguities, for all aEX. The operator 
r becomes the operator r cov, on JY"'OV( Wo), defined by 

(rCOVf)(a) = y(a)f(a). 
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We must stress again that the function a f--+ y(a) 
EEnd(Wo(a» will have, in general, unbounded norm as a 
varies in X. 

VI. APPLICATIONS TO THE POINCARE GROUP. 
CONSTRUCTION OF FREE QUANTUM FIELDS 

In the following we shall consider some applications to 
the Poincare group of the theory we have exposed so far. 
Such applications are chosen having in mind the problem of 
building free quantum fields in the sense of Wightman. 7 

We denote by ISL(2,C) the semidirect product 
R4X 'SL(2,C) with the action ofSL(2,C) on R4 defined by 
the covering homomorphism 8 of the connected component 
to the identity of the Lorentz group 

h: x f--+ 8(h)x, hESL(2,C), xER4. 

ISL(2,C) is the universal covering group of the connected 
component to the identity of the Poincare group. We denote 
by x = (xo,x) = (xO'X I,X2,X3) the elements ofR4; ISL(2,C) 
can be regarded as the Lie group of transformations on R4, 
whose action is 

a,h:x f--+ 8(h)x + a, a,hEISL(2,C), xER4. 

We denote by p4 (~R4) the dual group (character group) 
ofR4; and by P = (Po,p) = (PO,PI,P2,P3) the elements ofP4; 
the dual action ofSL(2,C) on p4 is given by 

h:p f--+ 8(h)p, hESL(2,C), pEP4. 

The canonic duality between R4 and p4 is defined by the 
bilinear form 

p'X = PoXo - PIXI - P2X2 - P3X3' 

which is invariant with respect to the action ofSL(2,C). 
We assume that the orbit structure of p4 is known, as 

well as the stabilizers of the various orbits and the properties 
of the invariant measures on the orbits. See Ref. 6 for details. 

We denote by X one of the orbits X;:; (m;;;'O), and we 
denote by P + the point 

+ _ {(m,o,o,Q)EX ;:;, if m > 0; 
P - (1,O,O,l)EX 0+ if m = O. 

We denote by Ho the stabilizer ofp+, namely 

Ho=SU(2), if m>O, Ho=E, if m=O. 

The invariant measureonX (resp. X;:; ,X 0+ ) is denoted by a 
(resp. am ,ao) . We notice that a defines, for all m ;;;.0, a Ra
don measure on p4. 

We assume that the classification of the unitary repre
sentations (of physical interest) ofISL(2,C) and their real
izations are known. See Refs. 6 and 8 for details. 

In quantum field theory not only unitary representa
tions of ISL(2,C) are considered but, more generally, also 
reducible nonunitary representations which leave a nonposi
tive definite Hermitian form invariant.9

-
11 

The presence of the noncom pact group E among the 
stability subgroups of SL(2,C) leads to consider indecom
posable representations whose study may be based on the 
methods of cohomology. 1.5 The study of nonunitary repre-
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sentations and of their indefinite metrics falls naturally in the 
framework of the theory we have developed in the first part 
of the paper. Moreover the Hilbert functor 

(u,W) f-+(U(W),Jf"(W») 

reduces the infinite dimensional cohomology problem of the 
indecomposable representations of ISL(2,C) to the much 
simpler study of finite dimensional representations of the 
stability subgroups [E and SU (2) ]. In particular, in Appen
dix A, we give a general method for the construction of con
tinuous finite dimensional indecomposable modules for the 
group E. 

Let us now discuss how a quantum field can be associat
ed to a representation ofISL(2,C). This is well known, and 
we consider it only for fixing the notations; for details see 
Ref. 12 in the unitary case, and Ref. 13 in the case of in de fin
ite metric. We shall consider only the symmetric (boson) 
case. Let Jf" be a Hilbert space and U a representation of 
ISL(2,C) such that (U,Jf")E9. Let us denote by Y s (Jf") 
the symmetrized Fock space defined on Jf"; let Fo denote the 
dense linear subspace of Y s (Jf") consisting of the states 
with afinite number of particles. We notice that the structure 
of Y s (Jf") as a Hilbert space depends only on the scalar 
product of Jf" which is not necessarily left invariant by U. 
We denote by ( . , . ) an indefinite metric for ( U,Jf") such that 

(f,g) = u;rg), j,gEJf", 

where r is a bounded Hermitian operator with bounded in
verse on Jf". We can then define on Y s (Jf") the creation 
a* (f) and annihilation a (f) operators with respect to the 
indefinite metric (.,'). In particular, we get the commuta
tion rule on Fo, 

[a( /),a*(g)) = (j,g), j,gEJf". 

The generalized Segal quantization operator E ( f) is de
fined by 

E(/) = (1/~)(a(f) + a*(/)), fEJf". 

Y e N (R4
) denotes the space of N-complex component 

Schwartz functions on R4; ISL(2,C) acts on it (see the next 
section). Let A be a continuous map from YeN (R4) to Jf" 

that commutes with the actions of ISL(2,C); we call it an 
intertwining map (cf. Definition 7.1, infra). Let A be the 
operator valued distribution on R4 defined by 

deep) = E(Aep), epEYeN (R4
). 

Then the distribution d is a quantum field in the sense of 
Wightman. The field d is completely defined by Jf", (.,.), 
and A. Having Jf" and C' ) fixed, and varying A within the 
possible intertwining maps between YeN (R4) and Jf", we 
get a family of fields that differ from each other by a gauge 
transformation. On the other hand, suppose that 
d(ep f-+ d (ep») is afree covariant quantum field, acting in 
the Fock space Y s (Jf"). If 0 denotes the vacuum state of 
Y s (Jf"), then it is easily seen that (({Jf-+d (ep )0) is an inter
twining map from Y eN (R4) to Jf". Then we can conclude 
that on a fixed Fock space with a given indefinite metric the 
free covariant quantum fields are in 1-1 correspondence with 
the intertwining maps d(YeN (R4) f-+ JY). 

The recipe for building a free quantum field may be sum-
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marized in the following three points: (1) we fix a Hilbert 
space Jf" and a unitary representation U ofISL(2,C) acting 
on Jf"; this will fix the physical content of the field, (2) we 
classify all possible extensions of (U,Jf"), i.e., all possible 
objects (U I ,Jf"I) in 9 which admit (U,Jf") as a subquo
tient, and all possible indefinite metrics for these extensions, 
(3) if ( U I ,Jf"I) is the extension of (U,Jf") that we want to 
consider, then we classify all intertwining maps 

A (YeN (R4) .... Jf"I). 

For what concerns point (1) there is no problem since 
all unitary representations of ISL(2,C) are classified. For 
what concerns point (2) we have the following facts: 
(U,Jf")E9 since U is unitary; from Theorem 3.2 (U,Jf") is 
isomorphic in 9, to a pair (U(W),Jf"(W», where 
(u, W)EY. Moreover this theorem assures us that the exten
sions of ( U,Jf") that are elements of 9 are in 1-1 correspon
dence with the extensions of (u, W). Further, Theorem 4.1 
completely solves the problem of the indefinite metrics for a 
pair (U,Jf")E9. 

The problem raised in point (3) is discussed in the fol
lowing section. 

VII. THE INTERTWINING MAPS 

In this section we denote by u an N-dimensional matrix 
representation ofSL(2,C) so that (U,CN )EY{SL(2,C»; we 
denote by Uo the restriction of u to Bo, then (uo,C N ) EY. We 
define an action ofISL(2,C) on Y eN (R4

) by 

(a,h): ep(x) .... u(h)ep{8(h)~I(x - a», epEYeN (R4 ). 

Let us suppose that (U,Jf") be an element of 9 . 
Definition 7.1: A map 

A: Y e N (R4) .... Jf" 

that commutes with the action of ISL(2,C) and is contin
uous [in the sense that if epj .... O in.Y eN(R4), thenAepj .... O in 
Jf"] is called an intertwining map from YeN (R4) to Jf". 

As we show in the sequel, the problem of characterizing 
the intertwining maps from Y eN(R4) to Jf" can be reduced, 
for the cases we are interested in, to the problem of charac
terizing the intertwining maps 

A: YeN (R4) .... L 2(X: CN), 

where the action ofISL(2,C) on L 2 (X:CN) is given in the 
explicitly covariant form. This is the problem we deal with in 
the present section. 

Let us introduce the covariant Fourier transform 

as 

A 1 J' ep(p) = --2 e,p·aep(x)d 4x. 
(217") 

We define the action ofISL(2,C) on YeN(P4) by 

(a,h): q;(p) .... ejp·au(h)q; h(p), 

where we use the notation q; \p) = q;{8(h) ~ Ip). The pres
ence of the termp'a in its definition assures that the covar-
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iant Fourier transform commutes with the action of 
ISL(2,C). 

We introduce also the space YeN (X) of the functions 
f (X -+CN

) that are the restrictions to X of functions in 
YeN (p"). We consider YeN (X) as endowed with the quo
tient topology. The action ofISL(2,C) on YeN (p") induces 
an action on YeN (X); the restriction map 

Res: Y eN(p4) -+Y eN(X) 

commutes with the action of ISL(2,C) and is continuous. 
A fundamental result that we shall use in the sequel is 

the following. 
Lemma 7.1: (a) For eachAE.r1' (uo) letLA be the unique 

map of X into End(CN
) such that 

LA (Po) =A, 

L A(8(h)p) = u(h)LA (p)U(h)-1 

for each hESL(2,C), pEX. Then there exists a polynomial 
map OA(p4-+End(CN ») such that 

LA = OA Ix· 
(b) If AA denotes the operator on C ';;N (X) that is the multi
plication by LA' then AA defines a continuous operator on 
YeN (X) which commutes with ISL(2,C). (c) AA defines 
an operatoronL 2(X: CN)o that is an element of Morph ( U). 

Proof The proof of point (a) is given in Appendix B. 
Point (b) follows from point (a), since the multiplication by 
a matrix of polynomials defines a continuous operator on 
YeN(p"). For what concerns point (c), because of point 
(a), LA is a continuous (matrix valued) function on X, 
hence it defines an element of Morph ( U). This proves the 
Lemma. 

Remark: The multiplication operator LA also has the 
stronger property: if C is compact in p4, LA defines a bound
ed operator on S( CnX). Notice that, since X is not in gen
eral a closed set in p4, then cnx is not in general relatively 
compact in X. 

Lemma 7.2: LetAo (Y e N (R4) -+L 2(X: CN») be defined 
by 

then Ao is an intertwining map; moreover, for each 
AE.r1'(Uo), AA oAo is an intertwining map. 

Proof' Obvious from Lemma 7.1. 
Remark: We stress that AA is not a continuous operator 

on L 2 (X: CN), nevertheless the fact that LA is a polynomial 
function guarantees that the operator AA oAo is a continuous 
operator from Y eN (R4 ) to L 2(X: CN). 

Definition 7.2: We say that a map 

A: Y e N (R4 ) -+L 2(X: CN) 

is continuous in the weak sense if 

cp,J 1---+ (Acp,J) L', cpEYeN (R4), fEY eN (X) 

is continuous in each variable, in the Schwartz topology. 
Lemma 7.3: Every intertwining map which is contin

uous in the weak sense 

A: YeN (P4) -+L 2(X: CN) 
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is of the form 
A = AA oAo, 

whereAE.r1'(uo) uniquely determined. 
Remark: The following proof makes use of the 

Schwartz's theorem on kernels, in order to express every 
continuous, in weak sense, intertwining map as a distribu
tion having suitable invariance and support properties that 
force it to be in the form AA oAo. Such a technique is due to 
Bruhat, who developed it in great generality and depth in his 
thesis. 14 

Proof of Lemma 7.3: Let A an intertwining map in the 
weak sense. Since the Fourier transform is a topological lin
ear isomorphism, we can write Acp = Kqy, where K is an in
tertwiningmap in weak sense from Ye N (P4) toL 2(X: CN). 

We have to prove that K = AA oRes for a suitable A. Let 

[ this integral is well defined also in the case X = X 0+ since a 
always defines (also in the case m = 0) a Radon measure on 
p4]. If we define 

B(f,g) = {Kf,Resg} [f,gEYeN(P4)], 

then the hypothesis of weak continuity of K assures that B is 
a bilinear form continuous in each variable. Then, from the 
kernel theorem of Schwartz, there exists a unique matrix 
whose entries K ij are tempered distributions on p4 X p4 such 
that 

N 

L Kij(J;®gi) =B(f,g), f,gEY eN (P4). 
iJ= 1 

Let us now suppose that K commutes with the action of the 
translation subgroup, namely 

eiPa(Kj) = K(eip ,,/). 

From this equality we get 
N L (eip'a - eiq.a)Kij(J; ®gi) = 0. 

iJ= 1 

If we choose f, g such that they have all vanishing compo
nents except J; = ; and gi = 5 with;, SEY (p") then 

(eip-a - eiqa)Kij (; ® 5) = 0, 

'If;,SEY(P4), 'lfaER4 and 'lfi,j = 1, ... ,N. 

By differentiating with respect to a and putting a = 0, we 
obtain 

(PI' - qp. )Kij = 0, 'lfJ-l = 0,1,2,3. 

Let us denote p - q = v, p + q = w, then vp.K ij = 0, where 
K ij is a distribution in the variables v, w. From a standard 
result of distribution theory we conclude that 

K ij = 8(v) ® Oij(w). 

The change of variables from p,q to v,w transforms the func
tion ;(p) ® s( q) into a function X (v,w) such that 

X(O,w) = ;(p)s(q) 

so that 
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where ()ij is a uniquely determined tempered distribution on 
p4. 

Let us consider now the intertwining condition with re
spect the action of SL (2, C). Let us denote 

[u(h)]ij = uij(h), [U V (h) h = ,ji(h), l<iJ<N. 

Since 

{u(h)f\u V (h)gh} = {f,g}, f,gEY cN(X), 

it follows that 

B(u(h)f\u V (h)gh) = {K(u(h)fh),Res U V (h)gh} 

= {u(h)(Kj)\u V (h)Resgh} 

= {Kf,Res g} = B( f,g). 

If we choose f, g such that they have all vanishing compo
nentsexcept./j =; andgi = 5 with;'5EY(P4) then we get 

n 
~ ik h) ()ij(;5) = £.. u (h)()kl«;5) ulj(h). 

k,/~ I 

Since ;,5 ~;5 has dense range in Y (p4) we have 
N 
~·k h·' ()ij = £.. u' (h)() kl ulj(h). 

k,/~ I 

Hence the matrix 0 whose entries are the distributions 
[0h = ()ij satisfies the relation 

(7.1) 

Let us finally consider the condition on the support of 
the distribution 0. We want to prove that 0 lives on the 
closure CI(X) of X, in the following sense: 

epEC;' (p4) and ep = 0 on CI(X) =?()ij (ep) = 0 

(notice that X 0+ is not closed in p4). In fact, given any ep 
such that epEC;' (p4) and ep = 0 on CI(X), one can always 
choose ¢'EC;' (p4) such that t/J = 1 on supp (ep). Then 
ept/J = ep and so 

()ij(ep) = ()ij(ept/J) = Kij(t/J®ep). 

We choose f,g such that they have all vanishing components 
except./j = t/J and gi = ep; thenf,gEC ~N (p4), and 

()ij(ep) = B(f,g) = 0, 

since Res g = O. 
Let us denote 

if X = X';;, 

if X=X o+ 

In all cases n is open in p4 and X is a regular closed submani
fold of n. 0 is a (matrix valued) distribution in n that lives, 
in the above sense, on X. Therefore we can write 

0(ep) = 0 0 (Res ep), epEC;' (n), 

for a uniquely determined distribution 0 0 on X 
=SL(2,C)IHo; moreover (7.1) implies that 0 0 satisfies 

0 0 = u(h)0~u(h)-I, VhESL(2,C). (7.2) 

We use at this point the result of the next lemma to conclude 
that 0 0 is a C 00 function on X; in other words, there exists a 
C 00 matrix <I> on X such that 
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0 0 (ep) = L <f>(p)ep(p)da(p) [epEC;'(X)]. 

The covariance condition (7.2) implies 

<I>(15(h)p) = u(h)<f>(p)u(h)-t, VpEX, VhESL(2,C). 

By settingp = p+ and choosing hEBo we get 

<I>(p+) = uo(h)<I>(P+)UO(h}-I, hEBo. 

Thus A = <I>(P+)E&"(Uo) and <I>(p) = L}. (p); A uniquely 
determined by K. 

Hence, for all gEC ~N (n.), fEY eN (p4), 

N 

B(f,g) = I ()ij(./jgi) = {L}. ·Resf,Resg}. 
ij 

Since A}. is the multiplication operator by L}., this equation 
can be written as 

{Kf,Res g} = {A}. oResf,Res g}. 

Since the restrictions of the elements gEC ~N (n) to X are 
dense in L 2(X:CN

), we obtain Kf = A}. oRes! This proves 
the lemma. 

We still have to show the property, used in the proof of 
the preceding lemma, that 0 is a C 00 function matrix. We 
notice that the vector space generated by the distributions 
()ij' 1 <i,j<N, is stable with respect to the action ofSL(2,C), 
because of (7.2). Therefore, in order to show the property 
we are interested in, it is sufficient to prove the following 
lemma. We work with a connected Lie group L and a closed 
subgroup Lo such that Y = L 1Lo admits an invariant mea
sure. 

Lemma 7. 4: Let [ be a distribution on Y = L 1 Lo such 
that its transforms [\ for hEL, span a finite dimensional 
vector space. Then [ is a C 00 function. 

Proof Let us denote by f3 the canonical projection 

f3: L-+ Y. 

Then f3 induces a map,J ~ /': C;' (L) -+ C ;' ( Y) defined by 

where Po is a left Haar measure on Lo. It is possible to show 
(with a straightforward generalization of the methods used 
in the proof of Lemmas 5.13 and 5.14 of Ref. 6) thatf~ /' 
has the following properties: 

( 1) it is surjective and continuous; 
(2) (fh)' = (/,)h. 

If [ is a distribution on X we can use the map f ~ /' in 
order to lift [ to a distribution on the manifold of the group L: 

['(f) = [(/'), VfEC;' (L). 

The map [~[ / (pull back) is injective and [/ is right Lo 
invariant. So if we want to prove that [is a C 00 function it is 
enough to prove that [ / is a C 00 function. Let us consider the 
action of L on itself by left translations; then L acts on the 
functions of C ;' (L), hence on the distributions on L. Let us 
denote such an action by 

h:['-+h'[', hEL. 

As h varies in L, h· [/ span a finite dimensional vector space 
V. The action of L on V induces an action on Vof the Lie 
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algebra of L, t' - a(X) t " and induces also an action of the 
universal enveloping algebra of this Lie algebra; if a denotes 
any element of the latter, then a(a)t'EV. Let us choose a 
basis {XI, ... ,Xn } of Lie(L) and denote by 
o = X ~ + ... + X ~. 0 is an element of the universal enve-
loping algebra and a(O) is a differential operator on the L 
manifold such that a( 0) t ' E V. Also Ok (the k th power) is in 
the universal enveloping algebra and 

a(Ok)t'EV, k = 0,1, .... 

Since V is finite dimensional, then there exist constants 
CI"",Ck such that 

a(Ok + CIO
k

-
1 + ... + ck)t' = 0. 

The differential operator a(Ok + CIO
k 

- I + ... + Ck) is el
liptic on the L manifold, as can be shown by calculating the 
symbol of the operator in a local coordinate system, ellipti
city being assured by the fact that {XI, ... ,Xn } is a basis of 
Lie(L). Then by the elliptic regularity theorem, t' is a Coo 
function on L. The remarks made above then show that t is a 
C 00 funciton on Y. This proves the lemma. 

If A is an intertwining map in the sense of Definition 7.1, 
then A is continuous in the sense of Definition 7.2, hence A is 
of the form A = A" oAo, by Lemma 7.3. Conversely, Lemma 
7.2 assures that, if A is of the from A = A" oAo then it is an 
intertwining map. We can then conclude the whole discus
sion of this section by stating the following theorem. 

Theorem 7.1: The intertwining maps 

A: YeN (R4) -L 2(x: CN) 

are all and only those of the form 

A = A" oAo 

for A. varying in .s1' ( uo) . 

VIII. THE GUPTA-BLEULER THEORY OF THE EM FIELD 

In this final section we show how the theory of the repre
sentations (of the Poincare group) outlined in this paper can 
be concretely used to build a free quantum field. We examine 
the Gupta-Bleuler theory of the EM field as it is discussed in 
Ref. 10. We choose this example because it is the prototype 
of a quantum field theory with indefinite metric. 

There are other elementary examples (massive vector 
field,9 Boulware-Gilbert model 15

) for which our machinery 
works. We do not review them here because of their trivia
lity. We believe that our approach is useful also for treating 
less elementary models of covariant quantum fields with in
definite metrics. II In particular, we shall treat the free gravi
tational quantum field in another paper. 

We denote by (n), for any relative integer n, the unitary 
irreducible representations of E defined by 

(n): (~ ;_1) ~xn. 
We write W 2 = (2) Ell (- 2); W2 isaunitaryrepresentation 
of E. We also write W I for the trivial one-dimensional repre
sentation (0) of E. 

We denote by (U( W2), K( W2») the unitary element of 
9 that corresponds to W 2

• K( W2) is the space of the quan-
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tum states of the photon. We shall show in this section that it 
is not possible to define a covariant quantum four-vector 
field that acts on the Fock space defined on K( W2) or on 
the carrier space of any other model of the representation 
U( W2) ofISL(2,C). This fact is at the root of the difficulties 
of the covariant quantization of the EM field and can be 
shown in a quite transparent way using the theorem on inter
twining maps of the preceding section. For this reason, we 
have to look for pairs ( U,K), other than ( U ( W 2 

) ,K ( W 2 
) ), 

that can be used to define a quantum EM field. They have to 
fulfill the following requirements: (1) U has not to be a fully 
reducible representation that contains U( W2) as direct sum
mand; otherwise we are led again to the impossibility of de
fining a covariant EM field on K( W2). (2) U has to be 
indecomposable [as consequence of ( 1 )] and has to be an 
extension of U( W2) [in the sense that it contains U( W2) asa 
subquotient]. (3) (U,K) has to admit an indefinite metric. 

As explained in Sec. V the problem of finding extensions 
of( U( W 2),K( W2») in 9 that admit an indefinite metric is 
equivalent to the problem of finding the extensions of W 2 as 
(finite dimensional) modules for E that have an indefinite 
metric. We shall restrict to extensions of W 2 up to dimension 
4. This is for two reasons: the first is that it gives a minimal 
solution; the second is that we want to define a quantum field 
that transforms as a four-vector field, because it couples lo
cally to the currents. We shall show that there is a unique 
solution to this problem (that leads to the Gupta-Bleuler 
theory of the EM field). 

The classification of the indecomposable finite dimen
sional modules for E is fully discussed in Appendix A. The 
main result is that there is a unique indecomposable four
dimensional module for E that allows an indefinite metric 
and that extends W 2

• As shown in Appendix A (the equiv
alence class of) such a representation is the (the equivalence 
class of the) restriction to E of the four-dimensional irredu
cible representation D (1/2,1/2) ofSL(2,C). We stress the fact 
that there exist other (equivalence classes of) indecompos
able three and four-dimensional extensions of W2; the re
quirement of existence of an indefinite metric for the repre
sentation forces us to select only the (equivalence class of 
the) restriction of D(l/2,1/2). 

We briefly describe the explicit realizations of the exten
sions of W 2 that we shall use. 

We consider the realization of the representation 
D (I 12,1/2) ofSL ( 2, C) defined by the covering homomorphism 
8; in a natural way we consider 8 as acting on ~ 

h ~ 8(h): SL(2,C) ~ GL(4,C). 

This realization preserves the sesquilinear form 

In the sequel we shall denote by W 4 the restriction to E of this 
matrix realization of D(I/2,1/2). 

The commuting algebra .s1' ( W4) is easily seen to be 

.s1' ( W4) = CI + CA.o, 

where ,.1.0 is the operator on ~ defined by 

A.ov=(p+·v)p+, VE~ 

[p+ = (1,0,0,1)]. 
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The sesquilinear covariant forms for W 4 are easily seen 
to be given by 

V,W ~ av'w + b(v'p+) (p+ 'w) 

as a, b vary in R. We have an indefinite metric for W 4 if and 
only if a#O. 

W 4 has a flag of E-invariant submodules 

W 4:J W 3 :J WI, 

W 41W3 = WI; W 3IW I = W 2. 

W 3 = span {(l,0,0,1), (0,1,0,0), (0,0,1,0)} is an E-invar
iant subspace of~ that is a realization of an indecomposable 
three-dimensional extension of W 2

• No indefinite metric 
there exists for W 3

• The restriction to W 3 of the indefinite 
metric v,~ - v'W of W4, 

v,w ~ V2W2 + V3W 3' V,WEW3C~, 

defines an E-invariant seminorm on W 3
• 

WI = span {(l ,0,0,1 )} is an E-invariant subspaces of 
W 3 and coincides with the subspace of W 3 ofnull-seminorn 
elements. We have W 2 = W 3 I W I. We notice that the scalar 
product of W 4 induces on W 3 an invariant (since W 2 is uni
tary for E) scalar product that coincides with the covariant 
positive definite sesquilinear form induced on W 3 by the in
definite metric v,w ~ V'W of W 4

• 

The Hilbert functor allows to transfer at once all the 
properties of the extensions of W 3 to analogous properties of 
the extensions in 9 of(U( W2),JY'( W2». 

W 4 is a non unitary indecomposable representation of E, 
and so the representation ofISL(2,C) that correspond to it 
in 9 is nonunitary and indecomposable. Since W 4 is the 
restriction to E of a representation of SL(2,C), 
(U( W4),JY'( W4» has an explicitly covariant realization. 
We denote by L 2(X:~) the space of (a-equivalence classes 
of) functions f (X --> ~) defined on X = X 0+ , such that 

[ where If (p) 1 denotes the Euclidean norm If (p) 12 
= ~~ =0 lfl" (p) 12]. We define on L 2(X:~) 

(UaJ) (p) = eiP
·
a8(h)fh(p). 

(U,L 2(X: ~» is the explicitly covariant realization of 
(U( W4) ,JY'( W4». The algebra Morph ( U) is the algebra of 
the multiplication operators LA on L 2(X:~) of the form 

LA (p) = 8(h)A8(h)-I, 

whereAE..of (W4) and h is any element ofSL(2,C) such that 
8(h)p+ =p. ForfEL2(X:~) we get 

LA (p) f(p) = af (p) + {3p(p'/ (p»), a,{3Ee. 

The indefinite metrics for (U,L 2(X: ~») are of the form 

J,g~a Ix da(p) f(p) 'g(p) 

+ b Ix da(p)( f(p) 'p)(P.g(p»), 

a,bER, a#O. In particular, 
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J,g~ - Ix da(p) f(p) 'g(p) (8.1 ) 

is defined by a bounded operator, with bounded inverse. This 
is the only (up to scalar multiplication) indefinite metric for 
(U,L 2(X: ~») that has this property. 

JY'( W 3
) is a closed invariant subspace of JY'( W4). In 

the sequel we shall denote 

JY'- = Jr'OV( W 3), U- = UCOV( W 3). 

JY'- is the space of the (a-equivalence classes of) functions 
f(X~~) such that 

pf(p) = 0, pE%, 

and 

Ix da (p) If (p) 12 < 00. 

U - is defined on JY'- as 

(U;h )(p) = eip
'
a8(h) fh(p). 

JY'- is an invariant closed subspace of JY'. The restriction to 
JY'- of the indefinite metric (8.1) is 

it defines an invariant seminorm on JY'-. 
Since W 4:J W 3 :J WI, JY'( WI) is an invariant closed 

subspace of (W4) and JY'( W 3
). We shall denote 

~=Jr'0v(WI), U o = ucov(WI), 

~ is the space of the (a-equivalence classes of) functions 
f(X~~) such that 

f (p) = pAj(p), pE%, 

where A j is an element of L 2 (X,da) . The restriction to ~ of 
the indefinite metric (8.1) is the null form; in other words 
~ coincides with the invariant closed subspace of JY'- of 
all elements with invariant seminorm O. 

Corresponding to the flag 

W 4:J W 3 :J WI, 

we have the flag 

L 2(X: C4
) :JJY'- :J~, 

where 

L 2(X: ~)/JY'- =~; JY'-/~=JY'( W2). 

The representation U - I UO that acts in the Hilbert space 
JY'- I ~ is the explicitly covariant realization of U( W2). 
We shall denote 

JY'Photon = JY'-I~, uphoton = U - IUo. 

We notice that the invariant scalar product of dYPhoton coin
cides with the invariant positive definite sesquilinear form 
induces on it by (8.1). 

We consider now the intertwining maps. Theorem 
7.1 ensures that the intertwlDlDg maps 
A (Y C' (R4)~L 2(X: ~») are given by 

(Acp) (p) = A Res q;(p), cpEY C' (R4), 

where A is an element of ..of ( W4). Therefore 
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(AqJ)(p) = a Res ~(p) + pp(p. Res ~(p»), 

where a,{3EC. 
If an intertwining map A (Y C' (R4) -+L 2(X: ~») has 

its range contained in ~-, then it defines an intertwining 
map A - (Y C' (R4) -+ ~-) because ~- is an invariant sub
spaceofL 2(X: ~). Conversely, if A -(Y C' (R4) -+~-)isan 

intertwining map, since ~- C L 2 (X: ~) and the canonical 
imbedding t(~- -+L 2(X: ~») commutes with the action of 
ISL(2,C), then tOA -(Y C' (R4) -+L 2(X: ~») is intertwin
ing. This means that the maps A - are exactly the maps 
A (Y C' (R4) -+L 2(X: ~») whose range is in ~-. They are 
of the form 

(A -qJ)(p) =pp(p·Res~(p»), PEC. 

We notice that these maps have range in~, hence, in par
ticular, all the intertwining maps from Y C' (R4) to ~ are 
of this form. Since jyPhoton = ~- / ~ we get immediately 
that there are no intertwining maps from Y C' (R4) to 
jyPhoton, other than the trivial one. 

Now we consider the problem of defining the free quan
tum EM, field. According to our discussion of Sec. V we 
define the physical content of the EM field by fixing the pair 
(uphoton,jyPhoton). We consider the Fock space 
y s (jyPhoton) and the creation and annihilation operators 
defined with respect to the invariant scalar product of 
jyPhoton. Then, a free quantum field that transforms covar
iantly as a vector field can be defined on Y s (jyPhoton) if and 
only if there exists an intertwining map from Y C' (R4) to 
jyPhoton. We have seen that there exists no nontrivial map. 
This shows that it is not possible to define a covariant quan
tum field acting in the Fock space Y s (jyPhoton). 

Now we discuss (U - ,~-). By Theorem 4.1 the inde
finite metrics for ( U - ,~-) are in 1-1 correspondence with 
the indefinite metrics for W 3

• Since there exists no indefinite 
metric for W 3 , there is no indefinite metric for (U - ,~- ). 
This shows that it is not possible to define unambiguously a 
pair of creation and annihilation operators on Y s (~- ). 
Therefore it is not possible to define a quantum field theory on 
Ys(~-)· 

Weare led to consider the extension (U,L 2 (X: ~») of 
(uphoton,jyPhoton). We fix Y s(L 2(X: ~») and the operators 
a*( f) and a( j), forfEL 2(X: ~), using the indefinite met
ric (8.1). Then, following our discussion contained in Sec. V 
we define 

A(qJ) =E(aRes~ +bp(p"Res~»), 

qJEY R' (R4
), a,bER, a#O. 

Varying a,b we get all and only the covariant quantum fields 
that transform asfour-vectors and acts on Y s(L 2(X: ~»). 
They are the generalized Gupta-Bleuler gauges in the sense 
of Ref. 10. 
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APPENDIX A. E-MODULES 

1. Introduction 

In this appendix we shall make a few remarks on the 
continuous finite dimensional representations of E. The 
term representation will be used only for these and by a E 
module we shall mean one defined by a representation. In 
view of the Krull-Schmidt theorem 16 which asserts that any 
representation is a direct sum of indecomposable ones, the 
indecomposable constituents being essentially uniquely de
termined, it is enough to treat the indecomposable represen
tations. We shall construct an infinite family of indecompos
able E modules and give a classification of all indecompos
able modules up to dimension 4. 

2. Basic properties of '1l modules 

Since 

E= {(~ ;_}z,aEC,lzl = I}, 
Lie (E): = ~ ° is spanned over R by the basis {H',X',Y'} 
where 

with commutation rules 

[H',X'] = 2Y', [H',Y'] = - 2X', [X',Y'] = o. 
We introduce the complexification ~ = C ® R ~ ° of ~ ° and 
put 

H= -i®H', X=~(1®X'-i®Y'), 

Y = ~(1 ®X' + i® Y'). 

Then {H,X, Y} is a C basis for ~ with commutation rules 

[H,X] =2X, [H,Y] = -2Y, [X,Y] =0. 

It follows from the compactness of the rotation subgroup of 
E that the category of E modules is identical with the cate
gory of finite dimensional ~ modules in which H acts semi
simply with integer eigenvalues. The term ~ module will be 
used only for these. If V is any ~ module we shall write VI' 
(fLEg) for the eigenspace in V of H for the eigenvalue fl. 
Also we put 

VO = {VEV: X·v = 0, Y·v = O}. 

Proposition AI: Let Vbe any ~ module. Then (a) X and 
Yare commuting nilpotents in End( V); (b) 
X(V)CV,..+2' Y(V,..)CV,.._2; (c) VO#OifV#O; (d) if 
dim ( VO) = 1, V will be indecomposable. 

Proof (b) is immediate from the commutation rules and 
implies (a). If U is any vector space and NEEnd ( U) is nilpo-
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tent, UN: = {uEUINu =o} is #0 if U#O. So VX#O if 
V # 0, and as Y commutes with X, V x is stable under Y. Since 
Yis also nilpotent, ( V X) Y = VO # 0. If V = U 1 Ell U2 where U; 
aresubmodules, (U;)o#Osothat VO= (U1)oEll (U2)0 has 
dimension at least 2. This proves (d). 

For any integer a let lea) be the one-dimensional mod
ule C on which X, Yare ° and H acts as the scalar a. Since any 
module V can be tensored by lea) so that the H spectrum 
changes from S to S + a, we can normalize V so that the 
smallest eigenvalue of H in VO is 0; if dime Va) = I, this 
means H = ° on VO when V is normalized. 

Let 

D= {£5(Z) = (~ z~} Izl = I}, 
A = {a(a) = (~ ~} aEC} 

so that E = D X'A and 

(~ z~I)=£5(z)a(z-la). 
For any integer f.llet R (f.l) be the space of rational functions 
Jon E such that 

j{£5(z)g) = zl"J (g) [£5(z)ED,gEE]. 

The restriction map J ~ J I A allows us to identify R (f.l) with 
the space .sf of functions on C that are polynomials in a I and 
a2 (a = a I + ia2 as usual). The action of Eon R (f.l) by right 
translation then gives an action on .sf; we write .sf (f.l) for .sf 
equipped with this action 

a(b): cp(a)f--'H/J(a + b), 

£5(z): cp(a)f--'H/J(z-2a )zI". 

The action of 'l? ° on .sf is then computed to be: 

XI.~ Y"~ 
. Ja l ' . Ja2 ' 

H': 2(a2 ~ - al~) + if.l. 
Ja l Ja2 

As usual, let 

J I(J .J) 
a;; ="2 Ja I - I Ja2 ' 

J I(J .J) 
Oa ="2 Ja I + I Ja2 . 

Then 

H: - 2(a ~ - a ~) + f.l, 
Ja era 

J J 
X:-, Y:-. 

Ja Oa 

For A (f.l) we can take the basis 

a r as 
(r,s) =--. 

r! s! 

In this basis X, Y,H act as 
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X: (r,s) -+ (r - I,s), (O,s) -+0, 

Y: (r,s) -+ (r,s - I), (r,O) -+0, 

H: (r,s) -+(2(s - r) + f.l)' (r,s). 
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We represent (r,s) by the corresponding point in Z 2 CR2 

and write 

t 
for the actions of X and Y, respectively. We then get the 
following graphical representation: 

It 

where the label under a vertex gives the eigenvalue for the 
action of H. 

3. Modules Vwith dim(~)=1 

If dime Va) = I, Vis indecomposable and we have an 
imbedding V~.sf (f.l). We shall now determine completely 
all E-submodules of .sf (f.l). Let us consider the set I of all 
sequences 

h = (hr)r>o, 

ho>hl>"'>O, hr integer and =0 for r~O. 

Define 

.sf(f.l: h) = E9 C·(r,s). 

It is immediate that .sf (f.l: h) is a submodule and 

dim .sf(f.l: h) = L hr· 
r 

Proposition A2: We have (a) the .sf (f.l: h) (as h varies) 
are precisely all the submodules of .sf (f.l) (of finite dimen
sion); .sf (f.l:h)o = C' (0,0); (b) .sf (f.l: h) ~.sf (f.l: k) if and 
only if h = k. 

In particular, all the .sf (f.l:h) are indecomposable, and 
an E module V with dim ( Vo) = 1 is isomorphic to exactly 
one .sf (f.l:h). 

Remark: Proposition A2 leads to graphs that describe 
the modules Vwith dime Va) = 1. One must exercise some 
care in constructing modules out of more general graphs, 
especially when the eigenvalues of H have multiplicities. For 
instance the graph 

0; 0 : 0 
020 

defines an 'l? module with basis ea (a = 1,2,3) such that 
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Yea = 0, Xe l = Xe3 = e2 , Xe2 = 0, 

He l = He3 = 0, He2 = 2e2 • 

But although the graph is connected, the module is decom
posable; indeed it is the direct sum of the submodules 
C' (e l - e3 ) and C'e2 Ell C·e3• Of course if the graph is not 
connected, the module is decomposable. 

4. The category S of f!j' modules 

The class of f!j' modules V with dim( Vo) = 1 is not 
closed under passage to duals. For instance, let 

V = .G1(0: (2,1,0, ... ») 

so that its graph is 

-2 

A simple calculation shows that V * corresponds to the graph 

for V*wehavedim( V*)o = 2.ltisclearthatthegraphofV* 
is obtained from 

o 

-2 

by deleting the vertex with ° eigenvalue on the bottom line, 
as well as the arrows going to it. This corresponds to the 
relation 

V* ~ .G1(0: (2,2,0, ... ) )/.G1(0: (1,0, ... »). 

This suggests that one should try to enlarge the class of mod
ules by adding to it all subquotients. We shall now proceed to 

a+2 

give a more precise description of this extended family. Our 
analysis will show that it is closed under passage to duals. 

Let,uEZ. Then.G1 (,u:k) c.G1 (,u:h) (h,keJ) if and only if 
k,<h, for all r>O. We shall write 

k-<h 

if the following conditions are satisfied: (a) k,<h" for all 
r>O; (b) there exist a,b, O<a < b, such that 

h,=k" r<a or r>b, 

h,+ I> k" a<r<b. 

It is immediate from the second condition in (b) that 

k, < h" a<r<b. 

The significance of this definition is clear from the following 
proposition. 

Proposition A3: The condition k -< h is equivalent to the 
indecomposability of the module .G1 (,u:h) 1.G1 (,u:k). 

Remark: We do not know whether the construction giv
en here produces all indecomposable modules. We write.Y 
for the class of indecomposables of the forin .G1(,u:h)1 
.G1 (,u:k). In low dimension this can be checked. 

5. Classification in dimension < 4 

By brutal calculation we can compute all indecomposa
bles if the dimension is not high. 

Proposition A4: All indecomposable modules for f!j' in 
dimension d<4 are of the class .Y and have the following 
graphs, the module .G1 (,u:h) 1.G1 (,u:k) being abbreviated as 
(,u:h:k) and .G1 (,u:h) as (,u:h). 

0:<=0 
a a-2 

(a~ ) 

d=l 
o 

a 

(at) 

d=2 

(a: (1,1,0, ... ») 

d=3 

o ( C ( 0 (a: (1,1,1,0, ... ») 
a 0-2 a-4 

(ai) 

(a: (1,0, ... ») 

(a: (2,0, ... ») 

(a: (3,0, ... ») 

(an 

(a: (2,1,0,~ a (a: (2,2,0, ... ):(1,0, ... ») 
"''1 b a-2 

(an 
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d=4 

o : ::r '2 0 : 0 (a: (1,1,1,1,0, ... ») 
a+4 

a 0-2 a-4 0-6 
a + 2 (a: (4,0, ... ») 

(a: (2,2,1,0, ... ): (1,0, ... ») 

0+2 a 

(a: (3,2,0, ... ): (1,0, ... ») 

a-2 0-4 

0-2 

(aj) (an 

(a: (2,2,2,0, ... ): (1,1,0, ... ») 
0+4 

0+2 a 0-2 
(a: (3,1,0, ... ») 

0-4 

(a: (2,2,0, ... ») 

(a\) 

6. Modules admitting an indefinite metric in 
dimension .;;;4 

It is easy to decide which ofthe above modules admit W 2 

(photon representation) as subquotient and admit an inde
finite metric. If V is an E module and (., .) is an invariant 
sesquilinear form, (Zv,v') + (v,Zv') = ° for V,V'EV, ZEI&' 0 

( = Lie (E»); this is valid for Z = H,X',X ", and hence the 
condition in terms of H,X, Ybecomes 
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(Hv,v') = (v,Hv'), 

(Xv,v') + (v, Yv') = 0. 
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The first condition implies that the eigenspace for H for dis
tinct eigenvalue are mutually orthogonal. In particular, if 
( " .) is nondegenerate, it remains nondegenerate when re
stricted to any of the eigenspaces for H. Now W 2 has the 
graph 

o 0 

2 -2 

and the following modules admit W 2 as a subquotient (we 
use the notation U-'V to indicate that Vis a quotient of U): 
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d= 1,2 

d=3 

None 

W 3 =OL 
W1CW\ 

Wi = 0: (trivial module), 

W 3/W 1=W2
, 

(W 3 )* = of, 

Oi:J W 3
, 

W 2 C (W 3 )*, 

2T*(W3 )*, 

OJ:J (W 3 )*, 2j':"'W3
, 

2j .... W 3
, 0j':J(W3 )*, 

2!--Cw3 )*, of (:J (W 3
, 

O~:J w3
, 

o~ .... ( W 3 )*. 

However only O~ admits an indefinite metric. To exclude the 
others we use the following lemma. 

Lemma A5: Suppose V is an indecomposable 'tl module 
with two eigenvalues b, b + 2 being simple. Then V does not 
admit an indefinite metric. 

Proof" If both X' Vb and y. Vb+ 2 are zero, then Vsplits 
as the direct sum of the submodules E9 c.;;b Vc and E9 c>b + 2 Vc 

which are both different from zero. Let O#UEVb and 
0# VE Vb + 2' The two possibilities are essentially 

(a) Xu = v, Yv = 0, (b) Xu = 0, Yv = U 

for otherwise either XY or YX will have a nonzero eigenval
ue, contradicting its nilpotency. For an indefinite metric, 
(Xw,w') + (w,Yw') = o which is impossible under both (a) 
and (b), in fact, assuming both (a) and (b), we get 

(Xu,v) = (v,v) #0, (u,Yv) = 0, 

(Xu,v) = 0, (u,Yv) = (u,u) #0. 

To construct all indefinite metrics for O~ we write it as 
spanned by basis vectors e2, eo, e-2, /0 with 

Then the indefinite metrics are given by 

(eo,eo) = 0, (e2,e2) = (e_ 2,e_2) = a, 

(eo,/o) = - a, (/0,/0) = /3, 

where a # 0 and /3 are arbitrary constants and all other sca
lar products are zero. It is trivial to verify that these are 
indefinite metrics. To see that there are no others, let (., .) 
be an indefinite metric. Then all scalar products other than 
the above ones are zero. Write (e2,e2) = a, (e_ 2,e_2) = r, 
(/o,fo) =/3, (eo,fo) = r', (eo,eo) =8. Then 

8 = (eo,eo) = (eO,Ye2) = - (XeO,e2) = 0, 

r' = (eo,/o) = (Ye2,/o) 

= - (e2,Xlo) = - (e2,e2) = - a, 

r' = (eo,fo) = (Xe_ 2,/o) 

- (e_ 2,Y/o) = - (L2,e_ 2 ) = -/3. 
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Let (., .) a,p denote the indefinite metric corresponding to 
fixed values of a#O and /3. Let us now take the representa
tion ofSL(2,C) in R4 acting through 8 and write ~ for the 
complexification of this representation. It then turns out 
that if we denote by W 4 the space ~ viewed as an E module, 
then 

0~~W4. 

Indeed, this isomorphism is given by 

as an easy calculation shows. Furthermore, 

( ., .) _ 2,0 ~ standard Minkowski metric. 

Summarizing we have the following proposition. 
Proposition A6: There is, up to isomorphism, a unique 

indecomposable 'tl-module admitting an indefinite metric 
and extending W2, in dimension <4. This is the module W 4 

of dimension 4, obtained by restricting the standard four
dimensional representation of SL(2,C) in ~ to the sub
group E; W 4 ~O~. The indefinite metrics form a two-param
eter family ( ., .) a,p with a # 0, and the standard Minkowski 
metric is obtained when a = - 2, /3 = O. In the basis {eo, e2, 
e _ 2' lo}, the matrix of ( ., .) a,p is given by 

APPENDIX B. SL(2, C) 

o 
a 
o 
o 

o 
o 
a 
o 

~a) 
o . 
/3 

We discuss some aspects of the finite dimensional repre
sentation theory of SL(2,C). The holomorphic irreducible 
representation are the gp, j-;.O integer, with 
dim(i»j) = j + 1; i»j is the representation obtained from 
the natural action of SL(2,C) on the space of polynomial 
functions on C2 that are homogeneous of degree j. If 

H = (1 0 ) X = (0 1) Y = (0 0) 
0-1' 00' 10 

then {H,X,Y} is a Cbasis for the Lie algebra ofSL(2,C); and 
the infinitesimal representation, also denoted by i»j, is C 
linear. If we write 

( - l)k 
u~): = Uk: = Z~Z~-k, 

Jk! ~(j - k)! 

k = 0,1,oo.,j (u_ 1 = 0 and Uj+ 1 = 0 by convention), the 
{Uk} is a basis for the space of gy which can be identified 
with 0. We have 
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ii)j(H)uk = (j - 2k)uk, 

ii)j(X)Uk =~k(j-k+ 1) Uk~I' 

ii)j(Y)uk =~(j-k)(k+ l)uk+ p 

from which it follows that on the Lie algebra ofSU(2), the 
matrices of ii)j are skew Hermitian. So, in the usual scalar 
product for cY, ii)j(ho) is unitary for hoESU(2). The contin
uous (i.e., real analytic) irreducible representations of 
SL(2,C) are the ii)j.k (j,k>O, integers) 

ii)j,k(h) = ii)j(h) ® ii)k(ii) 

(li = complex conjugate of h). 

The ii)j,k are all mutually inequivalent and ii)j,k is of dimen
sion (j + 1) (k + 1). As we shall see presently we are inter
ested in the ii)jJ. 

Restriction to SU(2): ii)j restricts to the representation dj 

with spin U Thus, by the Clebsch-Gordan formula, 

ii)j,k Isum -d li~ k I ttl d li~ k 1+ 2 ttl··· ttl dH k. 

In particular, (I) ii)j,k Isu(2) contains the trivial representa
tion of SU (2) if and only if j = k; and then it contains the 
trivial representation exactly once. 

Restriction to E: We have the following: (II) ii)j,k IE 
contains the trivial representation of E if and only if j = k; 
and then it contains the trivial representation exactly once. 

To prove this we note that {iH,X,iX} is an R basis of the 
Lie algebra of E, and we want the condition for the existence 
ofa nonzero vector 0 such that ii)j,k(a)0 = 0, VaELie(E), 

ii)j,k(a) = ii)j(a) ® I + I ® ii)k(a), 

aELie(SL(2,C»), 

the condition reduces to 

(ii)j(H) ® I - I ® ii)k(H»)O = 0, 

(ii)j(X)®I)O=O, (I®ii)\X»O=O; 

and so, from the first we get 

A simple calculation shows that 0 = ° unless j = k, and 
whenj= k; 

o = const ub ® ub (Bl) 

(using the remaining relations). 
Explicit realizations: We shall confine ourselves only to 

the ii)jJ. 
( 1) As before ii)j acts on C j. ii)jJ acts on the space of 

endomorph isms of Cj, i.e., on the space ofjXj complex ma
trices M. The action is 

ii)jJ(h):M --> ii)j(h)Mii)j(h)*. 

The vectors fixed by SU (2) are the scalar multiples of the 
identity. The vectors fixed by E are the multiples of 

). 
(2) We consider polynomials on p4, i.e., polynomialsf 

in PI' (Ji = 0,1,2,3) which satisfy (a) f is homogeneous of 
degreej; (b) fis harmonic, i.e., Of = 0. 

2706 J. Math. Phys., Vol. 30, No. 11, November 1989 

We have SL(2,C) acting via {j and the above space is 
carried into itself by this action. The representation of 
SL(2,C) thus defined is known to be precisely ii)jJ. We need 
only the following. 

Proposition 1: Let W be a module for SL(2,C) (with 
representation u) and suppose thatf(X 0+ --> W) is a function 
such that 

f({j(h)p) = u(h)f(p), hESL(2,C), pEX 0+' 

Then there exists a polynomial map F: p4 --> W such that 

Flx+ =/ o 

Proof We identify (PO,PI,P2,P3) with the matrix 

(
Po + ~3 PI + iP2) 
PI - IP2 Po - P3 

as usual. Let P + = (1,0,0,1) so that E is the stabilizer of P + 

and X 0+ =H / E. The condition on f shows that f(p+) is 
fixed by u(ho), for hoEE. Splitting u as a direct sum of ii)j.k 
and noting that ii)j,k withj:~ k do not contribute tof(p+) by 
(II), we see that it is enough to consider the case u = ii)jJ for 
some j>O. By (B 1) we may assume that f(p +) = ub ttl ub. 
Hence 

f({j(h)p+) = ii)j(h)ub ® ii)j(li)ub· 

Let 

and recall hat ii)j(h) acts on the homogeneous polynomial 
P(z) by P(g-IZ ), where 

Z= CJEC2
. 

Hence ii)j(h) 'z{ = ( - rzl + az2)j showing that 

ii)j(h)ub = L Ckrkd~kut, 
O<.k<j 

where ck are constants independent of h. Hence 
ii)j(h)ub ® ii)j(Jz)ub is a linear combination of 

rkra'~k(ii-l·(u{ ®~), O<,k,l<j, 

with coefficients which are independent of h. It is thus a 
question of showing that the functions 

fkl~; ~)= ykrd~ k(ii~ I 
actually are defined on H / E =X 0+ and are restrictions to 
X 0+ of polynomials on p4. Changing h to hho, hoEE changes 
a to a£ and rto r£, with 1£1 = 1; and it is clear thatfkl (h) is 
the same as fkl ( hho). On the other hand, 

so that tJ(h)p+ = (PO,PI,P2,P3) with 

Po + P3 = 2aa, Po - P3 = 2rY, PI + ip2 = 2aY· 

It is thus a question of showing that fkl is a polynomial in 
these quantities. We may suppose that k<,/ by symmetry. 
Then 
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Remark: It can be shown that F can be chosen to be 
harmonic, i.e., OF = O. It is then even uniquely determined. 

A similar result is also true for X';; (m > 0). 
Proposition 2: Let W be a module for SL(2,C) (with 

representation u) and suppose thatf(X ,;; - W) (m > 0), is a 
function such that 

f(6(h)p) = u(h)f(p), hESL(2,C), pEX';;. 

Then there exists a polynomial map F: p4 - W such that 

Fix,;; =/ 
Proof: The base point is now p+ = (m,O,O,O) -mI. As 

before we assume u = !!fljJ and use the matrix model to con
clude that f(p+) = 1. Then f is a function 
h~!!flj (h)!!flj (h)*. We saw that !!flj(a) is skew Hermitian 
for aELie(SU(2» so that !!flj(b) * = !!flj(b *) for 
bELie(SL(2,C». Thus !!flj(h) * = !!flj(h *) for hESL(2,C), 
so thatf(h) = !!flj(hh *). But the matrix entries of !!flj(h) 
are polynomials in the matrix entries of h so that the entries 
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of f(h) are polynomials in the entries of hh *. Since 
6(h)p+ = mhh *, the proposition is proven. 

Remark: Here again F can be chosen to be harmonic, 
and then it is unique. 
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Linear realizations of the superrotation and super-Lorentz symmetries. I 
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This paper is the first of a series in which various aspects of the superrotation and super
Lorentz symmetries will be studied. In this paper the superrotation algebra and the super
Lorentz algebra are defined. Their linear, finite-dimensional representations are classified. A 
realization of the low-dimensional representations is provided under the form of irreducible 
tensor operator multiplets. 

I. INTRODUCTION 

Supersymmetry has been introduced in theoretical 
physics by Gol'fand and Likhtman I when they showed that 
it is possible to add to the ten generators (L,.,v,Pp ) of the 
Poincare algebra a set offour spinorial operators Qa' whose 
anticommutation relations close on the translation opera
tors Pp • Interest in this super-Poincare symmetry was raised 
by the fact that each irreducible linear multiplet contains 
two states with the same mass but with spins differing by ~. 
The two states are mixed by the action of the spinorial opera
tors Qa' 

Following Wess and Zumin02 and Salam and Strath
dee,3 the study of the scalar multiplet (with spins 0 and !) 
and of the vector multiplet (with spins! and I) has lead to 
many developments in supersymmetric field theory and to 
the concept of supers pace and superfields.4 The study of the 
tensor multiplet (with spins ~ and 2) by Freedman, Van 
Nieuwenhuizen and Ferrara,s and by Deser and Zumin06 

has provided an extension of Einstein gravitation theory 
known as supergravity.7 This theory has also been built by 
MacDowell and Mansouri8 as a gauge theory based on the 
super-Poincare group. 

Although the physical manifestations of supersym
metry and supergravity are inexistent for the moment, the 
general idea of extending a bosonic symmetry to a supersym
metry, by addition of operators that satisfy anticommuta
tion relations, remains very attractive. It may therefore be 
interesting and pedagogical to have at hand simple examples 
of supersymmetric extensions of some well known bosonic 
symmetries. 

This paper (I) is the first of a series in which we study 
various aspects of the supersymmetric extension of the rota
tion and Lorentz symmetries. It is devoted to the definition 
of the algebras and to the classification and realizations of 
their linear finite-dimensional representations. 

In the second paper (II) we define the corresponding 
superrotation and super-Lorentz groups, we study their ac
tions in their vectorial representation spaces, and we define 
the corresponding inhomogeneous algebras. 

The third paper (III) will be devoted to the nonlinear 
realizations of the superrotation and super-Lorentz groups. 

Finally, in a fourth paper (IV) we shall show that the 
nonlinear action of the super-Lorentz group into Minkowski 
space and on the fields leads to a nonconventional theory of 
supergravity. 

II. THE SUPERROTATION ALGEBRA (sr) 

A. Definition of the superrotatlon algebra 

Since the rotation algebra is so (3) with covering su (2), 
it would seem that the natural supersymmetric extension of 
this algebra is the eight-dimensional superunitary algebra 
su(2/I), which contains four bosonic and four fermionic 
generators. However, a smaller algebra exists that contains 
su(2) as a subalgebra. It is the superalgebra defined by Pais 
and Rittenberg,9 which is a complex version of the ortho
symplectic algebra osp( 1/2). It contains only three bosonic 
generators Ja (a = 1,2,3), those of the rotation subalgebra, 
and two fermionic generators Ja (a = ± p. Its supercom
mutation relations are 

[Ja,Jb] = i EabJc' 

[Ja,Ja ] =!Jp(ua)Pa, 

{Ja,Jp} = !Ja (rua )aP 

(1) 

wheretheua are the Pauli matrices and r = iu2• We call this 
algebra the superrotation algebra (sr), its generators are de
noted by JA (A = a,a). Let us recall the main results ob
tained by Pais and Rittenberg.9 

The irreducible linear representations are labeled by a 
spin J (J = O,p,~, ... ), and they will be denoted by JSR. For 
J #0, the decomposition of J SR into irreducible representa
tions of the rotation subalgebra (r) contains the representa
tion JR and (J - !)R, i.e., 

J SR = JR EB (J _ !)R. (2) 

ForJ = 0 one has OSR = OR. 

The standard basis of the J SR representation is formed 
by (41 + I) vectors IJIm) with I = J,J -! and Iml <I. The 
label J is related to the Casimir operator 

K2 = JaJa + Ja raP Jp, 

such that 

K2 IJIm) = J(J +!) IJIm). 

B. The fundamental representation (1/2)SR 

(3) 

(4) 

Pais and Rittenberg9 have given explicitly the matrix 
elements of Ja and Ja in the standard basis of the rotation 
group for any representation J SR • In this paper we shall not 
be concerned with such matrix representations; however, it 
is interesting to recall the structure of the fundamental rep
resentation (!)SR. 
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In the standard basis the three-dimensional representa
tion can be written J A =~:2: A' where the matrices 
:2:A = (:2:0 ,:2:a ) ar 3 X 3 matrices we call Pauli superma
trices. They are 

[0' 1 [0' 0 - 1] - ;- - - -I - - - -

:2:0= : 0"0 , :2:1/2=, 0-1: 0, 

[

0 '10] - -,- - -
:2:-1/2 = 0, O. 

-I, 

(5) 

They satisfy the properties 

:2:~T= -G:2:AG- 1, :2:t=GAB :2: B, Str(:2:A:2:B)=2GAB , 
(6) 

where G is the 3 X 3 matrix 

[
1:_ - - .] 

G= , 0 1. 
, - 1 0 

(7) 

We use the notation, ST = supertransposition, "" = super
Hermitian conjugation, and Str = supertrace. 

c. Realization of the first representations 

For each representation J SR we can build a realization 
as a multiplet of (4J + 1) tensorial operators whose super
commutation relations with the generators JA satisfy the su
per-Jacobi identities. 

According to Eq. (2), the multiplet J SR is decomposed 
into irreducible rotation multiplets JR EB (J - ~)R. SO the 
commutation relation of these multiplets with the generators 
Ja are the usual relations satisfied by irreducible tensorial 
operators of the rotation algebra. Therefore, what character
izes the superrotation algebra are the commutation relations 
of the multiplet with the fermionic generators J a' We shall 
see that the action of Ja mixes the two irreducible rotation 
multiplets. 

(i) The trivial representation J SR = 0 contains only one 
generator, a superscalar T, which commutes with all genera
tors JA : 

[JA>T] = 0, A = (a,a). (8) 

(ii) The three-dimensional multiplet 'I' = (S,1/Ia ) of the 
fundamental representation J SR = ~ is called a superspinor. 
It contains a scalar Sand a two-component spin or 1/Ia. Their 
supercommutation relations with JA read 

[Ja,S] = 0, 

[Ja,1/Ia] =~1/IP(O"a)Pa' 

[Ja,S] = ~1/Ia' 

{Ja,1/Ip} = ~rapS, 

(9) 

The last two relations show that the action of the fer
mionic generators Ja mixes the bosonic and fermionic com
ponents of the supermultiplet. Besides, it is easy to verify 
that the quadratic operator 

X1/2 = S 2 + 1/Ia r aP1/Ip (10) 
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built with the components of 'I' is a superscalar, that is, it 
commutes with all the generators, [JA ,x1/2] = o. 

(iii) The five-dimensional multiplet V = (X a' Va) of 
the adjoint representation J SR = 1 is called a supervector. It 
contains a two-component spinor X a and a three-dimension
al vector Va, with supercommutation relations 

[Ja,Vb] =ieabcVe, 

[Ja,Xa] =!XP(O"a)Pa, 

[Ja,Va] = -}xp(O"a)Pa, 

{Ja'XP} = !Va (rO"a )aP' 

(11 ) 

Again we notice that Ja mixes the bosonic and fer
mionic components of V, and that one can build a supersca
lar 

x) = XaraPXp + Va Va' (12) 

such that [JA,x)] = O. 
(iv) The spin ~ is described by a spinor-vector Raa satis

fying the condition 

(13) 

which leaves four independent components. The seven-di
mensional multiplet ct> = (Raa, Wb) is called superspinor
vector. It contains a spinor-vector Raa and a vector Wb. 
Their supercommutation relations with JA are 

[Ja, Wb] = ieabe We' 

[Ja,Rba] =ieabeRea +!RbP(O"a)Pa, 

[Ja,Wa ] = !Raa, 
(14) 

{Ja,Rap} = rapWa + (i12)eabe (rO"e)a{3 Wb· 

Note that the verification of the super-Jacobi identities 
requires the identity 

(rO"a) ap (O"b),s r - (rO"b) ap (O"a),s y = ieabe (rO"e) apc5,sy. 
(15) 

D. Tensor product of two representations 

The reduction formula for the tensor product of the rep
resentations J SR and J ,SR is 

4 inf(J,J') 

J SR ®J'SR = EB (J + J' - pI2)SR, (16) 
p=o 

which means that every finite-dimensional representation 
can be constructed from the fundamental three-dimensional 
representation (pSR. Let us consider two examples of this 
reduction formula. 

(i) The tensor product of two fundamental representa
tion reduces as 

(17) 

Therefore, given two superspinors '1') = (S),1/I) and 
'1'2 = (S2,1/I2) one can build a superscalar T, a superspinor 
'I' = (S,1/I), and a supervector V= (X,V). Explicitly they 
are given by 

T = S)S2 + 1/I)a r aP1/I2P; 

{
s = S)S2 + !1/I)yp61/126' 

'1'= 
1/Ia = !(S)1/I2a + 1/I)a S2); 

S. Kouadik and P. Minnaert 
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{
Xa = StrP2a - rPta S2' 

V= lJ 
Va = rPtr(Uanr rP2lJ' 

(ii) The reduction formula for the tensor product of the 
representations (1 )SR and (!)SR is 

(1 )SR ® (!)SR = (VSR EB (1 )SR EB (!)SR. 

Then, given a supervector V = (X a' Va ) and a superspinor 
rP = (S,rPa) one can build a superspinor A = (L,Aa ), a su
pervector U = (ca ,Ua ), and a superspinor-vector multiplet 
<I> = (R aa , Wb ): 

III. THE SUPER LORENTZ ALGEBRA (sl) 

Lorentz symmetry is a fundamental symmetry of phys
ics. However, since Lorentz algebra is the homogeneous part 
of Poincare algebra, the supersymmetric extension of which 
is known, it has not been considered an interesting problem 
for finding a supersymmetric extension of Lorentz algebra. 
However, Lukierski and Novicki 10 have defined the graded 
Lorentz algebras in three, four, and five dimensions and, in 
his book Supermanifolds, De Wite t has devoted some pages 
to the study ofthe super-Lorentz group. 

A. Definition of the super-Lorentz algebra 

It is well known that sl (2,c) is the complexification of 
the rotation algebra su(2). This means that it can be built by 
adding to the three generators Ja of su (2), three generators 
Ka defined formally by Ka = iJa. In much the same way we 
shall define the super-Lorentz algebra sl by complexification 
of the sr algebra. t2 To the five generators JA (A = a,a), we 
add five generators K A defined formally by K A = iJA • If the 
supercommutation relations (1) ofsr are written in the con
cise form 

[JA,JB} = JCC~B' 

the supercommutation relations of JA 

withKc read 

[JA,KB} = KCC~B' 

[KA,KB} = -JCC~B' 

(20) 

with KB and of KB 

(21) 

Equations (20) and (21) define the super-Lorentz algebra. 
The structure of these relations suggests the definition of 

complex combinations of JA and K A : 

MA = ~(JA - iKA), NA = ~(JA + iKA). (22) 

These satisfy the supercommutation relations 

[MA,MB} =MCC~B' 
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[NA,NB} = NCC~B' 

[MA,NB} =0. 

(23) 

This means that the generators MA and NA form the 
superalgebra sr ® sr. This remark allows us to build sl repre
sentations from tensor products of sr representations. 

B. Representations of the super-Lorentz algebra 

The super-Lorentz algebra has two quadratic Casimir 
operators. One of them is denoted by K~L for the MA super
algebra, and the other is denoted by K ;SL for the NA superal
gebra. 

A finite-dimensional irreducible representation will be 
characterized by two spins J and J', and denoted by (J,J') SL . 

Its dimension is (4J + 1) X (4J' + 1). The lowest-dimen
sional representations are listed in Table I. 

In this paper we shall not be interested in matrix realiza
tions of super-Lorentz algebra representations. We only give 
the matrix realization of the two fundamental representa
tions (~,O) SL and (O,~) SL . They can be written with the help 
of the Pauli supermatrices defined in Eq. (5): 

q,O)SL: JA = ~~A' KA = (i/2)~A' 

(O,!)SL: JA = !~A' KA = - (i/2)~A' 
(24) 

The super-Lorentz algebra contains several subalge
bras; thus any representation may be decomposed into irre
ducible representations of these subalgebras. 

(a) For the sr subalgebra, which is generated by JA , 

from (16) one has the decomposition 
4 inf(J,J') 

(J,J')SL = EB (J + J' _ p/2)SR. (25) 

(b) For the Lorentz subalgebra, generated by (Ja ,Ka ), 
from (2) one has the decomposition into at most four repre
sentations: 

(J,J')SL = (J,J')L EB (J,J' _ ~)L 

EB (J - !,J,)L EB (J - !,J' - !)L, (26) 

where (J,J')L are the usual representations of the Lorentz 
algebra. 

(c) For the rotation subalgebra, generated by Ja , one 
has the decomposition 

TABLE I. Notation and dimension for the first representations of the super
Lorentz algebra. 

Representation 

Superscalar 

Fundamental or 
spinorial 

Super-Dirac 

Supervectorial 

Adjoint 

Notation 

(O,O)SL 

(\,O)SL 

(O,pSL 

(lm SL $ (O,pSL 

(l,pSL 

(I,O)SL $ (0,1 )SL 

Dimension 

3 

6 

9 

10 
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2 inffJ,J') 

(J,1')SL = (J + J,)R (fJ 2 (fJ (J + J' - p12)R 
P~O 

(fJ (IJ - 1'1 - ~)R. (27) 

If J = J', the last representation (IJ - J'I - pR does not 
appear in Eq. (27). 

C. Covariant form of the super-Lorentz algebra 

The generators (JA ,KA ) belong to the adjoint represen
tation, whose reduction onto the Lorentz subalgebra con
tains a skew-symmetric tensor and a four-component spinor. 
Indeed, the six Lorentz algebra generators (Ja ,Ka ) can be 
gathered into the anti symmetric tensor LJ"V = - LvI" 
(p, v = 0,1,2,3) defined by 

(28) 

and the four fermionic generators (J ± 1/2,K ± 1/2) or 
(M ± 1/2,N ± 112) can be gathered into the spinor la 
(a = 1,2,3,4), defined by 

la = 1/2(MI/1 ,M _1/2,NI/2 ,N -1/2)' (29) 

Then, using for Dirac matrices the Weyl representation 
in which one has 

Yo = U\ ® 1, Ya = r ® Ua, r = U3 ® 1, c = U3 ® r, 
Uab=~Eabc(l®Uc)' UOa = -(i12)(u3 ®ua), (30) 

the supercommutation relations of the super-Lorentz alge
bra can be written as 

[LJ1-v,Lpu] = ;( 1Jvp LJ1-U + 1JJ1-UL vp - 1JJ1-pL vu - 1JvUL J1-p)' 

[LJ1-v,la] =lp(uJ1-v)Pa, (31) 

{/a,lp} = ~(cruJ1-V)apLJ1-v' 

The matrix c is the Dirac charge conjugation matrix 
such that cy'-" c- I = - yi'T, and 1J/lV 
= diag (1, - 1, - 1, - 1) is the metric tensor of Minkowski 

space. 
The two Casimir operators K ~L and K ;SL can also be 

written in a Lorentz covariant form. If we define 

K2 = 2(K~L + K ;SL), 

K; = 2(K~L - K ;SL), 

then we have 

K2 = ~LJ1-vLJ1-V + la (cr)aPlp, 

K' = ;(1 *L LJ1-V+ I caPI ) 2 2 J1-V a p, 
(32) 

where * LJ1-v = - (i12 )EJ1-vpuL pu is the dual tensor of LJ1-v. 

D. Realization of the first representations 

As for the superrotation algebra we shall give realiza
tions of the low-dimensional representations (J,J') SL as 
multiplets of (4J + 1) X (4J' + 1) tensor operators whose 
supercommutation relations with the generators (LJ1-v,la) 
satisfy the super-Jacobi identities. 

1. The superspinorial representations (J,O)SL and (O,JPL 

The superspinorial representations (!,O)SL and (O,!)SL 

of the super-Lorentz algebra can be realized by superspinors 
with three independent components, denoted, respectively, 
by <1>+ and <1>-: 
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(33) 

Here the tP;; are four component Dirac spinors with given 
chirality, that is, they satisfy the condition 

rtP± = ± tP±, (34) 

which leaves only two independent components. 
The supercommutation relations of these irreducible 

tensor operators with the generators of the super-Lorentz 
algebra read 

[ LJ1-v,S ± ] = 0, 

[LJ1-v,tPa±] = tPl (UJ1-.,)Pa, 

[la'S ±] = - (1I1/2)tP';:, 

{/a,tPl} = + (1/2~)(c(1 ± r»apS ±. 

(35) 

We notice that the generators la mix the bosonic and 
fermionic components of the multiplet. 

2. The super-Dirac representation (J,O)SL .(O,JPL 

Such a supermultiplet can be constructed with two sca
lars Sand P and a four-component spinor tPa, defined from 
the multiplets (33) by 

S= (l/1/2)(S+ +S-), 

P= (1/1/2)(S+ -S-), 

tPa = tP: (fJtPa-' 

(36) 

Their supercommutation relations can be derived in a 
straightforward manner from (35): 

[LJ1-V'S] = 0, [LJ1-v,P] = 0, 

[LJ1-v,tPa] = tPp(UJ1-v)Pa' 

[la,S] = - ~tPa' 

[la'P] = - ~tPp(r)Pa' 

{/a'tPp} = - ~caPP - ~(cr)apS, 

3. The supervectorial representation (J,J)SL 

(37) 

The supervectorial representation (~,~)SL is realized by 
a nine-dimensional multiplet that contains a scalar Vs, a 
four-component spinor Va, and a quadrivector VI' with su
percommutation relations 

[LJ1-v,vp] =;( 1Jvp VI' - 1JJ1-p Vv), 

[LJ1-v,Va ] = Vp(uJ1-v)Pa' 

[LJ1-v,Vs] =0, 

[la,VJ1-] = -~Vp(rYJ1-)Pa' 

[la,VS ] = (1IV'2)Vp(r)Pa' 

4. The representations (1,OPL and (O,1PL 

(38) 

The (l,O)SL representation can be realized by a five
dimensional multiplet that contains a self-dual skew-sym
metric tensor F J1-+;' and a chiral spinor F a+ : 

-(i12)EJ1-vpuFp:=FJ1-+;" F:(r)ap=F;t. (39) 
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In the same way, the (0,1) SL representation can be real
ized by an anti-self-dual skew-symmetric tensor F ;;v and an 
antichiral spinor F;; : 

-(i/2)£p.vpaFp--;"= -Fp.-'" Fa-(r)ap = -Fj. 
(40) 

The supercommutation relations are 

[Lp.v,F p~] = i( TJvpF p.~ + TJp.a F v~ - TJ"pF v~ - TJva F 1''7,), 
[L"v,F! ] = F! (Up.v )Pa' 

[la,F,,~] = -F!(up.v)Pa' (41) 

{/a,F!} = Fcrd'V)apF ,,~. 

5. The supertensorial representation (1,O)SL_(O, 1PL 

It is the adjoint representation (l,O)SL tB (O,l)SL. It 
contains a six-component tensor Fp.v and a four-component 
spinor Fa with supercommutation relations 

[Lp.v,Fpa] = i(TJvpF"a + TJ"aFvp - TJp.pFva - TJvaFp.p), 

[Lp.v,Fa] = Fp(u"v)Pa' 

[ia,Fp.v] = -Fp(u"v)Pa, (42) 

{la,Fp} = ~(crd'V)apFp.v' 
Of course, these anticommutation relations are identical to 
the relations (31) satisfied by the algebra itself. 

E. Tensor product of two representations 

The reduction formula for the tensor product of two 
representations (J,J')SL and (K,K ')SL is deduced from the 
formula ( 16) : 

(J,J,)SL® (K,K')SL 

4inf(J.K) 4inf(J'.K') 

tB tB (J + K - pI2,J' + K' - q/2)SL. 
p~O q~O 

(43) 

This shows that all the representations can be built by 
tensor products from the two three-dimensional fundamen
tal representations q,O)SL and (O,~)SL. Let us consider 
some examples of tensor products. 

(i) The reduction formula for the tensor product of the 
representations (~,O)SL and (O,~)SL is 

(~,Q)SL ® (O,!)SL = (!,!)SL. 

Thus the supervector V = (V 5
, Va, VI' ) constructed as 

the product of two superspinors ct>+ = (S + ,tP+) and 
ct> - = (S -, tP-), which are chiral and antichiral, respective
ly, is given by 

(44) 

(ii) The tensor product of two representations (~,O)SL 
reduces as 

(!,Q)SL ® (!,Q)SL = (l,O)sL tB q,O)SL tB (O,O)SL. 

Therefore, given two chiral superspinors 
<1>1+ = (S t ,tPI+) and <l>t = (S 2+ ,tP2+) one can build a 
self-dual supertensor F+ = (F ,,~,F a+)' a chiral super-
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spinor ct>+ = (S + ,tP: ) and a superscalar T +, namely, 

F+ = {Fp.~ = tPI;'(U"v)aPtP2-tp, 
F a+ = (llv2)(S t tP2;' - tPI;'S t); 

<1>+ 1 2 'f'la 'f'2P' 
{
s + = 2S + S + + .1,+ Ca/3.I,+ 

tPa+ = S t tP2;' + tPI;'S 2+ ; 
(45) 

T+ = S t S t + tPI;'Ca/3tP2-tp. 

(iii) The reduction formula for the tensor product of 
two (O,!)SL representations is 

(O,~)SL® (O,~)SL = (O,l)SL tB (O,pSL tB (O,O)SL. 

Then from two antichiral superspinors 
<1>1- = (S 1- ,tPI--:X) and ct>2- = (S 2- ,tP2--:X) one can construct 
an anti-self-dual supertensor F- = (F p.-",F a-)' an anti
chiral superspinor ct>- = (S - ,tP-), and a superscalar T -. 
Explicitly, they are given by 

F- = {Fp.-" = tPI--:X(U"v)a
PtP2/J' 

F;; = - (llv2)(S 1- tP2--:X - tPI--:XS 2-); 

<1>_ = {S = : 2S~- ~2- - ~1--:XC:~tP2/J; 
tPa - S 1 tP2a + tPla S 2 , 

(46) 

T- = S 1- S 2- - tPI--:XCa/3tP2/J' 

F. Quadratic invariants of the representations 

According to Eq. (43), the reduction formula for the 
tensor product of a representation with itself reads 

4J 4J' 

(J,J,)SL®(J,J')SL= tB tB (2J-pI2,2J'-q/2)SL; 
p~Oq~O 

(47) 

that is, the reduction always contains the trivial representa
tion (O,O)SL .Thus for every realization (J,J,)SL one can 
build a quadratic invariant and for the representations that 
are the direct sum of the form (J,J')SL tB (J',J)SL one can 
construct two quadratic invariants. 

In Table II we give the quadratic invariants of the var
ious realizations described above. 

G. Bosonic and fermionic dimensions of the 
representations 

The decomposition (27) allows us to separate the repre
sentation space (J,J,)SL into two subspaces: a bosonic sub-

TABLE II. The quadratic invariants for the first representations of the su
per-Lorentz algebra. 

Representation 

q.o>SL 
( l,O)sL 

(O,l)sL 

Quadratic invariants 

(S +)2 + 1/1: caPI/I; 
(S -)2 -1/1;; caPl/li 
S2 + p2 + I/Ia (cy)aPl/lp 
SP+ l/IacaPl/Ip 
~F"+,,F +"v + F a+ caPF; 
~F,,-;'F -"V - F a- caPF i 
W"J"v + Fa (cy)aPFp 
~*F"vF"v + FacaPFp 
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TABLE III. Bosonic and fermionic dimensions of the first representations 
of the super-Lorentz algebra. 

(O,O)SL 
O,o)SL 
(O,OSL 
O,O)SL Q) (O,\)SL 
(~,\)SL -
( Lel)SL 

(0,1 )SL 
(I,o)SL Q) (0, I )SL 
(I,OSL 
q,i)SL 
(I,OsL Q) 0,1 )SL 
(I,I)SL -

[I,D) 
[1,2) 
[1,2 I' 
[2,4) 
[5,4) 
[3,2) 
[3,21' 
[6,4) 
[7,8) 
[7,8], 
[14,16) 
[13,12) 

Lorentz 
decomposition 

(O,O)L 
0,0) L Q) (0,0) L 

(o,\) L Q) (0,0) L 

q,O)LQ) (O,\)LQ) (O,O)LQ) (0,0)'
(~,OL Q) (\,O)L Q) (O,OL Q) (0,0)1. 
(1,0) L Q) (I,D) L -

(O,I)L Q) (O,OL 
(I,o)LQ) (O,i)LQ) O,o)LQ) (O,\)'
(I,OL Q) (I,o)L Q) (\,\)L Q) (\,0)'
(d)L Q) (O,I)L Q) (~,i)LQ) (O,I)L 
(7,8) Q) [7,8), - - -
(I,I)L Q) (I,pL Q) (p)LQ) q,p'-

space with dimension dB' the direct sum of all the represen
tation subspaces JR with even spin and a fermionic subspace 
with dimension dF , the direct sum of all the representation 
subspaces with odd spin. 

The representations can be characterized by the dimen
sions dB and dF • We note, however, that the representations 
(K,L)SL and (L,K)SL have the same dimensions. By con
vention, we will distinguish between these two representa-
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tions by denoting [ dB ,d F ] the representation with J < J' and 
[ dB ,d F ] , the representation with J> J'. 

We note that, in Ref. 11 some representations are men
tioned but the fundamental representations [1,2] and [1,2]' 
do not appear. Furthermore, in the reduction formula ofthe 
tensor product [2,4] ® [5,4] [Eq. (4,462)] a representation 
[8,12] appears that does not exist. The correct reduction 
formula reads 

[2,4] ® [5,4] = [14,16] al [5,4] al [5,4] al [2,4]. 

In Table III we give the dimensions of the representa
tions with spins J and J' < 1, and their decomposition (26) 
on the Lorentz subalgebra. 
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Some physically realizable positive discrete series representations of the noncompact 
orthosymplectic superalgebra Osp ( 4/2,R) are considered. The decomposition of these 
Osp( 4/2,R) representations on reduction to Sp(2,R) X SOC 4) is studied in detail, and the 
corresponding state vectors are explicitly constructed by acting with the generators on a 
general lowest weight state. Some examples are given to illustrate these results for particular 
single-particle spaces. 

I. INTRODUCTION 

Algebraic techniques have found widespread use in 
physics. 1 In nuclear physics, the observed symmetries have 
found expression in the language of group theory and their 
associated algebras. 2

•
3 In particular, the interacting boson 

modee (IBM) has been shown to be able to correlate many 
properties of the spectra of even--even nuclei. The interacting 
boson fermion model4 (IBFM) is an extension of the IBM to 
handle odd-odd nuclei by the addition of a fermionic degree 
offreedom. In the IBM and the geometrical model5 (GM), 
even--even nuclei are described completely by bosons (with 
1= 2 for the GM and I = 0, 2 for the IBM), odd-A nuclei by 
a system of both bosons and fermions. Of particular interest 
to us are the dynamical combined Bose-Fermi symmetries6 

of the IBFM, and the possibility of physically relevant super
symmetries.7 These Bose-Fermi symmetries are associated 
with algebras whose generators are the sums of generators of 
the separate Bose and Fermi groups. 8,9 It has been found that 
spectra for even--even and odd--even nuclei can be described 
reasonably well using these generators. 

In a previous paper,1O we have shown that, for the sin
gle-particle space of 1= 2 bosons and j = ~, ~ 
«(I = 2) X (s = ~) fermions, a realization of the noncom
pact superalgebra Osp ( 4/2,R) is complementary to the 
combined Bose-Fermi algebra SOBF (5). Similarly, for 
1= 0, 2 andj = ~, ~, ~, this superalgebra is complementary to 
the combined SOBF (6) algebra. Use of the noncompact su
peralgebra Osp( 4/2,R), which then provides a simulta
neous classification to that of the combined Bose-Fermi al
gebras, might, in some cases, result in some calculational 
simplification. It is therefore useful to study the representa
tions of Osp ( 4/2,R). The approach is similar in principle to 
earlier work 11,12 involving the quasispin-seniority classifica
tion for bosons and fermions. 

In Sec. II, we briefly review the structure ofOsp( 4/2,R) 
and its complementarity to combined Bose-Fermi algebras. 
We study the decomposition of the representations of this 
superalgebra in Sec. III, and the representation complemen
tarity is deduced in Sec. IV. Several examples are considered 
in Sec. V. 

II. ORTHOSYMPLECTIC SUPERALGEBRAS IN BOSE
FERMI PAIRING 

In this section, we present for completeness the impor
tant aspects of Ref. 10, concerning algebras corresponding to 
a partial pairing of bosons and fermions. Consider a boson 
space of dimension n, and a fermion space (of dimension m) 
which can be factored into two parts having dimensions n 
(with a symmetric metric) andp (nxp = m), 
t ik (t) t. {ik t} f:.ik a ik,a = a ik . a ,a jI = U jI' 

i,j = I, ... ,n; k,l = I, ... ,p, 

[ it] _ f:.i b ,b j - U j' 

(2.la) 

i,j = I, ... ,n. (2.1 b) 

The sets of operators which are combined as scalars in the n 
space [a summation over i is implied in Eqs. (2.2)-(2.4) 1 
close to give 13,14 

Fermions: SO(2p): ati
kat

il , aika/, 

atika/ - (n/2)6/, 

Bosons: Sp(2,R): btib t
i, bib;. 

btibi + n/2. 

(2.2a) 

(2.2b) 

Augmenting these sets with the mixed Bose-Fermi opera
tors constructed using the same prescription (i.e., scalar in 
the n space), the (2p2 + 3p + 3) -element graded algebra 
closes on that ofOsp(2p/2,R), 15 

Osp(2p/2,R): b tiatik' b tiaik, 

b iatik' b ia / [SO(2p),Sp(2,R)]. (2.3 ) 

These operators commute with the generators ofSOBF (n), 

SOBF(n): (btibj -btjbi ) + (atika/-atjka/). 

Thus there exists a direct product structure 

Osp(2p/2,R) XSOBF(n). 

(2.4 ) 

(2.5 ) 

Two subgroups ofOsp(2p/2,R) with potential physical rel
evance are 

Osp(2p/2,R) ::J [SO(2p) ::J U(p) 1 X [Sp(2,R) ::J U (I) 1, 
(2.6a) 
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Osp(2p/2,R) ::JU( IIp)::J [U(p) XU( 1)], (2.6b) 

where U ( lip) corresponds to a restriction to number-con
serving operators. 

In the case that the fermion levels have j values corre
sponding to coupling a pseudospin s to the I values of the 
boson states, the orthosymp1ectic supersymmetry corre
sponding to I pairing, which can be described by 
SOBF(~i(21i + 1» [Eq. (2.4)], is Osp(4s + 2I2,R), be
coming Osp ( 4/2,R) for the commonly encountered value 
s= !. 

The superalgebra Osp ( 4/2,R) is generated by 17 ele
ments of which the eight even elements close under commu
tation to generate the subalgebra [Eq. (2.6a)] 

Osp(4/2,R) ::JSp(2,R) xSO(4) 

~Sp(2,R) XSO(3) XSO(3). (2.7) 

Here we concentrate exclusively on this subalgebra chain, 
deferring a study of the U( 112) chain to a future paper. In 
Table I, we present the specific realization for the generators 
of Osp (4/2,R) and SOBF (n) appropriate to this Bose-Fer
mi pairing scheme, while the commutation and anticommu
tation relations and Hermiticity properties for Osp ( 4/2,R) 
are given in Appendix A. 

In the present work, we consider only the representa
tions appropriate to this realization in terms of boson and 
fermion creation and annihilation operators. 

III. DECOMPOSITION OF OSP(4/2,R) 
REPRESENTATIONS ON REDUCTION TO 
SP(2,R)xSO(4) 

We construct the irreducible representations ofOsp( 4/ 
2,R) by acting with the raising operators on lowest weight 
states (LWS), those states which are annihilated by all the 
lowering operators. The diagonal operators Ko, Ro, and So 
generate the Cartan subalgebra of Osp( 4/2,R), the corre
sponding eigenvalues giving the weight of each state. We 
choose the first, second, and third components of the weight 
to be the eigenvalues of Ko, Ro, and So, respectively. From 

the (anti- ) commutation relations, it is then clear that the 
lowering operators are WJL' YJL' K_, R_, and S_, whereas 
the raising operators are VJL' XJL' K+, R+, and S+. The 
Osp( 4/2,R) representations can be labeled by the 
Sp(2,R)XSO(3)XSO(3) quantum numbers of the LWS, 
where we have employed the homomorphism [Eq. (2.7)] 
between SO( 4), with labelsPI,P2' and SO(3) X SO(3), with 
labels R, S; these quantum numbers being related by 

R = ~(PI + P2)' ( 3.1a) 

(3.1b) 

The state vectors are further specified by including the labels 
K, M K , R, M R , S, and Ms. 

To find the representations of the subalgebra it is only 
necessary to consider the raising operators which generate 
the coset Osp( 4/2,R)/[Sp(2,R) X SO( 4)], i.e., XJL and VJL' 
since K +' R +' and S + only ladder within these representa
tions. By using the anticommutation relations of Appendix 
A, it can be shown that there are 16 independent combina
tions of these operators. These are listed in Table II, together 
with their transformation properties under 
Sp(2,R) XSO(3) XSO(3), and the allowed 
Sp(2,R) XSO(3) xSO(3) quantum numbers obtained by 
acting on a LWS with labels K, R, and S. Thus each Osp( 4/ 
2,R) representation decomposes into at most 16 representa
tions of the subgroup. As can be seen from this table, there 
can be two independent states with 
Sp(2,R) XSO(3) XSO(3) quantum numbers K + 1, R, S. 

There is one more problem to be addressed; the labels in 
the far right-hand column of Table II refer to orthogonal 
states, whereas the states formed by the action of the coset 
raising operators upon the L WS are in general not orthogo
nal. In the general case, there is some freedom in choosing a 
suitable inner product; however, as stated above, in this pa
per we are interested in the representations appropriate for 
the particular realization discussed, associated with the posi
tive definite inner product defined in Fock space, as is con
ventional in many-body quantum mechanics. 16 

TABLE I. Generators of the groups involved in the Osp( 4/2.R) X SOBF(n) scheme. We have assumed a single pseudo-orbital angular momentum 1 
(n = 21 + 1). the generalization to multiple values being straightforward. The tensor components of the annihilation operators are defined as 
a~l; = (- )/- m+ 1/2-lt(a~~/I!:2~Jl )t. 

Osp ( 4/2.R ) : 

SO(4): 
Sp(2.R): 
V(2/1): 

SVs (2): 
V F (1): 
VB (1): 

SOF(n): 
SOB(n): 

SOBF (n): 

R+ = J (n12) [at atL\~io,. R_ = (R+ )t. R" = j (NF - n) 

S" = - J(n/2) [at a)ii;;" 
K+ = (J/112)[b t b t )ii". K_ = (K+)\ K,,=j(NB +n12) 
V;, = (1/vL)b t, a;,'/2)=J (n12) [b t a)6';? 

= _1_" ( _ )'"b ta"' v2 ~ In -Inl' 

W;, = (lIvL)b·a;'''/2). X" = (1/vL)b t ·a;,"/2). 1'" = (1/vL)b'a;,'/2) 

R+. R_. R", S" 
K+. K_. K" 
Ro, Ko, S/I' ~" ~, 
S" 
R" 
Ko 

V;,,(k) = - vL[a t a)::,?'. k = 1.3 •...• n - 2 
V?n(k) = [btb)::'. k=I.3 •...• n-2 
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It might be added that there is some freedom in the way 
that one constructs the states, however, the number of inde
pendent states in a given Osp( 4/2,R) representation does 
not depend on this choice. Upon evaluating the norms of 
these states, we find that all 16 independent mUltiplets are 
not always realized; the conditions for the existence of any 
multiplet can be expressed in terms of the Osp( 4/2,R) quan
tum numbers K, R, and S. This is a generalization of the , 
(KRS) --- (K) (R,S) 

results we have obtained 17 for Osp(212,R) and that Scheun
ert et al. 18 have found for the compact superalgebra 
Sp1(2,1) . 

The Osp ( 4/2,R) representations so generated are irre
ducible, as follows from the properties of our chosen realiza
tion. The decomposition is presented in Eq. (3.2), the condi
tions for the existence of each multiplet being given below 
the corresponding labels: 

EfJ (K + P (R + !,S + !) EfJ (K + P (R + !,S - P EfJ (K + !)(R - !,S + D EfJ (K + !)(R - !,S - !) 
2K - R _ s,.,o s,.,o R ,.,0 S ,.,O,R ,.,0 

EfJ (K + I)(R + 1,S) EfJ (K + l)(R,S) EfJ (K + I)(R - I,S) 
2K - R - S,.,O R ,.,0. 2K - R - S,.,O R ,.,O,l 

EfJ (K + 1 )(R,S + 1) EfJ (K + 1 )(R,S) EfJ (K + 1 )(R,S - 1) 
2K - R - s,.,o S ,.,0, 2K + R - s,.,o S ,.,O.l 

EfJ (K +~) (R + !,S + !) EfJ (K +~) (R + !,S - P EfJ (K + ~) (R - !,S + P EfJ (K + ~) (R - !,S - !) 
2K - R - s,.,o S ,.,0. 2K - R - S,.,O R ,.,0, 2K - R - S,.,O R ,.,O,S,.,O 

EfJ (K + 2)(R,S). 
2K-R-S,.,0 

With our realization of the algebra, the allowed multiplet 
labels (K) (R,S) satisfy the inequality R + S<,2K. The de
composition [Eq. (3.2)] can be verified using the Kron
eckerproduct for the complementary SOBF(l:j2/j + 1) alge
bra and the complementarity relations as discussed in Sec. 
IV. 

As noted above, there can be two independent multi
plets with the Sp (2,R) X SO (3) X SO (3) quantum numbers 
K + 1, R, S. This is in contrast to the case ofOsp(212,R), 17 

where the superalgebra is not sufficiently complex for such a 
situation to occur. We should note that there is some ambi
guity in how one chooses to construct these states; we chose 
to first orthogonalize the vector formed by the action of A (01) 

(Table II), then that obtained using A (10). This introduces an 
otherwise absent asymmetry in Rand S; however, the multi
plicity ofthese representations can be expressed in the sym
metricalform M K + I,R,S = 2 - lj RS,O - lj R + S,2K' The ortho
gonalized states are presented in Appendix B as functions of 
the generators acting on the L WS. The R -S asymmetry for 
K + 1, R, Sis again evident; it is possible that there are linear 
combinations of these two states which have a simpler form. 

TABLE II. Transformation properties of the independent vectors with re
spect to SO(4) XSp(2,R). For convenience, we have defined the following 
combinations: 
A (10) = X1/2 V_ 1I2 + V,12X_ 1I2 = X, 12 V -112 - X_ , / 2V,/2 + K+, 
A (01) = X ,/2 V_ 1I2 + X_ ,/2 V, /2 • 

Operator 

V",X" 
X ,12X_ ,/2,A (10), V,12 V -1/2 

X ,/2 V,/2 ,A (OIJ,X_ I / 2 V_ I / 2 

X" V,12 V- 1I2, V"X'/~_I/2 
V, 12 V _1/2X,/2X_,/2 

SO(4)Sp(2,R) (K)(R,S) 

(0,0) (0) 

(!,!) (!l 
(1,0) (1) 

(0,1) (1) 

(!,P (V 
(0,0) (2) 

(K)(R,S) 
(K + !)(R ± !,S ± P 
(K+ J)(R ;f"S) 
(K + 1) ( R,S .if I ) 
(K +V(R ± !,S±!l 
(K + 2)(R,s) 
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(3.2) 

IV. RELATION BETWEEN THE REPRESENTATIONS OF 
Osp(4/2,R) AND THE COMPLEMENTARY 
ORTHOGONAL GROUP 

With the realization ofOsp(4/2,R) in terms of the bo
son-fermion number conserving and pair creation operators 
scalar in a n-dimensional space (Table I), a larger algebra 
exists as discussed in Sec. II. The number conserving opera
tors which are scalar in the p space and of odd rank in the n 
space close under commutation to give the algebra 
SOBF (n), and moreover commute with the generators of 
Osp(4/2,R) giving the direct product structure 

Osp(4/2,R) XSOBF(n). (4.1) 

This is completely analogous to the complementarity 
between the Sp(2,R) and SO(4) subgroups [Eqs. (2.7)] 
and the individual orthogonal groups giving the quasi spin
seniority classification for bosons 12 and fermions II separate
ly 

Sp(2,R) XSOB(n), 

SO(4) XSOF(n). 

(4.2a) 

( 4.2b) 

For these cases, the corresponding relations between the 
Weyl representation labels 19 ofSp(2,R) and SOB(n) [K and 
T, respectively], and SO(4) and SOF(n) [(PIP2) and 
(p) = (PI,P2'''')' respectively] have been deduced 

K = ! n + ! T, (4.3a) 

pj=!n-(p)3_j, i=I,2, (4.3b) 

where p denotes the transpose of the diagram implied by the 
unmodified2°S0F(n) labelp. Equations (3.1) and (4.3b) 
give 

R =! n - !(p) 1+ (P)2)' 

S = !«p) I - (p) 2)' 

( 4.4a) 

(4.4b) 

The relations between corresponding Osp ( 4/2,R) and 

Schmitt sf al. 2716 



                                                                                                                                    

SOBF (n) representation labels (K R S) and (u) can be 
found from similar considerations. The former are just the 
eigenvalues in the L WS of the operators 

K: MK=!n+!Nb , 

R: - MR = ! n - !(NI/2 + N -1/2)' 

S: - Ms = - !(NI/2 - N -1/2)' 

(4.Sa) 

(4.Sb) 

(4.Sc) 

where N ± 112 are the numbers of fermions with Ms = ±!. 
Since the boson and fermion SO (n) labels are constrained as 
in Eqs. (4.6), 

SOB(n): (1'), 

SOF (n): (2 I" 1 V), 

(4.6a) 

(4.6b) 

those of SOBF (n ), obtained by taking the inner tensor prod
uct' can only be of the form 

(u l 21" IV). (4.7) 

It will be convenient to represent this by the labels 

[u l ' fl' v'], 

where 

( 4.8) 

u l ' = U I - 2, fl' =fl + 1, v' = v (u l »2), (4.9a) 

u.'=O, fl'=fl (=0), v'=v+u l (u l <2). 
(4.9b) 

The corresponding L WS then has 

Nb = u', 

NI/2 = fl', 

N -112 = fl' + v', 

giving 

K = ! n + ! u', 

R =! n - !(2fl' + v'), 

S=!v'. 

v. EXAMPLES 

(4.1Oa) 

(4.1Ob) 

(4.1Oc) 

(4.11a) 

(4.11b) 

(4.11c) 

In this section, we illustrate the abstract notions of the 
previous sections with some specific examples. 

A. Single-particle space ,=O,/=! 
A system of scalar (s) bosons and j = ! fermions is the 

simplest one for which the Osp (4/2,R) superalgebra can be 
realized. We present an explicit treatment for this reason 
alone, the likelihood that such a simple model will have no 
application to physics notwithstanding. Indeed, this case is 
particularly simplified because Osp( 4/2,R) is the "large" 
superalgebra Osp (2m/2n,R) 10; correspondingly, the bo
son-fermion orthogonal group SOBF (n) does not exist for 
n = 1. Thus there are only two allowed representations, con
taining all the states with even and odd values, respectively, 
for the total number of particles. 10 

For the representation containing the even states, the 
L WS (obtained by successively minimizing the eigenvalues 
of Ko, Ro, and So) is clearly the boson-fermion vacuum with 
Osp ( 4/2,R) labels 
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Ke =O+! =!, 
Re = - (0 - !) = !, 
Se =0. 

( S.la) 

(S.lb) 

(S.lc) 

From Table I it is indeed clear that this state is annihilated by 
the lowering operators (K_, R_, S_, WI"' and YI" ). Follow
ing the same procedure with the constraint that the number 
of particles is odd, one obtains 

Ko = 0 +! =!, 
Ro = - q - !) = 0, 

(S.2a) 

(S.2b) 

So=!' (S.2c) 

On reduction to Sp(2,R) XSO(3) XSO(3), these represen
tations decompose to [Eq. (3.2)] 

(! ! 0) - (!) (! ,0) fIl (~) (0, !), 

C! O!) - (!) (0, P fIl W q ,0). 

Since 

Sp(2,R): (!) -Nb even, 

0) -Nb odd, 

SO(3)XSO(3): qO)-Nr =0,2; S=O, 

(0 p - Nr = 1; S = ! ' 

(S.3a) 

(S.3b) 

(S.4a) 

(S.4b) 

( S.Sa) 

(S.Sb) 

it is seen that Eqs. (S.3) are consistent with the conditions 
that the total number of particles be even and odd for the two 
representations, respectively. 

B. Single-particle space '=2,/=i ,1 
This model space allows a description in the framework 

of the GM for nuclei for which the fermions can be treated as 
occupying P3/2 fs/2 or d3/2 dSI2 orbits. Examples of such a 
region may be provided by the Nickel isotopes. 2 

I 

The large algebra is here Osp (20/ 1O,R), 10 so that more 
than two representations ofOsp( 4/2,R) X SOBF are permit
ted; indeed, the number of representations is infinite. Since 
SOC S) is a rank 2 algebra, the standard SOBF (S) representa
tions are of the forms 

(uO) (u 1) (u2) 

u» 1 u» 2 ' 

with corresponding [Eqs. (4.11)] Osp ( 4/2) labels 

(00): Ci~O) 

(10): (P!) (11): (iP) 
( a 0): qu + H 0) (u 1 ): qa + ! 1 P 
(u2):qu+HO) u»2. 

(S.6) 

(S.7) 

From the R -S symmetry of the model, for each representa
tion (K R S) corresponding to a standard SOBF (S) label 
( u), there is one labeled (K S R ), these being associated with 
the nonstandard labels which give (u) on modification. 20 

For the reductions, Eq. (3.2) gives for example 
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(i ~ 0) ~ <V (~ ,0) $ (V (2, P $ (V (~ ,0), (5.8a) 

(K I !) ~ (K) (1,!) $ (K + ~)(~,I) $ (K +!) q ,0) $ (K + P (!,I) $ (K +!) q ,0) 

$ (K + 1)(2,~) $ (K + I)(q) $2(K + 1)(1,~) $ (K + 1)(0, P 
$(K +~)(~,I)$(K +~)(~,O)$(K+~)q,I)$(K +~)(!,O) 

$(K+2)(l,p. (5.8b) 

The complementary SOB(5) XSOF(5) products for Eq. 
(5.8a) are [Eqs. (4.3),(4.4)] 

(00) X (00) $ (10) X (10) $ (20) X (2 0), (5.9) 

which indeed are the only ways to construct the correspond
ingSOBF(5) representation (00) [Eq. (5.7)]. Thedecom
positions of the other representations in Eq. (5.7) may also 
be verified in this way. We note that the multiplicity of 
2 for the Sp(2,R) XSO(3) XSO(3) representation 
(K + I) (R,S) only occurs for Osp( 4/2,R) label (K I ~) 
[Eq. (3.2)], corresponding to (2 I) ofSOF(5); it is indeed 
the case that (2I)X(uO)~2(ul)$'" foru»2 [cf. Eq. 
(5.7)], while products for all the other SOF(5) representa
tions involved in this case are simply reducible. 

VI. CONCLUSION 

We have studied the positive discrete series representa
tions of the noncompact superalgebra Osp( 4/2,R) appro
priate to the realization discussed in Sec. II. For this superal
gebra, there are at most 16 Sp(2,R) XSO(3) XSO(3) 
multiplets for each representation; however, these multiplets 
need not all occur. We have given specific criteria, in terms 
of conditions on the Osp ( 4/2,R) representation labels, for 
when each multiplet occurs. 

We have also given several examples of our technique. 
These examples illustrate the calculational advantage of the 
superalgebra over the Bose-Fermi algebras; the decomposi
tion given by Eq. (3.2) holds for all values of n, while a 

different Bose-Fermi algebra would have to be introduced 
for each new single-particle space. The Osp( 4/2,R) superal
gebra has been applied to a physical example.21 
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APPENDIX A: Osp(4/2,R) SUPERALGEBRA 

In this Appendix, we present the defining commutation 
and anticommutation relations for Osp(4/2,R), where we 
have introduced, when it results in a simplification, the 
shorthand notation Z ~ = VI" Z! = YI" Z! = XI" 

Z~ = WI" and whereS±1 = (+ 11/2) S±. 

[ Ko,K ± ] = ± K ±' [ Ro,R ± ] = ± R ±' [ So,S ± ] = ± S ± ' (Ala) 

[K+,K_] = - 2Ko, [R+,R_] = 2Ro, [S+,S_] = 2So, 

[ Ro,K ± ] = [R ± ,Ko] = [R ± ,K +] = [R ± ,K _] = 0, 

[ So,R ± ] = [S ± ,Ro] = [S ± ,R +] = [S ± ,R _] = 0, 

[ Ko,S ± ] = [K ± ,So] = [K ± ,S +] = [K ± ,S _] = 0, 

[Ro,Ko] = [So,Ro] = [Ko,So] = 0, 

[K+,Z~] =!« - )i - l)Z~-I, [K_,Z~] = !(1- ( - )i)Z~+ I, 

[ Ko,Z ~] = ~ ( - ) iZ ~, 

[R+,WI'] = [R+,xl'] =0, 

[R_,VI'] = [R_,yl'] =0, 

[R+,VI'] = XI" 

[ R _, WI'] = YI" 

[R+,YI'] = WI" 

[R_,xl'] = VI" 

[Ro,VI'] = -! VI" [Ro,WI'] =! WI" [Ro,xl'] =!XI" [Ro,YI'] = -~ YI" 

[ S ± ,Z ~] = <5 _I'. ± 112 Z ~ ± 1 , [ So,Z ~] = fL Z ~, {Z ~, Z~,} = 0, 

{Vv,xl'} = ( - )1I2-v<5v'_I'K+, {Wv,YI'} = ( - )1I2-I'<5v._I'K_, 

{ W,x}-I(_)1/2-v<5 R {V Y}=l(_)I12-v<5 R 
v p. - 2 v, -I-l +, v' J.l 2 v, - J.l -, 

{Vv' WI'} = - {! <51'.vSI' + v + ! <51'. _ v ( - ) 112+ 1'{2fLSo + 2Ko + Ro},' 
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(Alb) 

(Alc) 

(AId) 

(Ale) 

(A If) 

(Alg) 

(Alh) 

(Ali) 

(Alj) 

(Alk) 

(All) 

(AIm) 

(Aln) 
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{xv, YI'} = 4 81',VSI' + v + ! 81', _ v ( - ) 112 -1'{2jlSo + 2Ko - Ro}· 

These relations [(AI)] remain invariant under Hermitian conjugation as defined by the following: 

(Ko)t = K o, (Ro)t = Ro, (So)t = So, 

(K+)t=K_, (R+)t=R_, (S+)t=S_, 

( VI' ) t = ( _ ) 112 -I' W -I" (XI' ) t = ( _ ) 112 + I' Y _I'" 

APPENDIX B: ORTHOGONALIZED BASIS STATES 

(Alo) 

(A2a) 

(A2b) 

(A2c) 

It is convenient to work with the combinations of the two (MK MR Ms) = (1 00) raising operators (X1/2 V -1/2 and 
X_ 1/2 V1/ 2) which are symmetrized with respect to SO(3) XSO(3): 

A (0 I) = XI/2V -1/2 + X- I /2VI/Z' (BIa) 

(BIb) A (10) = Xl/zV -lIZ + VI/ZX_ I/Z = Xl/zV -lIZ - X_1/2VI/Z + K+. 

where A (0 I)(A (10) is a scalar (vector) in R and a vector (scalar) in S. We denote the Sp(2,R) XSO(3) XSO(3) LWS by 

IKRS; KKR-RS-S)=IKRS; KRS), (B2) 

where the first three quantum numbers in the ket on the right-hand side ofEq. (B2) label the Osp( 4/2,R) representation, and 
the second set specifies that of Sp(2,R) XSO(3) XSO(3). The LWS for the Osp(412,R) representation ItPo) has 
Sp(2,R) XSO(3) XSO(3) quantum numbers K, R, S. 

It is then possible to express the 16 normalized LWS of the Sp(2,R) X SO(3) X SO(3) representations in the right-hand 
column of Table II in terms of the 16 operators in the left-hand column, and where necessary to give orthogonality, combina
tions including K +, R +, and S +, 

IKRS; KRS) = ItPo), 

IKRS; K+!R +!S+!>=( 2 )112V_1/2ItPo), 
(2K -R -S) 

IKRS; K + ! R +! S -!> = ( 1 )112 {(2S + 1) VI/2 - S+ V -1/2}ltPo), 
S(2S+ 1)(2K -R +S+ 1) 

IKRS; K +!R-!S+!) =( 1 )1/2{(2R + 1)X_Ilz-R+V_IIZ}ltPo), 
R(2R + 1)(2K +R -S+ 1) 

IKRS' K + I R _ I S _ I) _ ( 1 )112 
, 2 2 2 - 2R(2R+l)S(2S+I)(2K+R+S+2) 

(B3a) 

(B3b) 

(B3c) 

(B3d) 

X {(2R + 1 )(2S + 1)X1/2 - (2S + 1 )R+ VI/2 - (2R + 1 )S+X_ 1/2 + S+R+ V -1/2}' 
(B3e) 

IKRS; K + 1 R + 1 S) = (2K -R -S)(:K -R +S+ 1) )IIZ VI/ZV_1/2ItPo), (B3f) 

IKRS; K+IRS+1)=( 4 )1/2X _ 1/2V_1/2ItPo), 
(2K - R - S)(2K + R - S + 1) 

(B3g) 

IKRS; K + 1 R S)(O I) = ( 1 )112{2K(S + 1)A (0 I) 

2KS(S + 1 )(KZ - S(S + 1)) 

-S(S+ I)K+ -2KS+X_1/2V_1/2}ltPo), (B3h) 

IKRS; K+IRS)(lo)' 

= ([2(K + I)R(R + 1)(2K - R -S)(2K + R- S+ I)(2K - R +S + 1)(2K + R + S + 2) 

X(KZ - S(S + 1))] -IPIZ{2(R + I)(KZ - S(S + 1)A (10) - R(R + I)(Z + 2S(S + 1 »K+ 

- (2KZ - S(S + 1 »R+ Vl/2V -1/2 + 2(2K + 1 )R(R + 1) [(S + I)A (0 I) - S+X_1/2V -l/z]}ltPo), (B3i) 

IKRS; K + 1 R - 1 S) 

= {[(2R _1)R2(2R + I)(2K +R -S+ 1)(2K +S+R + 2)]-IPIZ{2R(2R + I)Xl/zX_1/2 

- (2R + 1)R+A (10) +R2+ VI/2V- 1/2}ltPo), (B3j) 

IKRS; K + 1 R S - 1) = {[ (2S - 1)S2(2S + 1 )(2K - R + S + 1 )(2K + R + S + 2)] -IPIZ{2S(2S + 1)X1/2 V1/2 

- (2S + l)S+A (0 I) + S2+ X-IIZV-1/2}ltPo), (B3k) 
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IKRS; K + ~ R +! S + p = {[ (2K + l)(K + 1) (2K - R - S)(2K + R - S + 1 )(2K - R + S + 1)] -1}1/2 

X{2(2K + 1)X_1/2V,/2V_,/2 - (2K -R +S+ 1)K+V_ 1/2}, 

IKRS; K +~R +~S-p 

= [2 (2K + l)(K + 1 )S( 2S + 1)( 2K - R - S)( 2K - R + S + 1) (2K + S + R + 2) ] - I} 1/2 

'{2(2K + 1) (2S + 1)XI/2VI/2V_1/2 - (2S + 1)(2K - R - S)K+ VI/2 

+ (2K - R - S)K+S+ V -1/2 - 2(2K + 1 )S+X_ 1/2 VI/2V -1/2}1¢0), 

IKRS; K + ~ R - ~ S + p 
= {[2(2K + l)(K + 1)R(2R + 1)(2K -R -S)(2K +R -S+ 1)(2K +S+R + 2)]-1}1/2 

'{2(2K + 1 )(2R + 1 )XI/7_1/2V -1/2 - (2R + 1)(2K - R - S)K+X_1/2 

+ (2K -R -S)R+K+V_1/2 - 2(2K + I)R+V'/2X_,/2V_,/2}I¢o), 

IKRS; K + ~ R - ! S - ~) 

{[(2K + I)(K + 1)(2R + 1)R(2S+ 1)S(2K +R -S+ 1)(2K -R +S+ 1)(2K +R +S+ 2)]-1}1/2 

'{2(2K+ 1)(2R+ 1)(2S+ 1)VI/2XI/7_'/2+(2K+R-S+ I)K+R+S+V_'/2 

- (2S+ 1)(2K +R -S+ 1)K+R+VI/2 - (2R + 1)(2K +R -S+ I)K+S+X_'/2 

+2(2K+ 1)(2S+ 1)R+XI/2VI/2V_1/2-2(2K+ 1)(2R+ I)S+ V_ 1/2X+ 1/7-1/2 

- 2(2K + 1)R+S+X_1/2V + 112 V_ 1/2 + (2R + 1 )(2S + 1 )(2K + R - S + 1)K+XI/2 }I¢o), 

IKRS; K + 2R S) 

(B31) 

(B3m) 

(B3n) 

(B30) 

= {[ 4 (2K + 1)( K + 1) 2 (2K + 3)( 2K - R - S)( 2K + R - S + 1)( 2K - R + S + 1)( 2K + R + S + 2) ] - I} 1/2 

'{8(2K + I)(K + 1)XI/2X_1/2VI/2V_1/2 - 2(2K + 1)K+R+ V1/2V_1/2 + 2(2K + I)K+S+X_'/2V_,/2 

- 2(2K + I)(S + I)K+A (0 I) - 2(2K + 1)(2K - R + I)K+A (10) + (Z + 2S(S + 1»)K 2+ }I¢o), (B3p) 

where 

Z= {(2K + 1)(2K + 2) -R(R + 1) -S(S+ 1)}. 
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The universal current distribution near the end of a tubular antenna 
Hao-Ming Shen and Tai T. Wu 
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An asymptotic solution for the charge density and current near the end of a linear tubular 
antenna is obtained by means of the Wiener-Hopftechnique. It is found that, due to the 
charge-repulsion effect, the distributions of charge per unit length and of current within a 
distance of the order of the radius from the end are significantly different from the sinusoidal 
distributions that are the solutions from approximate theories. Furthermore, the relative 
distributions are independent of the length of the antenna and of the frequency of operation. 

I. INTRODUCTION 

Since the dipole antenna is one of the most useful forms 
of antenna, it has been analyzed extensively for more than 
half a century. Most of these analyses have dealt with the 
case where the radius of the dipole is small. In such cases, 
since the vector potential on the surface of the dipole is 
roughly proportional to the current, I its distribution ob
tained theoretically is approximately sinusoidal or, more 
generally, a sum of several sinusoidal terms. This traveling
wave-like solution is mainly caused by the aspect of electro
magnetic induction. 

There is, however, another aspect of this problem of the 
current distributions on the dipole antenna. Coulomb repul
sion between charges of the same sign is always present. The 
specific case of the Coulomb repulsion on a thin rod was 
analyzed by Maxwell himself,2 who obtained interesting re
sults more than a century ago. This repulsion leads to a larg
er charge density near the end of the rod than at the center. 
For the dipole antenna, this Coulomb repulsion leads to the 
result that the charge density and, hence, also the current 
cannot be described naturally and accurately as a sum of 
sinusoidal terms. Similar to the electrostatic case of Max
well, this effect is most pronounced near the ends of the an
tenna, and is the subject of study for this paper. Indeed, this 
effect of Coulomb repulsion has been obtained in many ex
periments3 but, to the best of our knowledge, the present 
paper is the first systematic theoretical analysis. 

The basic idea of the present paper is to use the Wiener
Hopf procedure of solving integral equations.4 This is inti
mately related to the observation that, except possibly for an 
overall constant, the current distribution near one end of a 
dipole antenna is approximately independent of the details 
near the other end. This idea has previously been used to 
obtain the current distribution and the input admittance of a 
long dipole antenna,5 but the present problem is quite differ
ent and in many ways more difficult. 

The procedure to be followed is as follows. First, the 
problem of the current distribution near the end of the cen
ter-driven dipole antenna where Coulomb repulsion is most 
pronounced-as already mentioned above-is formulated 
in terms of a Wiener-Hopf integral equation. Second, this 
Wiener-Hopf integral equation is solved exactly. Finally, 
this exact solution is evaluated approximately using the fact 
that the radius of the dipole antenna is small. This last step is 

technically complicated. Much effort has been directed to
ward changing the contours of the integration to improve 
the convergence. It is found that the expression for the cur
rent from the inverse Fourier transform is a universal for
mula in which no parameter other than the radius is in
volved. This means that within a range of about a 
quarter-wavelength, the repulsion effect dominates the dis
tributions of the charge density and the current. 

These universal current and charge-density distribu
tions are shown in Fig. 1. With this result, the current distri
bution from other approximate theories, for which the accu
racy near the end is poor, can be improved significantly. This 
is presented in a separate paper.6 

II. WIENER-HOPF SOLUTION 

A. Wiener-Hopf equations 

The integral equation for the current is 

fh I(z')K(z - z')dz' = ~(C cos kz + ~ V sin k Izl), 
-h ;0 

(1) 

where ;0 = 1201T n, V is the driving voltage, k is the wave 
number, and the kernel is 

1 fTr eikR 

K(z) = - - dO, 
21T - Tr 41TR 

r-------------------------~--~50 

Q (T) 
i (T) 

--------

40 

30~ ... 

20 

---------- 10 

o 2 4 6 8 10 12 14 16 18 

T=(h-z)/o 

(2) 

FIG. 1. Distributions of relative charge density q( r) and relative current 
i( r). 

2721 J. Math. Phys. 30 (11). November 1989 0022-2488/89/112721-09$02.50 © 1989 American Institute of Physics 2721 



                                                                                                                                    

with 

R = [r + (2a sin (0/2»2] 112. (3) 

The requirement that the antenna be electrically thin is 
usually imposed in the form 

ka~l, a/h~l. (4) 

It is desired to determine the current I(z) near the end of the 
tube from the integral equation ( 1 ) under the conditions ( 4 ). 
The origin is located at one end of the tube and the following 
notation is introduced: 

x = h - z, x' = h - z', F(x) = I(h - x). 

Then Eq. (1) becomes 

Loo dx' K(x - x')F(x') = G(x), 

where 

F(x) = 0, for x>2h, 

(5) 

(6) 

{

CiV /~o) [! sin k Ih - xl + C cos k(h - x)] , 

G(x) = for 0 <x < 2h, 

unknown, for x < 0, x> 2h. 
(7) 

The Fourier transform ofthe integral equation (6) is 

K(~)F(~) = G+(~) + G_(~), (8) 

where 

K(~) = f: 00 K(x)e- is-x dx 

= .i.Jo(a~F - ~2)H~/)(a~F _ ~2) 
4 

= -l-Io(a~C - k 2)Ko(a~~ 2 - F), 
21T 
fOO f2h 

F(~) = Jo F(x)e - is-x dx = Jo F(x)e - is-x dx, 

G + (~) = 100 
G(x)e - is-x dx, 

G _ (~) = [00 G(x)e - is-x dx, 

(9a) 

(9b) 

(9c) 

(9d) 

and where Io(z) and Ko(z) are modified Bessel functions. 

B. Formal solution for F(;) 

It is clear that F(~) and G + (~) are analytic in the upper 
~ plane, and G _ (~) is analytic in the lower ~ plane. After 
factorization, (8) becomes 

I+(~)F(~) =I_(~)G+(~) +I_(~)G_(~), (10) 

where 

I ± (~) = exp{[ln K(~)] ± } 

[ 
1 foo =FiE d~' ] 

=exp -. -, -lnK(~') . 
2m - 00 =F iE ~ - ~ 

(11) 

After further decomposition of I_ (~)G + (~), Eq. (10) be
comes 

I+(~)F(~) - [I_(~)G+(~)]+ 

= [I_(~)G+(~)L +I_(~)G_(~). (12) 
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The left and right sides ofEq. (12) are analytic in the upper 
and lower ~ planes, respectively, and have an overlapping 
strip. Thus, the left-hand side must be constant at zero, and 
the solution for F(~) is 

c. Alternative form of the solution 

Since from (7) G(x) is unknown in the region (2h,00) 
and since from (9c) the same is true of G + (~), the expres
sion (13) is only a formal solution. In other words, for a 
finite tubular antenna, it seems to be impossible to obtain a 
solution for the current F(x) in the whole region (0,2h) with 
the Wiener-Hopftechnique alone. However, since F(x) for 
x small corresponds to F(~) for ~ large, it follows that, if an 
asymptotic solution for F(~) can be obtained explicitly, it 
should be possible to derive a solution for the current within 
a distance of the order of the radius a from the end of the 
antenna. 

In order to derive the asymptotic form of F(~), the 
expression ( 13) must first be changed. From the definitions 
(9a)-(9c) and (11), it is not difficult to find the following 
asymptotic properties: 

F(~) -~ -3/2, for large~, 

I+(~)_~-1/2, forlarge~, 

(14) 

(15) 

where (14) follows from F(x)-[X for x~a. Thus, from 
(13), 

f
oo

-
iE 
~I_(~')G+(~') =O(~-2), forlarge~. 

-oo-iE~ -~ 
(16) 

Since, for large ~, 

G+(~) = foo G(x)e-iS-xdx_.i.G(O), (17) 
Jo ~ 

it is convenient to introduce 

G+(~) =G+(~) - [i/(~-k)]G(O), (18) 

which has the following asymptotic property: 

G+(~) = O(~-2) forlarge~, (19) 

and the following identity: 

foo -iE ~I_(~')G+(~') 
-oo-iE~ -~ 

= foo -iE ~I_(~')G+(~'). 
- 00 -iE ~ - ~ 

(20) 

When ~ -+ 00 and with the asymptotic properties (16) and 
( 19), it follows that 

f:oo d~'I_(~')G+(~') =0. (21 ) 

Let the following quantity be defined: 

M(~) = f~oo d~'I_(~')G+(~'), (22) 
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so that 

M( - 00 ) = M( 00 ) = 0, (23) 

and 

(24) 

The substitution of (20) and (22) into (13) leads to 

F(;) =~~fOO-ie --!f.L-L_(;')G+(;') 
L+(;) 2m - oo -ie; -; 

I 1 fOO -ie d;' dM(;') 
- (25) 
- L+(;) 21Ti - oo -ie;' -; d;' . 

After integration by parts and with the condition (23), it 
follows that 

F(;) =~~fOO -ie d;' ~(;') 2 • 

L+(;) 2m - oo -ie (; -;) (26) 

This is the alternative form for F(;), in place of ( 13). 

D. Asymptotic solution 

Thus far, the alternative form (26) is still a precise solu
tion and since G + (;) and M(;) are unknown, it cannot be 
used to evaluate F(x) in the whole region. 

When; is large or of the order of 1/ a, an asymptotic 
approximation for F(;) is readily obtained from (26), i.e., 
the integral in (26) may be approximated as follows: 

- (; + iE)2 ' 
(27) 

where C(J is an unknown constant. The substitution of (27) 
into (26) leads to an explicit solution, viz., 

F(r)_ C(J forr=O(a- 1 ) (28) 
~ L+(;)(;+iE)2' ~ , 

where L+ (;) is given in (11). The current near the end is 
given by the inverse Fourier transform of (28). 

III. EVALUATION OF THE CURRENT 

A. Modified form for L+ (~) 
In order to evaluate the current near the end of the an

tenna, the formula for L+ (;) needs to be modified. When 
; ....... 00, it follows from (9a) that 

K(;)-+_1 1 
41T a~C - k 2 

This implies that the logarithmic integrand in (11) con
verges very slowly. Let 

K(;) = 41Ta~; 2 - k 2 K(;), 
so that 

K(;)-+1 as;-+ ± 00. 

Now let 

K(;) = L+ (;)/L_ (;). 
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(29) 

(30) 

(31) 

From (11) it then follows that 

- 1-
L+ (;) = L+ (;) 

~41Ta(; + k) 

1 
= ->f;:;::41T=a=( ;;:::+:::::::;:k=-) 

[ If'" -ie d;' ] Xexp -. . -, -lnK(;') , 
2m - oo - Ie; -; 

(32) 

L_ (;) = ~41Ta(; - k) L_ (;) 

= ~41Ta(; - k) 

[ If'" + ie d; , ] 
xexp -. -, -lnK(;') . (33) 

2m - oo + ie; -; 
Due to (30), the integrand in (32) or (33) converges much 
faster than that in (11). 

B. Charge density q(1") near the end 

The substitution of (32) into (28), and with the condi
tions (4), leads to 

- 1 
- i;F(;) -const ---

~; +iE 

[ 
1 fOO-ie d;' ] 

xexp --. -, -lnK(;') . 
2m - oo - ie; -; 

(34) 

The charge density near the end is the inverse Fourier trans
form of (34), 

q(xla) -const d; ei{;x ---f
oo 1 

- oo ~; + iE 

[ If'" -ie d; , ] 
Xexp --. -, -lnK(;') . 

2m - oo - iE; -; 
(35) 

Now if we let 5 = a;, 5' = a; " and 1" = xl a, and with (4) 
and (9a), it follows that 

q(1")-const d5eisT exp[A(5)], foo 1 

e-O - oo ~5 + iE 
(36) 

where 

A(5) = -i... roo 5,:5'5
2 

In[25'!0(5')Ko(5')]. (37) 
m Jo -

This is the solution for the charge density near the end, ex
cept for an unknown factor. 

The expression (36) is a universal formula, in which no 
parameter other than the radius a is involved. In other 
words, when the frequency in k or the length h is changed, 
the relative distributions of the charge per unit length (or 
current) near the end of the linear antenna remain the same, 
provided the thin-antenna conditions in (4) are satisfied. 

The integral in (36) cannot be carried out analytically. 
Since there is no parameter involved, the numerical evalua
tion is universal. The integral (36) converges rapidly only 
when 1" is small. The numerical evaluation is more conven
ient when the paths of integration are changed. These 
changes are described below. 
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C. Change in the path of integration for A(~) 

From (37), A( -;) = -A(;) and is analytic for 
1(;) > O. In the following derivation, Sis initially confined to 
the region Re(;) >0. From (37), 

1 (00 (1 1) 
A (;) = - 21TtJO d; I ;' _ ; - ;' + ; 

Xln[2; '[0(; ')Ko(;')] 

= -~lim {( -4L-ln[2;'[o(;')Ko(;')] 
2mT-00 Jo ; -; 

- (~ln[2;'[o(;')Ko(;')]}' (38) Jo ;' +; 

After changing the paths of integration for the two integrals, 
respectively, from the real axis to the =+= imaginary axes, 
(38) becomes 

A(;) 

= -~ lim {J.-iT+€ -4L-ln[2;'[o(;')Ko(;')] 
2mT-00 € ;-; 

_J.iT+€ ~ln[2;I[o(;')Ko(;I)]}. (39) 
€ ;' +; 

We now let; I = =+= it + E, respectively, in the two integrals 
so that (39) becomes 

A(;) = - ~ lim { ( .- i dt In[2( - it + E)Jo(t + iE)(i1T)H~I)(t + iE)] 
2m T-oo Jo -It+E-; 2 

_ (. -idt In[2Ut + E)Jo(t-iE)( -i1T)H~2)(t_iE)]} = _~ (00 ~<I>(t), 
Jo It + € + ; 2 1T Jo t - 'S 

(40) 

where 

CP(t) =-In --------
1 [Jo(t+iE)H~I)(t+iE)] 
2i Jo(t - iE)H ~2) (t - iE) 

- t -I[ Yo(t)] -an --, 
Jo(t) 

(41) 

tan -I (x) takes the principal value, 7 which is given in Fig. 2, 
and Jo(z), Yo(z), H~I)(z), and H~2)(Z) are Bessel func
tions. 

D. Change in the path of integration for q(T) 

A (;) in the form (40) is analytic in the whole; plane 
except on the negative imaginary axis. With (40), it is con
venient to change the path of; in the integral (36). Let 

::(U)} =A( -iu) = _~ (00 ~tan-I[YO(t)], 
Y (u) 1T Jo t-u Jo(t) 

{
Im(U) >0, 

(42) 
Im(u) <0. 

From (36), let; = - iu, 

2 

~ (t ) f-"7'f---l-++--7f'----+-I-+-¥--+-+f---I 
10 

-2 

FIG. 2. Plot of<l>(t) = tan-' [Yo(t)/Jo(t) 1 versus t. 
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I ioo - idu 
q(r) = exp[if(u)] 

o ~ - iu + iE 

[ 
-idu + exp [Y (u) ] . 

- ioo ~ - iu + iE 
(43) 

After rotating the two paths along the negative and positive 
imaginary axes to the paths C1 and C2 (shown in Fig. 3) 
along the positive real axis, (43) becomes 

1 -i du e- UT 

q(r) = . exp[if(u)] 
c, e- 11T14{1i 

-1 -idue-
UT 

exp[Y(u)]. (44) 
c, ei37r/4{1i 

In Fig. 3, f.ln' n = 1,2, ... , are the roots of Jo(u), except 
f.lo = O. 

Contributions to the integral along the paths C1 and C2 

come from the poles at f.l n and the straight path. After separ
ating the path into two parts, we obtain 

q(r) =e- i7r/4 [qp(r) +q,(r)], 

where 

(45) 

1 du e- UT 

qp(r) = {exp[if(u)] +exp[Y(u)]}, 
c" {Ii 

(46a) 

C'1 
CZ 

a E3 a eJ ®-=< ·U 

Co 
u . 

c,o C 0 0 C 0 Czo Y 

FIG. 3. Paths of integration for q( 1'). 
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i du e- UT 
q r ( r) = exp [ If (u) ) 

ell) {ii 

i du e- UT 
+ exp [Y (u) ) . 

C,O {ii 
The paths Co, Cw, and C20 are shown in Fig. 3. 

E. Contribution from the semicircles 

Since, from the definition (42), 

Y(u) = If(u*), 

(46b) 

(47) 

it is only necessary to evaluate If(u) near fln' n = 1,2, .... 
We define 

{

tan-I [Yo(t)/Jo(t») - 1T12, 

<l>n(l) = tan-I[Yo(l)IJo(l») +1T12, 

tan -I [Yo(l)IJo(l»), 

fln-I <t<fln' 

fln < t <fln + 1 , 

otherwise 

which is shown in Fig. 4. Thus (42) becomes 

If(u) = -- --<I>n(l)-- ---1 l"" dt 1 1l'n dt 1T 
1T 0 t - U 1T I'n _ I t - u 2 

1 11'n+ I dt 1T +- ---
1T I'n t - u 2 

(48) 

= _J... ("" ~<I>n(t) -J...[ln( -fln + u ) 
1T Jo t - u 2 - fln _ 1 + u 

_In(fl:: ~~ U) l (49) 

When u is close to fl n , 

1 l"" dt 1 If (u) = - - -- <l>n (I) + -In(fln - fln-I ) 
1T 0 t-u 2 

Also, from (47), 

c;.- 1 l"" dt 1 .Y (u) = - - -- <l>n (t) + -In(fln - fln - 1 ) 
1T 0 t-u 2 

FIG. 4. Plot of<Pn (t), n = 1,2, versus t. 
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The substitution of (50a) and (50b) into (46b) leads to 

qr(r) = L e-l'nT_I_Mn(( idfl +[-idU), 
n ~ 1 .Jii: ~ - fln u - fln 

(51) 

where the symbols .hand .l.."denote the upper and lower 
semicircles around fln' respectively, and 

[ 
1 l"" dt Mn =exp -- --<I>n(l) 

1T 0 t - fln 

+ ~ In(fln+ 1 -fln)(fln -fln-I) l 
After taking the residue, (51) becomes 

F. Contribution from the straight path 

(52) 

(53) 

The contribution from the straight path is given by 
(46a) where, according to (42), 

. 1 leo dt If(u)=A(-IU+E)= -- . <1>(1) 
1T 0 t - U -IE 

- - -- <1>(1) - i<l>(u), 1 l"" dt 
1T 0 t-u 

(54a) 

and 

. 1 l"" dt Y(U)=A(-IU-E)= -- . <1>(1) 
1T 0 t - u + IE 

= - - -- <I>(t) + I<I>(U). 1 l"" dt . 
1T 0 t-u 

(54b) 

Note that S; denotes the principal value of the integral, i.e., 

l "" (lU-lJ J."") = lim + . 
o lJ-O 0 U + lJ 

The substitution of (54a) and (54b) into (46a) leads to 

l "" due-UT 
qp(r) = exp[B(u»), (55) 

o {ii 

where 

1 l"" dt B(u) = -- --<1>(1) +In[2cos<l>(u)]. 
1T 0 t-u 

(56) 

Formula (56) is not good for numerical evaluation. Since 
<I> (x) jumps at the zeros of the Bessel function Jo, two terms 
in (56) have opposite peaks at x = fl n. An alternative for
mula for numerical evaluation is given in the Appendix. 

G. Results 

The current at the end is, from (45),8 

i(r) =ika IT q(r')dr'=ei-1T/4ka[ip(r) +ir(r)], (57) 

where 

(T ("" 1 _ e - UT 
ip(r) = Jo qp(r')dr' = Jo U 3 / 2 exp[B(u)], 

(58a) 
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9t
I 

I 
7t 

I 
q(1') 1 

51. 
~\ 

----q(1') 

········2...JTrTi 
-q(T)-2M 

... "-
3- ......... -

.......... -------
......... 

I~ 
o 2 4 6 8 10 12 14 16 18 

p (h-z) 10 

FIG. 5. Distribution of relative charge density q( r) and square-root distri
bution as functions of r = (h - z)/a. 

(T 1 _ e~f'nT 

ir(r) = Jo qr(r')dr' = I21T 3/2 Mn· 
f-Ln 

(58b) 

The relative charge per unit length and current are 
shown, respectively, in Figs. 5 and 6 and listed in Table I. 
The figures also show the square-root distribution for pur
poses of comparison. It is well known that the square-root 
distribution of the current is valid only within the region x 
( = h - z) <a. When x is larger than a, the departure from 
the square-root distribution is significant. 

Figure 7 gives the comparison with the experiment. The 
currents measured at the ends of tubular antennas of differ
ent lengths are taken from a report by Mack.9 The figure 
shows that the asymptotic solution agrees very well with the 
measurements in the region h - z < lOa, in which other ap
proximations are poor. The figure also indicates that the rel
ative distribution near the end is universal, i.e., when the 
length increases from h / A = 0.25 to 0.75, the distribution 
remains the same. 
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TABLE I. Asymptotic solution for relative charge density q( r) and current 
i( r) near end of tubular antenna; r= (h - z)/a. 

r q(r) i(r) 

0.00 00 0.000000 
0.05 15.88823 1.586858 
0.10 11.27575 2.133377 
0.15 9.244049 2.641 178 
0.20 8.041 176 3.071435 
0.25 7.226934 3.451 876 
0.30 6.631376 3.797680 
0.35 6.173275 4.118281 
0.40 5.808206 4.417 569 
0.45 5.509525 4.700063 
0.50 5.260 304 4.969698 
0.55 5.048866 5.228570 
0.60 4.867229 5.476535 
0.65 4.709 419 5.716188 
0.70 4.571 166 5.948951 
0.75 4.448999 6.175151 
0.80 4.340 320 6.394034 
0.85 4.243 127 6.609552 
0.90 4.155676 6.820101 
0.95 4.076613 7.025929 
1.00 4.004 820 7.228565 
1.05 3.939366 7.428 108 
1.10 3.879466 7.624542 
1.15 3.824455 7.817417 
1.20 3.773767 8.007630 
1.25 3.726915 8.195458 
1.30 3.683478 8.381082 
1.35 . 3.643094 8.565387 
1.40 3.605446 8.747086 
1.45 3.570259 8.926984 
1.50 3.537290 9.105 198 
1.55 3.506329 9.281 848 
1.60 3.477 187 9.457012 
1.65 3.449702 9.630760 
1.70 3.423727 9.803 162 
1.75 3.399 133 9.974284 
1.80 3.375806 10.14419 
1.85 3.353595 10.31258 
1.90 3.332450 10.48037 
1.95 3.312289 10.64720 
2.00 3.293041 10.81281 
2.05 3.274640 10.977 05 
2.10 3.256967 11.141 79 
2.15 3.240 013 11.304 78 
2.20 3.223742 11.46682 
2.25 3.208 110 11.62828 
2.30 3.193021 11.78918 
2.35 3.178467 11.94897 
2.40 3.164441 12.10821 
2.45 3.150916 12.26729 
2.50 3.137770 12.42503 
2.55 3.125070 12.58198 
2.60 3.112794 12.738 14 
2.65 3.100 857 12.89391 
2.70 3.089269 13.04986 
2.75 3.078045 13.204 99 
2.80 3.067 118 13.358 53 
2.85 3.056475 13.51240 
2.90 3.046151 13.66555 
2.95 3.036077 13.81758 
3.00 3.026250 13.96990 
3.05 3.016705 14.12171 
3.10 3.007358 14.272 90 
3.15 2.998243 14.42357 
3.20 2.989381 14.57354 
3.25 2.980660 14.72354 
3.30 2.972 175 14.87302 
3.35 2.963878 15.02236 
3.40 2.955740 15.17147 
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TABLE I. (Continued). TABLE I. (Continued). 

r q(r) i(r) r q(r) i(r) 

3.45 2.947815 15.31985 6.80 2.628096 24.610 47 
3.50 2.940014 15.46776 6.85 2.625105 24.74192 
3.55 2.932397 15.615 12 6.90 2.622126 24.87416 
3.60 2.924939 15.76207 6.95 2.619 194 25.00593 
3.65 2.917609 15.90850 7.00 2.616278 25.13707 
3.70 2.910 463 16.054 16 7.05 2.613 397 25.26771 
3.75 2.903406 16.200 32 7.10 2.610 545 25.39843 
3.80 2.896518 16.34585 7.15 2.607714 25.52955 
3.85 2.889744 16.49116 7.20 2.604925 25.660 22 
3.90 2.883098 16.636 14 7.25 2.602142 25.79150 
3.95 2.876588 16.78066 7.30 2.599601 25.92234 
4.00 2.870169 16.92476 7.35 2.596678 26.05280 
4.05 2.863903 17.068 11 7.40 2.593981 26.18288 
4.10 2.857697 17.21204 7.45 2.591318 26.31269 
4.15 2.851638 17.35529 7.50 2.588664 26.44295 
4.20 2.845654 17.49851 7.55 2.586049 26.572 77 
4.25 2.839791 17.64125 7.60 2.583447 26.70269 
4.30 2.834014 17.78381 7.65 2.580873 26.83241 
4.35 2.828336 17.92606 7.70 2.578326 26.96180 
4.40 2.822753 18.06798 7.75 2.575791 27.091 10 
4.45 2.817250 18.20949 7.80 2.573291 27.21998 
4.50 2.811 849 18.35041 7.85 2.570803 27.34900 
4.55 2.806512 18.491 60 7.90 2.568340 27.477 79 
4.60 2.801 283 18.63235 7.95 2.565904 27.60634 
4.65 1.796 105 18.773 16 8.00 2.563478 27.73505 
4.70 2.791035 18.913 37 8.05 2.561083 27.86335 
4.75 2.786008 19.05336 8.10 2.558701 27.99197 
4.80 2.781089 19.192 66 8.15 2.556341 28.12049 
4.85 2.776206 19.33253 8.20 2.554007 28.24873 
4.90 2.771431 19.47174 8.25 2.551681 28.377 17 
4.95 2.766686 19.611 17 8.30 2.549384 28.50522 
5.00 2.762045 19.74990 8.35 2.547101 28.63296 
5.05 2.757432 19.88850 8.40 2.544 836 28.760 37 
5.10 2.752918 20.02640 8.45 2.542599 28.88740 
5.15 2.748431 20.16456 8.50 2.540 365 29.01532 
5.20 2.744038 20.30205 8.55 2.538 158 29.14288 
5.25 2.739672 20.440 11 8.60 2.535968 29.27034 
5.30 2.735394 20.57757 8.65 2.533790 29.39784 
5.35 2.731 144 20.71454 8.70 2.531639 29.52498 
5.40 2.726975 20.85088 8.75 2.529495 29.65184 
5.45 2.722837 20.98795 8.80 2.527372 29.77837 
5.50 2.718771 2\.12465 8.85 2.525 271 29.904 70 
5.55 2.714740 21.26141 8.90 2.523 174 30.03204 
5.60 2.710772 21.39776 8.95 2.521 102 30.\5902 
5.65 2.706844 2\.53360 9.00 2.519044 30.28557 
5.70 2.702971 21.66891 9.05 2.516997 30.41168 
5.75 2.699142 21.804 43 9.10 2.514974 30.53744 
5.80 2.695358 21.94013 9.15 2.512958 30.66356 
5.85 2.691625 22.07543 9.20 2.510960 30.78958 
5.90 2.687927 22.210 47 9.25 2.508983 30.91528 
5.95 2.684286 22.34510 9.30 2.507008 31.04129 
6.00 2.680670 22.47986 9.35 2.505056 3\.16695 
6.05 2.677 118 22.61405 9.40 2.503 118 31.29249 
6.10 2.673579 22.748 19 9.45 2.501 188 31.41814 
6.15 2.670103 22.88178 9.50 2.499279 3\.54345 
6.20 2.666650 23.01602 9.55 2.497380 31.66881 
6.25 2.663246 23.15004 9.60 2.495492 31.79413 
6.30 2.659875 23.28380 9.65 2.493626 31.91912 
6.35 2.656541 23.41724 9.70 2.491 764 32.044 30 
6.40 2.653249 23.55041 9.75 2.489918 32.\6929 
6.45 2.649982 23.68362 9.80 2.488092 32.29397 
6.50 2.646767 23.81635 9.85 2.486265 32.41869 
6.55 2.643563 23.94935 9.90 2.484458 32.54309 
6.60 2.640 412 24.081 83 9.95 2.482667 32.66735 
6.65 2.637281 24.21442 10.00 2.480879 32.79204 
6.70 2.634189 24.34670 
6.75 2.631 130 24.47870 
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FIG. 7. Comparison of asymptotic solution for current i( r) with experi
mental data of Mack (Ref. 9) for several values of h /..1.. 
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APPENDIX: ALTERNATIVE FORMULA FOR 8(u) 

We begin by introducing the saw-toothed function 
<l>o(u), 

<l>o(u) =u---1T'Int -+-. 1T (u 1) 
4 1T 4 

(AI) 

From (56), let 

1 f'" dt B(u) = -- --[<l>(t) - <l>o(t)] 
1T 0 t-u 

1 f'" dt -- --<l>o(t) + In[2cos <l>(u)]. 
1T 0 t-u 

(A2) 

Using integration by parts, the first integral in (A2) be
comes 

1 £'" dt B1(u) = -- --[<l>(t)-<l>o(t)] 
1T 0 t-u 

1 I'" = - -lnlt - ul [<l>(t) - <l>o(t)] 
1T 0 

1 So'" +- dtlnlt-ul['I"(t)-I] 
1T 0 

+ ntl i~n+ I dt lnlt - ul 

X [8(t -!Lon) - 8(t -!Ln)]' (A3) 

'I"(t) = 2 , 
1Tt [J6 (t) + Y6 (t)] 

(A4a) 
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Vn = (n - V1T, !Lon = (n - !)1T, 

JO(!Ln) = 0, n = 1,2, ... , 

so that 

Vn<!Ln (or !Lon)<vn+!, 

Since 

lim [<l>(t) - <l>o(t)] = 0, 
1- '" 

it follows that 

(A4b) 

(A5) 

(A6) 

B1(u) = --lnu+-Inu dt['I"(t) -1] 1 1 So'" 
4 1T 0 

+ ! So'" dtlnll- ~ 1 ['I"(t) - 1] 

+ i l!Lon - ul . (A7) 
n=ll!Ln-ul 

The first integral in (A7) is constant, viz., 

r'" dt ['I"(t) - 1] = lim rv

• dt ['I"(t) - 1] Jo n_ 00 Jo 

= lim ['I'(vn ) - '1'(0) - vn ] 
n_ '" 

= lim [(n - 1)1T + ~ - (n -1.)1T] 
n_", 2 4 

(AS) 

The substitution of (AS) into (A 7) leads to 

(A9) 

The integral in (A9) is smooth, converges quickly, and is 
convenient for numerical analysis. 

The second integral in (A2) can be carried out analyti
cally as follows. 

1 f'" dt B2 (u) = -- --<l>o(t) 
1T 0 t-u 

= _ -.!.. f1r/4 ~(t _ ~) 
1T 0 t-u 4 

1 '" fV.+' dt - - L --<l>o(t) , 
1T n = 1 V. t - u 

(AlO) 

where Vn is given in (A4b). After integration by parts and 
with <l>o(vn) = 0, 
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I (I U) Iu -1T/41 I i V

.+' B2 (u) = --+ ---In +- I dtlnlt-ul[1-m5(t-,un)] 
4 4 1T U 1T n = 1 V. 

_J...+(J...-~)ln IU-1T/41 + I [(n+J...-~)lnln+J...-~I-(n-~-~)lnln-~-~I] 
4 4 1T U n=l 4 1T 4 1T 4 1T 4 1T 

-l-lnln-!-:I 

--+ --- In + hm (A +B+ C), I ( I u) Iu - 1T/41 . 
4 4 1T U N-oyo 

(All) 

where 
N 

A = I (n + uo)lnln + Uol - (n - I + uo)lnln - I + uol 
n=1 

N N-l 

= I (n + uo)lnln + uol - I (n + uo)lnln + Uol 
n=l n=O 

= - Uo lnluol + (N + uo)lnlN + uol, (AI2) 
N 

B= I(-l)= -N, (A13) 
n=1 

and 

Uo = ! - U/1T. (AI5) 

The substitution of (AI2)-(AI4) into (All) leads to 

B2(u) = -! - Uo In(u/1T) + lnlr(! + uo) 1 

+ lim [(N + uo)ln(N + uo) 
N-oyo 

- N -In r(N +! + uo)]. 

With Stirling's formula (when z~ I), viz., 

In r(z) = (z - pIn z - z + ln..[iii, 

(AI6) becomes 

(AI6) 

(AI7) 

B2 (u) = - J... - Uo In ~ + In I r(J... + Uo) I-In..[iii + J... + Uo - lim (N + Uo)ln(l +~) 
4 1T 2 2 N_ oyo N + Uo 

(AI8) 

The substitution of (A9) and (AI8) into (A2) leads to the final formula for numerical evaluation. It is 

B(u)= ~iOYO dtlnll- ~1['II'(t)-I]+(: - !)(In: -l)+ln[r(~ - :)'2COSct>o(U)]-! -~ In21T 

+ In[ 2 cos ct>(u) IT Iu -!-lOn I]. (AI9) 
2cosct>o(u) n=1 IU-!-lnl 
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7From the argument of the logarithm, it is not difficult to find that when t 
passes the zeros of 10 , CP(t) jumps from 'Tr/2 to - 'Tr/2. 

"Here i( T) is proportional to F( Ta) in (5). 
9R. B. Mack, Cruft Laboratory Technical Report, No. 383, Harvard Uni
versity, Cambridge, MA, 1963. 

IOcp'(t) = 1JI'(t) - !.:~ ,i5(t-JL.). 

"v. = (n - V'Tr are the zeros of Yo(t) when n is large and, thus, 
IJI(O) = - 'Tr/2, IJI( v.) = (n - 1 )'Tr. 
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